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Abstract—We propose a simple, approximate theory of the fairly general mechanism for the separatrix con-
servation of nonlinear resonance, which leads to the complete suppression of global diffusion despite the strong
local chaos of motion. This theory allows the separatrix splitting angle to be plotted against system parameters
and, in particular, yields their values at which the separatrix remains unsplit. We present the results of our
numerical experiments confirming theoretical conclusions for a certain class of dynamical Hamiltonian sys-
tems. New features of chaos suppression have been found in such systems. In conclusion, we discuss the range
of application of the proposed theory. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: UNEXPECTED STABILITY 
OF THE SEPARATRIX OF NONLINEAR 

RESONANCE

The dynamics of nonlinear Hamiltonian systems is
governed by the interaction of nonlinear resonances,
with each of them, in contrast to a linear resonance,
occupying a relatively small region of phase space
bounded by the so-called separatrix under a small per-
turbation (see, e.g., [1-4]). For a single resonance, the
separatrix is the trajectory (in general, a surface) that
separates phase oscillations (inside the resonance) from
phase rotation (outside the resonance).1 In fact, these
are two spatially coincident branches corresponding to
going forward and backward in time, respectively. Each
branch is a continuous trajectory with an infinite period
of motion that goes out of an unstable equilibrium posi-
tion (saddle) and then asymptotically approaches it. In
a typical (i.e., nonintegrable) Hamiltonian system, any
arbitrarily small perturbation, for example, from other
(at least one) nonlinear resonances, causes the separa-
trix to split up into two intersecting branches, which go
out of the saddle toward each other as before but no
longer return to it. The free ends of the branches of the
split separatrix form an infinite number of loops with a
limitlessly increasing length; these loops fill a narrow
region near the unperturbed separatrix to form the so-
called chaotic layer. Overlapping of the chaotic layers
of all system resonances gives rise to global chaos and,
in particular, to diffusion bounded only by the exact
integrals of motion, for example, by a surface of con-
stant energy.

1 Below, we use the canonical action-phase variables.
1063-7761/01/9303- $21.00 © 20649
The conditions for the formation of global chaos
depend on both the magnitude and smoothness of the
perturbation (in phase). The latter is characterized by
the rate of decrease in its Fourier amplitudes. For an
analytic perturbation, the decrease is exponential. In
this case, there is always such a critical perturbation
magnitude ecr that global diffusion emerges only at e *
ecr. If, alternatively, e & ecr, chaos is localized in rela-
tively narrow chaotic layers that are formed at any e >
0. For N > 2 degrees of freedom, global diffusion is still
possible, but only for special initial conditions and with
a very low rate (the so-called Arnold diffusion [2]).
When e  0, both the rate of diffusion and the mea-
sure of its range decrease exponentially in parameter
1/e.

The pattern of motion significantly changes for a
smooth Hamiltonian perturbation, which has only a
finite number γ of continuous derivatives (see, e.g., [5]
and references therein). In this case, there is such a crit-
ical smoothness γcr that global diffusion is suppressed
under a sufficiently small perturbation only at γ > γcr
[6]. Significantly, the converse is generally not true; i.e.,
at γ < γcr, global diffusion is commonly observed in
numerical experiments, but we know examples when
the trajectory remained localized in a part of phase
space over the entire long computational time (see, e.g.,
[7, 8]).

Recently, Ovsyannikov [9] has found a relatively
simple, exactly solvable example [see (2.1) below] for
which he managed to prove the theorem on the conser-
vation of a single (unsplit) separatrix at special values
of the perturbation parameter. This theorem is given in
its entirety in [10] (Appendix). Intensive studies of
001 MAIK “Nauka/Interperiodica”
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model (2.1), which we call below a symmetric piece-
wise linear mapping, immediately showed that the con-
servation of the separatrix in strong chaos rather than in
the exceptional case of a completely integrable system
without any chaos whatsoever turned out to be the most
important and unexpected thing in this theorem. More-
over, at the special values of the perturbation parameter
found both by Ovsyannikov and by one of us [10–12],
the separatrices of nonlinear resonances not only
remain unsplit, but form impenetrable barriers for other
trajectories; i.e., they completely suppress global diffu-
sion. This takes place despite the fact that the perturba-
tion smoothness in the model of a symmetric piecewise
linear mapping is considerably smaller than its critical
value, and one might expect global diffusion at any per-
turbation magnitude.

Meanwhile, an examination of the literature has
shown that the same model was mathematically ana-
lyzed in detail by Bullett [13] (see also [14]) well
before. Although Ovsyannikov proved his theorem
independently, this coincidence of the models is not
fortuitous, because the solution of a linear (even if
piecewise) mapping considerably simplifies the prob-
lem. Note that even Ovsyannikov’s linear mapping can
be completely solved only when the separatrix is con-
served, because, otherwise, the two branches of the
split separatrix form random trajectories. For the same
reason, the model of a symmetric piecewise linear map-
ping cannot be simplified to a purely linear Arnold-type
mapping, in which the separatrices of nonlinear reso-
nances are always split (see Sect. 3). Bullett’s and
Ovsyannikov’s mathematical analyses are therefore
restricted to the invariant curves of a new type (with a

V(x) x

x

f(x)

0

–1/4

1

–1

d/2

–(1 – d)/4

1

Fig. 1. A scheme of the potential V(x) and force f(x) =
−dV/dx with a period of 1 for the family of models (2.2)
with parameter d.
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rational rotation number ν, including the separatrices)
themselves, whose first examples were given in [14].

In this paper (as in our previous papers on this sub-
ject [10-12]), we rely mainly on numerical experi-
ments, which also allow us to investigate the vicinities
of the invariant curves both under various initial condi-
tions of motion and for various model parameters. In
this regard, our approach is similar to the study of
Hénon and Wisdom [8] for a different model.

2. THE MODEL

Ovsyannikov considered a difference equation that
was equivalent to the following two-dimensional map-
ping in canonical variables “action p–phase x”:

(2.1)

Here, K = e > 0 is the perturbation parameter (not nec-
essarily small), and the “force” f(x) has the form of an
antisymmetric (f(–y) = –f(y), y = x – 1/2) piecewise lin-
ear “saw” with a period of 1 [see (2.2) below].

Perhaps, the most unexpected thing in this example
is that the smoothness of the Hamiltonian (generating
function) for mapping (2.1), γ = 1 < γcr ≤ 4 [6], is con-
siderably smaller than its critical value. In other words,
for a certain countable set of special values, K = Km, the
unsplit separatrix is “immersed in the sea” of strong
chaos; nevertheless, it is conserved and blocks global
diffusion [10, 11]!

Since an exact K cannot be specified on a computer,
the next crucial step was to analyze the behavior of the
(split) separatrix and other trajectories for a small devi-
ation, |K – Km|  0, which is possible only in numer-
ical experiments. Even the first studies [12] showed that
the separatrix splitting angle changed sign with differ-
ence K – Km; this angle smoothly passed through zero
at odd m and abruptly changed sign at even m (see Fig. 1
from [11] and Fig. 2 below). First, this allowed a set of
other special Km at which the separatrix was conserved
to be found immediately and easily. At the same time,
such an unusual behavior of the splitting angle also sug-
gested a dynamical mechanism for the conservation of
the separatrix, which is the main subject of our discus-
sion here.

It is convenient to simultaneously consider the
whole family of sawtooth perturbations specified by the
force2

(2.2)

where y = x – 1/2 and d < 1 is the distance between the
saw teeth |f(x)| = 1 at points y = y± = ±d/2. The best stud-
ied special case of a symmetric piecewise linear map-
ping corresponds to d = 1/2. At these two points, the

2 A similar family is briefly mentioned in [13].

p p Kf x( ), x+ x p.+= =

f x( )
2x/ 1 d–( ), if x 1 d–( )/2≤

2y– /d , if y d/2,≤



=
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force has a singularity, a discontinuity of the first deriv-
ative f ' = df/dx:

(2.3)

The original idea behind the separatrix conservation
mechanism is that the perturbation (force) has two sin-
gularities, which can interfere between themselves and,
in particular, can compensate each other or cancel out,
a term introduced in [8] where such a mechanism was
apparently first proposed and used. Our approach is
peculiar in that we are interested in the action of this
mechanism (and give a theory) directly for the separa-
trix of nonlinear resonance, whereas in [8] such cancel-
lations were determined for arbitrary trajectories and
used as a heuristic consideration to search for possible
invariant curves (not separatrices) among them by
numerical experiments.

To construct a theory, it is convenient to pass from the
initial mapping (2.1) to a continuous system with a Hamil-
tonian that explicitly depends on time (see [2–4, 10]):

(2.4)

where δ1(t) denotes the δ function of period 1. The
unperturbed Hamiltonian

(2.5)

describes the main (integer) resonance in (2.1), and

(2.6)

describes its perturbation (with the same period T1 = 1
and frequency Ω = 2π/T1 = 2π) from all the remaining
integer resonances.

The potential of force (2.2) is

(2.7)

The maximum potential Vmax = 0 determines the unper-
turbed separatrix of the main resonance:

(2.8)

while its minimum Vmin = –1/4 gives the total depth U
of the unperturbed potential well:

(2.9)

Perturbation (2.6) is peculiar in that it is of the order
of the unperturbed Hamiltonian, irrespective of the per-
turbation parameter K  0. Nevertheless, the pertur-

∆f '
2

d 1 d–( )
--------------------.±=

H x p t, ,( ) p2

2
-----= KV x( )δ1 t( )+

=  H0 x p,( ) H1 x t,( ),+

H0
p2

2
-----= KV x( )+

H1 x t,( ) KV x( ) δ1 t( ) 1–( )=

V x( ) f x( ) xd∫–=

=  
x– 2/ 1 d–( ), if x 1 d–( )/2≤

4y2 d–( )/4d , if y d/2.≤



ps x( ) 2KV x( )– ,±=

U K Vmax Vmin–( ) K
4
----.= =
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bation theory is generally applicable if the other pertur-
bation parameter is large,

. (2.10)

Here, ω0 =  is the frequency of small oscilla-
tions at the main resonance (2.5) and Ω = 2π is the fre-
quency of the external perturbation. This adiabaticity
parameter governs the separatrix splitting. Using the
term adiabaticity in this case emphasizes that the effect
of a high-frequency perturbation is qualitatively the
same as that of a low-frequency perturbation.

To investigate the motion near the separatrix, let us
first determine the change in unperturbed Hamiltonian
(2.5) for the period of motion in a close vicinity of the
unperturbed separatrix. Following [10], we obtain

(2.11)

In the latter expression, the motion along a trajectory
close to the separatrix was approximated by the motion
along the unperturbed separatrix (hence the infinite
integration limits).

Since the force f(x) has two singularities (2.3) at
points y± = ±d/2, we integrate (2.11) twice by parts, so
that

(2.12)

where p = dx/dt, and only the principal term with the δ
function was retained. As a result, we obtain

(2.13)

where t± are the passage times of the singularities at
points y±, and the function ψ(t) is given by

(2.14)

To calculate the difference ∆ψ = ψ(t+) – ψ(t–), we
change over to new variables ∆ and t0, where

(2.15)

λ Ω
ω0
------  @ 1=

2K /d

∆H0 t H1 H0,{ }d

∞–

∞

∫=

≈ K t ps f xs( ) δ1 t( ) 1–( ).d

∞–

∞

∫

d2 f t( )
dt2

--------------- d2 f y( )
dy2

---------------- p2≈ p2∆f 'δ1 y y±–( ),=

∆H0 K p±
2∆f ' ψ t+( ) ψ t–( )–[ ]≈ K2

d
------∆ψ,=

ψ̇̇ d2ψ
dt2
--------- δ1 t( )= = 1.–

∆
t+ t––

2
------------- d

2K
------- darcsin= =

=  
λ

2π
------ darcsin
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is half the time of motion between the singularities, and

(2.16)

is the time when the potential minimum is passed (y = 0),
where the intersection of the branches of the split sepa-
ratrix is usually analyzed.

In general, ∆ψ is not factorized in these variables,
but this is possible under an additional constraint: |t0| ≤
∆ (> 0). In that case,

(2.17)

The angle α ! 1 between the branches of the split
separatrix is given by an approximate formula (see [12,
15]),

(2.18)

Here, we use the following relations: dp = dH0/p, dy =
pdt, and

where all quantities are taken at the point of intersection
of the separatrix branches (y = 0). The dependence α(K,
d) assumes an extremely simple form:

(2.19)

t0
t+ t–+

2
--------------=

∆ψ t0 1 2∆–( ).=

α α dp
dy
------

dH0

p0
2dt0

------------- 2K
d

------- 1 2∆–( ).≈ ≈ ≈ ≈tan

dH0

dt
---------- ∆ψ̇ 1 2∆,–= =

α s 1 2λ s–( )≈

0

αs

λs

0.2 0.4 0.6 0.8 1.0

0.8

0.4

0

–0.4

–0.8

Fig. 2. Periodic dependence of the separatrix splitting angle
α on parameters K and d in normalized variables αs(λs)
(2.20): d = 0.25, 0.5, 0.75, 0.999 (dots), d = 0.01 (circles) as
constructed from our numerical calculations. The solid
straight line and the curve represent, respectively, theory
(2.19) and the first approximation δ1(t) – 1 ≈ 2cos(2πt) [see
(2.11)]. The argument λs is taken modulo 1, so all points
(but not circles!) represent many periods of the dependence
α(K, d) (see text).
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in the transformed variables

(2.20)

We emphasize that the oscillations of α(K) resulted
from the two interfering singularities in the Hamilto-
nian.

Relation (2.19) is the main result of our analysis. It
explains and describes the new phenomenon of the sup-
pression of separatrix chaos and, hence, global diffu-
sion in a certain class of Hamiltonian systems.

A comparison with the results of our numerical
experiments is shown in Fig. 2. The very high accuracy
of the simple theory (for K ! 1) is limited by a small
shift in critical values K = Km. In Ovsyannikov’s exam-
ple (a symmetric piecewise linear mapping, d = 1/2), it
can be derived even without numerical experiments by
using exact expressions for Km, both predicted in [9]
and found later in [12]:

(2.21)

The last term represents our theory, and a first-order
correction is given in parentheses. The theory also
explains the unexpected discontinuity of the function
α(λs) at λs = 0 (mod 1) (but not at λs = 1/2), which was
found and discussed from a different point of view in
[12].

Figure 2 also shows an even simpler approximation
with only the first term of the Fourier expansion δ1(t) –
1 ≈ 2cos(2πt) being retained; it represents the critical
values Km equally well, but does not reproduce the dis-
continuity in the function of angle α.

The simple relation (2.19) does not give a full pic-
ture for the entire family (2.2) either, as demonstrated
by the example with a small value of d = 0.01 in Fig. 2
(circles). The separatrix splitting is thus seen to be non-
symmetric when d  0 and d  1. On the other
hand, it follows from expression (2.2) for the force that
the symmetry is preserved when both parameters of the
mapping family change: d  1 – d and K  –K.
Consequently, changing the sign of K also causes the
behavior of the separatrix to change qualitatively. The
symmetry is preserved only in the special case of d =
1/2, i.e., for the model of a symmetric piecewise linear
mapping.

3. THE LIMIT d  0: DISCONTINUITY
IN FORCE

Let us first consider the limiting case d = 0, K > 0,
where the force function f(x) experiences a discontinu-
ity (see Fig. 1). The limit differs qualitatively in that the
two singularities of the potential at d > 0 now merge

α s α d
2K
------- α λ2

4π2
--------,= =

λ s ∆ λ
2π
------ d      (mod 1).arcsin= =

Km
π2

16m2
------------ 1 π2

48m2
------------– …+ 

  π2

16m2
------------.≈=
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into one. Consequently, according to our theory, the
separatrix splitting angle does not change sign; i.e., the
separatrix splits up at any K > 0.

Figure 3 shows the results of numerical experiments
both in the limit d = 0 itself (circles) and in its close
vicinity d = 0.001 (triangles) and d = 0.01 (dots). The
dependence α(K) proper is given, because the adiaba-

ticity parameter λ = π  = 0 loses its meaning at
d = 0. First, the passage to the limit d  0 in model
(2.2) is seen to be continuous with an empirical bound-
ary [by maximum α(K)] at

(3.1)

The physical reason why relation (2.18) becomes inap-
plicable for K * KB is that in deriving it, we ignored the
change in velocity between the two singularities
through the action of the first of them and the change in
transit time ∆ between them [see Eqs. (2.13) and
(2.15)]. In the previous variables, the transition
between the two modes is also shown in Fig. 2 for d =
0.01 (circles). We emphasize that there is a deviation
from (2.18) only for K * KB and that it is not repeated
periodically as dependence (2.18) (see the circle in the
upper left corner of Fig. 2). Thus, in the limit d = 0, the
function of splitting angle actually does not change
sign, and, consequently, the separatrix always splits up.

The same method as for d ≠ 0 (Sect. 2) may be used
for a quantitative analysis. The only difference is that
the force itself now has a discontinuity, ∆f(x) = –2, and
it will therefore suffice to integrate (2.11) by parts only
once. We have

(3.2)

Here, p0 ≈  as before and

(3.3)

[see (2.14)]. However, the simple expression (2.18) in
the small-angle approximation is now no longer appli-
cable, because the following singularity arises when
differentiating with respect to t0:

(3.4)

the derivative is taken at two values: t = t0 = 0 and 1/2
when ∆H0 = 0 [the intersection of the separatrix
branches, formula (3.3)]. Each of these values deter-
mines the inclination of the corresponding separatrix

2d/K

K KB 7d .∼ ∼

∆H0 K t ps f xs( ) δ1 t( ) 1–( )d

∞–

∞

∫≈

≈ K p0∆f ψ̇ t0( ) 2K3/2ψ̇ t0( ).–≈

K /2

ψ̇ t( ) 1
2
--- t     (mod 1)–=

dH0

dt
---------- K p0 δ1 t( ) 1–( ),–=
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branch with respect to the x axis (see Fig. 4). The sin-
gularity arises at t = 0 and corresponds to α0 = π/2
(  = ∞). The angle of the other branch β is given
by [cf. (2.18)]

. (3.5)

The factor 1/2 of the derivative emerges because ∆H0 is
calculated relative to the unperturbed separatrix (the
solid broken line in Fig. 4), while the angle β (as α0) is
taken relative to the x axis. The signs of the angles are
determined with the consideration that the branch with
α0 corresponds to moving forward in time, while the
other branch corresponds to moving backward in time
(see [11]). Finally, we obtain for the angle between the
separatrix branches

(3.6)

This simple dependence is indicated in Fig. 3 by the
solid line. It agrees well with our numerical experi-
ments for small K; however, the error increases with K,
reaching about 40% at K 

 

≈

 

 0.6. At larger 

 

K

 

, the entire
simple pattern of the separatrix splitting for an individ-
ual resonance loses its meaning because many reso-
nances overlap (see below).

The error at large 

 

K

 

 is attributable to the approxi-
mate use of the unperturbed separatrix [see (2.8) and
(2.7)]

(3.7)

with an amplitude 

 

p

 

0

 

 

 

≈

 

  when calculating integral
(3.2). An interesting feature of the system under consid-
eration is that the unperturbed separatrix (two straight

α0tan

βtan
dp
dx
------ 1

2
---

dH0

p0
2dt0

------------- K
p0
----- 2K≈ ≈≈=

α K( ) α0 β–= π
2
--- 2K .–≈

ps x( ) p0 1 2 y–( )±=

K /2

 

0

1.6

 

K

 

0.2 0.4 0.6 0.8

1.4

1.2

1.0

0.8

0.6

 

α

 

Fig. 3.

 

 A plot of separatrix splitting angle 

 

α 

 

versus parame-
ter 

 

K

 

 for 

 

d

 

 = 0.01 (dots), 0.001 (triangles), and 

 

d

 

 = 0 (circles)
as constructed from our numerical calculations. The lower
and upper curves represent the approximate theory (3.6) and
the exact theory (3.10), respectively.
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lines) retains its shape under the action of a perturbation
(Fig. 4). This allows an exact value of p0(K) to be cal-
culated for any K from the eigenvectors of initial map-
ping (2.1) at unstable fixed point x = p = 0. As a result,
we obtain

(3.8)

However, when this expression is substituted into (3.5),
the agreement even worsens rather than improving:

(3.9)

The reason lies in another approximation of integral
(3.2), retaining the contribution from the jump in force
∆f(x) alone. Again, because of the peculiar singularity
of the unperturbed separatrix at d = 0, the angle β can
be calculated exactly without any integration directly
from the results in Fig. 4:  = 2p0(K). We thus
obtain

(3.10)

This expression represents the most accurate result of
our theory (the upper solid line in Fig. 3), which is in
excellent agreement with the numerical experiment
(circles) up to the point at which the resonances begin
to overlap. Since mapping (2.1) is periodic not only in
x but also in p (and with the same period of 1), there is
an infinite set of integer resonances at p(0) = n and H0 =
n2/2, where n is any integer, positive, negative, or zero.
The latter special case is considered in this paper. The

p0 K( ) K

2K K2+ K+
-----------------------------------= .

βtan
K

p0 K( )
--------------- 2K .>≈

βtan

α K( ) π
2
---=

2

1 1 2/K++
-------------------------------- 

  .arctan–

0.44

p – p0

x
0.48 0.52 0.56

0.004

0

–0.004

–0.008

α
α0 β

β

Fig. 4. An example of the separatrix splitting at K = 0.005
and d = 0: the solid line broken at x = 0.5 indicates the
unperturbed separatrix (3.7); the separatrix branches are
represented by dots (forward in time) and circles (backward
in time); the breaks in the branches are connected by the
dotted line showing a sequence of points; p0 ≈ 0.04756 is
the ordinate of the point of intersection (3.8).
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separatrices of adjacent integer resonances begin to
overlap at p0 = 1/2, which destroys their structure. For-
mally, this occurs only in the limit K  ∞ (3.8). Actu-
ally, however, this destruction begins much earlier
because of the overlapping with intermediate fractional
resonances (see [11]). Note also that, formally, the
splitting angle is always α > π/4 ≈ 0.785 [see (3.10)];
however, actually and for the same reason, the regular
dependence α(K) abruptly cuts off even at α ≈ 0.96 ≈
55°, K = Kcr ≈ 0.8, and p0(Kcr) ≈ 1/3 (Fig. 3). For K >
Kcr, the separatrix branches become so unstable that the
splitting angle cannot be reliably measured. Interest-
ingly, the deviation of the ordinate of the point at which
the separatrix branches intersect p0(K), according to
(3.8), in this range (up to K = 1.24) does not exceed 1%.
However, this is enough for a strong and irregular dis-
tortion of the separatrix branches.

Thus, even at relatively large K < 0.8, the separatrix
splitting angle is far from reaching zero, let alone
changing sign; hence, the separatrix always splits up.

In [13], the limit d  0 was also considered briefly
but only for K < 0 (in our notation). The inverse limit,
d  1, loses its meaning in [13], because the family
of mappings is defined there in such a way that in this
case, the force f(x)  0 vanishes. In our case, depen-
dence (2.19) is preserved, at least up to d = 0.999 (Fig. 2).
It should be noted, however, that the pattern of motion
qualitatively changes in the limit itself (d = 1), because
the motion along the unperturbed separatrix represents
simple harmonic oscillations [see (2.7) and Fig. 1]

4. CONCLUSION: HOW TYPICAL
IS THE CONSERVATION OF THE SEPARATRIX?

We have proposed and tested a simple theory of a
new unexpected phenomenon—the conservation of the
separatrix of nonlinear resonance in strong chaos on
most of the phase plane of a dynamical system [9–13].
The mechanism of this phenomenon is based on a sim-
ple idea of the interference (in particular, cancellation
[8]) of several singularities in the Hamiltonian of a
dynamical system, which govern the separatrix split-
ting for nonlinear resonance. Numerical experiments
and theoretical analysis were carried out for the family
of 2D mappings (2.1) in the simplest case of two singu-
larities, which also included the first example of a sym-
metric piecewise linear mapping [9, 11, 13]. Our study
not only confirmed and explained this mechanism, but
also allowed a simple theory to be developed to calcu-
late both special values of K = Km and the dependence
of the separatrix splitting angle α(K) over wide ranges
of K and d [see (2.19), (3.6), and (3.10)].

We separately considered the passage to the limit
d  0, in which the separatrix splits up at any K > 0
(Sect. 3). In the opposite case d  1, relation (2.19)
remains valid, at least up to d = 0.999 (Fig. 2). It should
be noted, however, that the pattern of motion qualita-
tively changes in the limit itself (d = 1). First, the
AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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motion along the unperturbed separatrix represents
simple harmonic oscillations with a finite period, T1 =

π  [see (2.7) and Fig. 1]. In addition, the trajectory
inside the resonance (H0 < 0) does not reach the singu-
larity of the potential at point x = 0 (mod 1) at all.
Finally, our preliminary numerical experiments in this
limit strongly suggest that the measure of the chaotic
component decreases rapidly with decreasing K. It
would be of great interest to continue the analysis of
this special dynamical system.

We have considered only the integer resonances
with p(0) = n, where n is any integer. The fractional res-
onances with p(0) ≈ n/q are known (see, e.g., [2, 3, 11])
to have the same structure in appropriate variables.
Therefore, one might expect such a mechanism and its
simple theory to be also applicable to fractional reso-
nances. If confirmed, we hope in the immediate future,
this would allow the conservation of the separatrix for
fractional resonances predicted in [13] and revealed by
numerical experiments [10–12] to be explained.
Although the set of all fractional resonances on the p
axis is dense everywhere, the set of all special values of
K = Kqn at which the separatrix is conserved is not dense
[13]. However, its mean density is large enough, and
one might expect the strong (although incomplete) sup-
pression of global diffusion at any K. This hypothesis is
additionally confirmed by the large number of periodic
invariant curves predicted in [13], both ordinary ones
with an irrational rotation number ν and new ones with
a rational ν ≠ 0. We surmise that the emergence of the
latter can be interpreted as the suppression of the reso-
nances themselves together with their separatrices. One
such strange case for K = 1/4 with ν = 1/3 was observed
in [11], but its further analysis was postponed to the
future.

Of interest and importance is the following ques-
tion: How typical are the conservation of the separatrix
in general and its specific mechanism in particular? It is
well known that a large number of examples and even
whole families of the so-called completely integrable
nonlinear dynamical systems have been “constructed”
to date (see, e.g., [16]). There is absolutely no chaos in
such systems. However, they are definitely not typical
but, in a sense, form a set of measure zero in the space
of all possible dynamical systems. From this viewpoint,
the new phenomenon of the separatrix conservation in
a chaotic system seems more typical, despite the very
limited number of examples at present.

The condition for the existence of several singulari-
ties in the potential that we used as the basis for our
study is neither necessary nor sufficient for the separa-
trix conservation per se. On the one hand, a preliminary
analysis of other examples shows that the presence of
several singularities in the force does not yet guarantee
the separatrix conservation. For instance, if we simply
extend force (2.2) with d = 0 by another period, so that
two singularities will formally appear, the separatrix
will break up as before at any K. In the case under con-
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sideration, this takes place because the potential
assumes the form of two conjugate wells with an unsta-
ble fixed point exactly at the boundary between them.
As a result, the unperturbed separatrix always proves to
be localized at one of them (depending on initial condi-
tions) with the only singularity.

On the other hand, for an analytic potential, the sin-
gularities that determine the separatrix splitting can be
located not on the real time axis but in the complex
plane. Such a situation appears to have been actually
observed in a completely different problem of charged-
particle confinement in Cohen’s long magnetic trap
[17] (see also [18]).

Finally, the passage of the separatrix splitting angle
through zero depending on the system parameter and,
hence, the separatrix conservation at certain values of
this parameter are also possible in principle for a spe-
cial form of the potential with no singularities whatso-
ever. This all undoubtedly deserves a further study.

In conclusion, note that even though the new effect
of the separatrix conservation in chaos is not universal
(a favorite term in current studies of dynamic chaos),
nevertheless, we hope that the criterion for the interfer-
ence of singularities and the theory developed on its
basis (which can be easily generalized to an arbitrary
number of singularities) can significantly help in stud-
ies of a wide class of Hamiltonian dynamical systems.
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