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Abstract—Preliminary results of extensive numerical experiments with a family of simple models specified by
the smooth canonical strongly chaotic 2D map with global virtual invariant curves are presented. We focus on
the statistics of the diffusion rate D of individual trajectories for various fixed values of the model perturbation
parameters K and d. Our previous conjecture on the fractal statistics determined by the critical structure of both
the phase space and the motion is confirmed and studied in some detail. In particular, we find additional char-
acteristics of what we earlier termed the virtual invariant curve diffusion suppression, which is related to a new
very specific type of critical structure. A surprising example of ergodic motion with a “hidden” critical structure
strongly affecting the diffusion rate was also encountered. At a weak perturbation (K ! 1), we discovered a very
peculiar diffusion regime with the diffusion rate D = K2/3 as in the opposite limit of a strong (K @ 1) uncorre-
lated perturbation, but in contrast to the latter, the new regime involves strong correlations and exists for a very
short time only. We have no definite explanation of such a controversial behavior. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION: 
VIRTUAL INVARIANT CURVES

In a two-dimensional map (2.1) that we study here,
the diffusion crucially depends on the global invariant
curves (GICs) that cut the 2D phase space of the motion
(a cylinder, see the next section). Even a single such
curve is sufficient to completely block the global diffu-
sion in the action variable along the cylinder. As is well
known by now, the existence of GICs depends not only
on the perturbation strength but also on its smoothness.
It is convenient to characterize the latter by the tempo-
ral Fourier spectrum of the perturbation. For an analyt-
ical perturbation, the Fourier amplitudes decay expo-
nentially fast. In this case, the global diffusion sets up
if the perturbation e * ecr exceeds some critical value.
Otherwise, the chaos remains localized within rela-
tively narrow chaotic layers of nonlinear resonances.
As a result, either the global diffusion is completely
blocked by GICs or the rate of the diffusion and the
measure of its domain decay exponentially in the
parameter 1/e as e  0 (the so-called Arnold diffu-
sion; see, e.g., [1–3] for a general review).

By definition, the Hamiltonian of a smooth system
has the power-law Fourier spectrum with a certain
exponent β + 1 (see, e.g., [4] and references therein). In
this case, the global diffusion is always blocked for
some sufficiently small perturbation strength e < ecr(β)
if the smoothness parameter β > βcr exceeds the critical
value. This is similar to the case of an analytical Hamil-
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tonian except that the critical perturbation now depends
on the Hamiltonian smoothness (ecr(β)  0 as β 
βcr).

To the best of our knowledge, the strongest rigorous
result is that βcr < 4 for a 2D map as in this paper (see
[5]). But a simple physical consideration [4] leads to an
even smaller value βcr = 3, which is still to be confirmed
somehow, theoretically or numerically. In any event,
the smoothness β = 2 of our model here is even less.

Until recently, the behavior of dynamical systems in
the opposite case β < βcr of a poor smoothness remained
rather vague. Even though most of the numerical data
seemed to confirm the simplest behavior of some uni-
versal global diffusion (see, e.g., [6]), several counter-
examples were also observed (see, e.g., [7, 8]).

In these counterexamples, some trajectories
remained within a certain restricted part of the phase
space for a sufficiently long computation time. No clear
explanation of these strange events has yet been given.

Meanwhile, about 20 years ago (!) a number of
mathematical studies revealed various possibilities for
the existence of GICs in smooth systems with β < βcr
(see, e.g., [8–10]). To us, the most comprehensive anal-
ysis of this problem was given by Bullett [9], who rig-
orously proved a strange survival of infinitely many
GICs amid a strong local chaos. Surprisingly, all these
interesting results remain essentially unknown, at least
to physicists. Apparently, this is because the above
mathematical papers were restricted (perforce!) to what
could be done rigorously, that is, to the invariant curves
002 MAIK “Nauka/Interperiodica”
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only, without any attempt to analyze very interesting
and important transport processes such as diffusion.
This is still within reach of physical analysis and
numerical (or laboratory) experiments only. As a result,
only after the recent accidental rediscovery of GICs in
chaos by Ovsyannikov [11] (which is still unpublished;
see [12, 13] for the full text of Ovsyannikov’s theorem)
have intense physical studies of this interesting phe-
nomenon begun [12–16].

Interestingly, the authors of both [9] and [11] used
exactly the same model, in which a strange locked-in
trajectory was observed much earlier [7]. Apparently,
this is because this model (a particular case of our
model with the parameter d = 1/2; see Section 2) is the
simplest one possessing those curious GICs (see [15]
for discussion). Perhaps the main surprise was that the
GICs include the separatrices of nonlinear resonances,
which have always been considered as ones destroyed
first by almost any perturbation. The principal differ-
ence is that the invariant curves, separatrices including,
now exist for special values of the system parameters
only (e.g., K = Km).

Although there are infinitely many such special val-
ues of the parameter and infinitely many GICs such that
a single GIG completely blocks the global diffusion for
each of the parameter values, the probability of global
diffusion (that is, the measure of such K values) is
apparently zero. Therefore, a principal question to be
answered is: What would be the behavior of that system
for an arbitrary value of K? In [16], we conjectured that,
even though the set of Km is not everywhere dense [9]
in general, the density of this set is rather high, and we
can therefore expect some change (presumably sup-
pression) of the diffusion for every K value compared to
the “usual” (familiar) dynamical system. In other
words, we hypothesized that the structure of the phase
space and of the motion therein can be changed by the
formation of GIG at a close K value even if no GICs
occur for almost all K. This is why we now call such a
neighbor-K invariant curve the virtual one (VIC) with
respect to any K [16].

Preliminary numerical experiments presented in
[16] did confirm our conjecture. These experiments
were done by the prompt computation of the average
diffusion rate D(K) as a function of the parameter K in
the domain with GICs, real or virtual ones. The experi-
ments revealed a very strong suppression of the diffu-
sion, up to many orders of magnitude, restricted only by
the computation time. But even more interestingly, a
very complicated (apparently fractal) structure of the
dependence D(K) was revealed. This seems to be a
result of a very complicated structure of the model
phase space itself. Preliminarily, it looks like the so-
called critical structure (see, e.g., [4]), but a rather spe-
cific one due to a forest of VICs.

In the present paper, we begin the study of this
seemingly new type of the critical structure. Specifi-
cally, we start with the investigation of the statistical
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
properties of diffusion as one of the characteristic pro-
cesses in chaotic motion.

2. MODEL: THE SAME AGAIN

For the reader’s convenience, we here repeat the
description of the model in [15, 16]. In the canonical
variables given by the action (momentum) p and the
phase x, the model is specified by the map

(2.1)

where K = ε > 0 is the perturbation strength (not neces-
sarily weak) and the “force” f (x) is the antisymmetric
piecewise linear “saw” of period 1 (f(–y) = –f(y), y = x –
1/2). The phase space of the model is the cylinder 0 <
x < 1, –∞ < p < +∞.

As in [15, 16], we actually consider a family of
maps with another parameter d (see Fig. 1 in [15]) and
the force

(2.2)

where y = x – 1/2 and the second parameter d (0 ≤ d ≤
1) is the distance between the two “teeth” of the saw
| f(x) | = 1 at the points y = y± = ±d/2. The most studied
particular case of the family corresponds to d = 1/2,

p p K f x( ), x+ x p mod 1,+= =

f x( )
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Fig. 1. The diffusion relaxation D*(τ) = D(τ)/D∞  1 in
model (2.2) with the parameter d = 0 (without invariant
curves) is presented as a function of the dimensionless time
τ [Eq. (3.5)] for the two values K = 0.01 (circles) and K =
3 × 10–5 (crosses). Two smooth solid lines show empirical
relation (3.5) with two fitting parameters c = 1 and γ = 4.
Dashed lines are variances the VM(τ) in Eq. (3.2), and dotted
lines show the variances VN(τ) in Eq. (3.8). In the lower
part, the scaling in Eq. (3.6) is presented reduced by the fac-
tor 10 to avoid overlapping with other data. The full volume
of empirical data is J = M × N = 104 × 10 = 105.
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where the saw f(x) with two teeth is symmetric. In the
limit d = 0, the two teeth merge into one and all the
invariant curves are destroyed. This was observed and
explained in [15] for K > 0. In the opposite case, where
K < 0 (which is equivalent to K > 0, d = 1), the dynamics
of the model is completely different, and we do not con-
sider it in this paper (see [15] for a brief discussion). In
our 2D map (2.1), the GIC supports rotation of the
phase x around the cylinder, which bars any motion in
p over GICs. In contrast to this, a local invariant curve
(LIC) surrounding, e.g., the domain of regular motion
(see [4] and Section 5 below) corresponds to oscillation
in the phase x, which allows other trajectories to bypass
that obstacle.

The GICs, separatrices including, exist in the entire
interval 0 < d < 1, but for special K values only [9, 15,
16]. In particular, the invariant curves are completely
absent [9] for sufficiently large parameter values

(2.3)

If K @ KB (see below), the physical quantity of main
interest to us, the diffusion rate D, can be approxi-
mately calculated from the Fourier expansion of force
(2.2) (see [16] for details)

(2.4)

where

(2.5)

In particular, in the limit d = 0,

(2.6)

the smoothness parameter β becomes less by one but
both values are less than the critical one βcr = 3.

The diffusion rate and other quantities are calculated
using the standard analysis of nonlinear resonances and
their interaction (overlap) (see, e.g., [1–3, 16]). The cal-
culation is especially simple if we neglect the variation
of the coefficients | fn | ≈ const in (2.4). This simplifica-
tion is exact for d = 0 [see (2.6)] and remains reason-
ably accurate [16] for

(2.7)

The diffusion rate is then approximately given by a very
simple standard relation

(2.8)

where t is the motion time in map iterations and the
parameter K ! 1 is assumed to be sufficiently small.

K KB d( )> 2d2
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The latter expression in (2.8), which we use below, is
the result of extensive numerical experiments in [6],
also confirmed in [16] for K & 0.1 (see [16] and Sec-
tion 3).

We note that the dependence D(K) ∝  K5/2 is different
from the usual, or, better to say, the simplest, one
D(K) ∝  K2. This is explained by the dynamical correla-
tion of motion that is determined by the frequency of
the phase oscillation on nonlinear resonances,

(2.9)

where Λn stands for the Lyapunov exponent charateriz-
ing the local exponential instability of the motion,
which is the main criterion for dynamical chaos. We
note that for β = 1, both Ωn and Λn are independent of
the Fourier harmonic number n. The exact value of the
Lyapunov exponent in the limit d = 0 is given by

(2.10)

The latter expression is the approximation for small K
[cf. Eq. (2.9)], which is sufficiently good within the
region of Eq. (2.8) (K & 0.1) with the accuracy of ~1%.
Because the time is discrete in our model (the number
of the map iterations), both correlation characteristics,
Eqs. (2.9) and (2.10), must be small, which implies the
above restriction on the parameter K.

In the opposite limit K @ 1, the correlation between
successive x values is negligible, and we arrive at the
“usual” relation for the diffusion rate,

(2.11)

which is independent of the parameter d. In the inter-
mediate region (K ~ 1), the correlation causes a decay-
ing oscillation (see [6]), which is beyond the scope of
the present paper.

3. DIFFUSION WITHOUT ANY INVARIANT 
CURVES: AVERAGES AND MOMENTS

As mentioned above, there are no invariant curves
for d = 0. Moreover, the motion is ergodic, which
implies the simplest structure of the phase space (cf.
Section 4 below). Therefore, this particular case is not
of the main interest to us by itself. It is nevertheless a
good introduction to our central problem considered in
Section 6 below. A similar approach was taken in our
previous paper [16].

We first consider the time dependence of the diffu-
sion rate D(K; t). The semicolon instead of the usual
comma is intended to emphasize that this time depen-
dence is not a real physical contribution to the diffusion
but rather a combination of two different processes: the
proper diffusion via accumulation of random perturba-

Ωn

2πK f n

nβ 1–
----------------- 2 K Λn K( ) ! 1,≈ ≈=

Λ 1 K 2K K2++ +( )ln 2K  ! 1.≈=

D K( ) K2 f 2 x( ) xd

0

1

∫ K2

3
------,= =
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tion effects and a stationary regular oscillation of the
diffusing variable (p in our case), which is a certain type
of background for the diffusion. This phenomenon can
be roughly represented by the simple relation

(3.1)

where B(K) is some function of the perturbation (see,
e.g., [16] and Eq. (3.5) below). In other words, in many
cases, the present studies including, the nondiffusing
stationary part can be separated from the diffusing part,
thereby considerably simplifying the analysis of this
complicated process. All this can be described, of
course, via the standard method of the correlation of
perturbation. But this would lead to much more intri-
cate theoretical relations and, in addition, to much less
information on the diffusion dynamics (see, e.g., [6]).

An example of the diffusion kinetics is presented in
Fig. 1. The computation was done as follows. The num-
ber of trajectories M @ 1 with random initial conditions
homogeneously distributed within the unit area of the
phase cylinder (0 ≤ x0 < 1, 0 ≤ p0 < 1) were run for a suf-
ficiently long time with successive outputs at certain
intermediate moments of time t as shown in Fig. 1. We
recall that t is measured in the number of the map iter-
ations. Each output includes the diffusion rate (D),
averaged over all M trajectories and the dimensionless
variance

(3.2)

For the Gaussian distribution of the action p, this vari-
ance must be equal to unity. This is indeed the case for
a sufficiently long motion time when the measured dif-
fusion rate reaches its asymptotic value D∞ in Eq. (3.1).
A quite different dependence VM(t) for the previous
smaller time is not surprising (nor is it very interesting)
because D(t) then depends on a completely different
physical process that must be passed over.

A real surprise was the very beginning of the diffu-
sion, the plateau in Fig. 1. This looks like a real diffu-
sion unlike the following part of the stationary oscilla-
tion. Moreover, the diffusion rate D0 = K2/3 on the pla-
teau is the maximum one, Eq. (2.11), as for K @ 1.
Another interesting observation is the duration of this
strange diffusion,

(3.3)

which is close to the inverse Lyapunov exponent, the
rise time of the local exponential instability of the
underlying chaotic motion. The last but not the least
curious property is the fast increase in variance (3.2),

(3.4)

D K ; t( ) D∞ K( )
B K( )

t
-------------,+∼

VM
D2〈 〉 D〈 〉 2–

2 D〈 〉 2
------------------------------.=

t0
1
Λ
---- 1

2K
-----------,≈ ≈

VM t( )
t
3
---, 2 t  & t0,≤≈
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as shown in Fig. 1. This is qualitatively different from
the behavior of the same diffusion rate for K @ 1 with
the usual variance VM ≈ 1. The dynamical mechanism
of this strange transitional diffusion is not completely
clear and requires further studies. Apparently, it is
somehow related to the main correlation (2.9) on
dynamical scale (3.3). Although the initial “diffusion”
is relatively fast, it lasts for only a short time, and the
relative change of the initial distribution of trajectories

is therefore negligible for K ! 1 unless the initial dis-
tribution |∆p|0 & K3/4 is very narrow. But in the latter
case, the dependence D(t) is very sensitive to the form
of the initial distribution in p, as several of our prelimi-
nary numerical experiments reveal. The variance of
D(t) is especially strong for small t ~ t0 in the region of
that mysterious plateau but eventually decays as t 
∞, with the diffusion approaching its limit value D∞.
Apparently, this is related to a complicated fine struc-
ture of the phase space and/or of the motion correla-
tions. This interesting question certainly deserves fur-
ther studies, but in the present paper, we consider the
simplest, homogeneous, distribution of the trajectory
initial conditions on the phase cylinder.

In this particular case, a very simple and surpris-
ingly accurate empirical relation for the diffusion time
dependence has been found starting from the qualita-
tive picture in (3.1). It is given by

(3.5)

where τ is the dimensionless time with an empirical fit-
ting parameter c that is very close to one. The second
empirical parameter γ ≈ 4 is less definite, but it affects
the turn of the dependence D(t) at τ ≈ 1 only. This relax-
ation of the diffusion rate has two time scales: the pla-
teau

and the relaxation

which is much longer. Interestingly, the usual diffusion
spreading of a very narrow initial p distribution on the
relaxation time scale

is exactly equal to the spreading on the plateau. Hence,
the full relaxation spreading is twice as large, which is
also directly seen from empirical relation (3.5),

∆p
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D t( )
D0 τD∞+
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and which is still much less than the unit p period.

In Fig. 1, empirical relation (3.5) is presented and
compared with the numerical data in the dimensionless
variables τ and D* = D/D∞, where D∞ is the asymptotic
(“true”) diffusion rate (2.8). In these variables, the
curves with various K values are similar and converge
in the limit as τ  ∞.

Another interesting scaling can be done as follows.
We calculate the diffusion rate D∞(D(τ)) = Dth from
Eq. (3.5) and plot its ratio to the true rate in Eq. (2.8),

(3.6)

Then, within the accuracy of scaling (3.5) and of fluc-
tuations, this ratio must always be close to unity. This is
indeed the case except on the plateau (t & t0), where the
rate D(τ) is almost independent of τ (see Fig. 1). The
next important statistical property consists in fluctua-
tions of the diffusion rate. One characteristic of these
fluctuations is the dispersion of trajectories, which is
characterized by the variance in Eq. (3.2). If all the tra-
jectories were statistically independent, the dispersion
of the mean diffusion rate would be

(3.7)

By construction, the trajectories are indeed indepen-
dent with respect to their initial conditions but not nec-
essarily with respect to the corresponding diffusion
rate. To verify this, we repeated the computation of the
diffusion N times with new and independent initial con-
ditions and then calculated the second (new) dimen-
sionless variance for the average diffusion rate,

(3.8)

Again, if Eq. (3.7) is valid, the variance VN must be
close to one.

The time dependence of both variances, VM(t) and
VN(t), is shown in Fig. 1. Remarkably, their behavior is
qualitatively different. The first variance VM(t) depends
on the distribution function of p in the ensemble of tra-
jectories, while the second variance VN(t) is affected by
the statistical dependence (or independence) among
trajectories for any distribution function. The results of
our numerical experiments presented in Fig. 1 clearly
demonstrate that the distribution in p quickly deviates
from the Gaussian one during the diffusion on the pla-
teau and returns only in the limit as t  ∞, when the
diffusion rate D  D∞ approaches the asymptotic
value without any nondiffusing part. Unlike this, the
trajectories remain statistically independent during the

Dth

D∞
-------

D τ( ) 1 τγ+( )1/γ
D0–

τD∞
------------------------------------------------ 1.≈ ≈

∆ D〈 〉
D〈 〉

-------------- 
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--------------.=
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-------------- 1.≈=
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entire process of the diffusion relaxation. We return to
this interesting point in Section 7.

We now consider the most informative statistical
characteristic, the distribution function f(D) of the dif-
fusion rate.

4. DIFFUSION WITHOUT INVARIANT CURVES: 
THE DISTRIBUTION FUNCTION

In the main part of our paper (Section 6), we are pri-
marily interested in the distribution tail D  0 of a
very low diffusion rate. The shape of this tail is known
to be an important characteristic of the critical structure
of the motion (see, e.g., [4]). The first indications of
such a structure in the presence of virtual invariant
curves were observed in [16]. Here, we continue these
studies.

Because the statistics of the far tail are always rather
poor, we follow [16] in using a special version of the
integral distribution

(4.1)

the so-called “rank-ordering statistics of extreme
events” (see, e.g., [17]). The following simple ordering
of the D(j) values (events) of the diffusion rate is suffi-
cient for this: D(j + 1) > D(j), j = 1, 2, …, J. The integral
probability is then approximately given by the ratio j/J,
as shown in Eq. (4.1).

In computation, we typically ran M trajectories N
times (see Section 3), and the maximum number of
events therefore reached J = M × N = 104 × 10 = 105. To
obtain the lowest possible D values and simultaneously
minimize a rather big output, we ordered all the com-
puted events but printed only J0 of those, with J0 ! J,
such that some (the smallest) Dj were obtained first,
while the rest were printed on a logarithmic scale. An
example of such a distribution is presented in Fig. 2 for
K = 0.001 in the variables D* = D/〈D〉  and F(D*) = j/J,
where 〈D〉  is some average diffusion rate (see below).
The upper distribution corresponds to a rather long
motion time t = 104 @ 1/K, with the mean diffusion rate
already very close to the limit D∞. For the lower distri-
bution, t = 10 is very short and corresponds to the pla-
teau.

At least in the former case, where the p distribution
is Gaussian (see Section 3), the distribution

(4.2)

is the so-called Pearson Γ distribution with the two
moments

(4.3)

F D( ) f D'( ) D'd

0

D

∫ j
J
---,≈=

f D( )
αλ

Γ λ( )
----------Dλ 1– e αD–=

D〈 〉 λ
α
---, ∆D( )2 D2〈 〉 D〈 〉 2–

λ
α2
-----,= = =
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Fig. 2. The distribution function F [Eq. (4.1)] of the reduced diffusion rate D* [Eq. (4.5)] in model (2.2) without invariant curves
(d = 0). The thick dashed straight line represents asymptotic behavior (4.6) of the integrated D distribution (4.2) for the Gaussian
p statistics. Two lower wiggly lines correspond to large deviations from the Gaussian statistics: D∗  = 42 (K = 10–3) and 461 (K =

3 × 10–5) (see insert). A group of ten D distributions in a large interval (10 ≤ D∗  ≤ 461) are brought together using empirical relation

(4.9). Insert: the shift factor RD vs. the deviation D∗  [Eq. (4.8)] for K = 10–3 (circles) and 3 × 10–5 (crosses); the straight line is
empirical relation (4.7).
which are the mean and the variance, respectively. For
the Gaussian p distribution, the reduced variance in
Eq. (3.2) becomes VM = 1, and therefore,

(4.4)

and λ = 1/2 is independent of α. Moreover, if we intro-
duce the dimensionless diffusion rate

(4.5)

with the average 〈D*〉  = 1, we also obtain from Eq. (4.3)
that α = λ = 1/2. The new distribution then becomes

and

(4.6)

where the latter expression gives the asymptotic behav-
ior as D*  0 that we need. This asymptotic form is

∆D
D〈 〉

---------- 
 

2 1
λ
--- 2= =

D D∗ D
D∞
-------=

f D∗( ) D∗( ) 1/2–
D∗ /2–( )exp

2π
--------------------------------------------------=

F D∗( ) f D'( ) D'
2
π
---D∗ ,d

0

D∗

∫=
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in very good agreement with the empirical data in
Fig. 2 even at D* ≈ 0.1 (!). For very small D*, the accu-
racy of the agreement is limited by the fluctuations
caused by several remaining points. The smallest value

D* = 8.3 × 10–11 corresponds to the estimate  ~
1/J2 = 10–10.

Because the distribution f(D*) in (4.6) is also Gaus-

sian in , the integral F(D*) admits a very simple
approximation found in [18],

(4.6a)

The relative accuracy |∆F/F| < 0.05 of this approxima-
tion is better than 5% in the entire range of F. Actually,
the accuracy is even much better except in a narrow
interval at D* ~ 1/2.

Thus, the upper distribution in Fig. 2, which
describes the real diffusion at a sufficiently long motion

Dmin*

D∗

F D∗( )

1 – 
–D∗ /2( )exp

D∗ 1+
------------------------------, D∗ 1/2>

2D∗
π

----------, D∗ 1/2.<








=
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time, is in a good agreement with the available theory.
This is no longer the case for the lower distribution on
the plateau. In itself, this is not a surprise, because, con-
trary to the previous case, the measured diffusion rate is
mainly determined by nondiffusive processes. But a
very interesting feature of this nondiffusive distribution
is that the exponent of the power-law tail remains
exactly the same as if the p distribution were a Gaussian
one. The simplest explanation, quite plausible to us, is
that the far tail still represents a distribution that is a
part of the entire distribution according to our original
picture expressed by estimate (3.1). One immediate
inference is then the decrease in the tail probability if
we use the same variable D* = D/D∞. This is indeed the
case according to the data in Fig. 2!

A more difficult problem is the quantitative estimate
of the distribution shift for the motion time t & 1/K with
the ratio 〈D*〉  = 〈D(t)〉/D∞ > 1. This shift can be charac-
terized either via the probability decrease by RF times
for a fixed D* or via the increase in D* itself by RD

times for a fixed probability. We note that RD =  on
the tail because of the square-root dependence in
Eq. (4.6). The characteristic RD seems more preferable
to us because it describes the shift not only of the tail
but also (qualitatively) of the entire distribution F(D*).

Having analyzed the data, we found the empirical
relation for the tail shift,

(4.7)

where the new diffusion ratio is

(4.8)

and the fitted exponent is a = 0.45.

The philosophy behind this relation is as follows.
We start with our original picture of a combined diffu-
sive/nondiffusive process described by Eq. (3.1), which
is almost our final choice (4.8). But at the beginning, we
seemed to improve the original relation by including
our surprising discovery, the plateau. Specifically, we
tried to use Eq. (3.5), which is in good agreement with
the empirical data, for the dependence D(t) (see Fig. 1).
We also found that it partly describes the distribution
F(D), except on that mysterious plateau! Our final step
was then to return from (3.5) to a version of (3.1) in
form (4.8).

Although it may have seemed strange, this did work
with a reasonable accuracy, as the inset in Fig. 2 dem-
onstrates. The question “why?” is still to be answered
in further studies. This is actually a serious general
problem of the dynamical mechanism underlying the
plateau formation and statistics.

Our empirical relation (4.7) can be represented dif-
ferently. Namely, instead of describing the actual distri-

RF
2

RD D*( ) D*
a ,≈

D* τ( )
D0

τD∞
---------- 1+≈
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bution tail shifted with respect to the asymptotic form
in Eq. (4.6), we can introduce the scaled diffusion rate

which implies that

(4.9)

The result is shown in Fig. 2 as a beam of ten scaled dis-
tributions scattered around asymptotic line (4.6).

5. DIFFUSION AMID VIRTUAL INVARIANT 
CURVES: THE LYAPUNOV EXPONENTS

In the previous sections, we considered a very par-
ticular and simplest limiting case of our model (2.2)
with the parameter d = 0. In this case, the motion is
ergodic [6], which greatly simplifies the problem under
consideration. Nevertheless, we obtained a number of
new results that form a firm foundation for further stud-
ies.

The most important new feature of the motion for
d > 0 is the so-called divided phase space of the system,
that is, a mixture of both chaotic and regular compo-
nents of the motion. This is a typical structure of
dynamical systems with several degrees of freedom
(see, e.g., [4]).

First of all, we must eliminate the regular trajecto-
ries from further analysis of the diffusion statistics. The
standard well-known method to achieve this consists in
simultaneously computing for each trajectory the so-
called Lyapunov exponent Λ, which is the rate of the
local exponential instability of the motion (see, e.g., [1–
3] and references therein). A two-dimensional canoni-
cal (Hamiltonian) map such as our model (2.2) involves
two Lyapunov exponents whose sum is always zero,
Λ1 + Λ2 = 0. For a chaotic trajectory, one exponent, e.g.,
Λ1 = Λ+ > 0, is positive and the other is negative, Λ2 =
Λ– < 0. As a result, in accordance with the standard def-
inition of the Lyapunov exponent in the limit as t 
∞, any tangent vector (dx, dp) of the linearized motion
approaches the eigenvector corresponding to Λ+ > 0.

A simple well-known procedure for computing Λ+
that we also use in the present work is as follows. For
each of M trajectories with random initial conditions x0
and p0, we chose the tangent vector (dx, dp) of a random
direction and the unit modulus, dρ2 = dx2 + dp2 = 1.
Both maps, the main one and the one linearized with
respect to the main reference trajectory x(t, x0, p0),
p(t, x0, p0), were then run simultaneously during some
time t. The current Λ(t) was finally calculated from the
standard relation

(5.1)

D
D
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-------.
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where the brackets denote averaging over M trajecto-
ries. In contrast to the formal mathematical definition
of Λ in the limit as t  ∞, the Lyapunov exponent
Λ(t) is always time-dependent, perforce, in numerical
experiments.

In Fig. 3, several typical examples of the Λ distribu-
tion are depicted for the number of events in (4.1) J =
M equal to that of trajectories and with a smaller num-
ber of printed points J0 = M' ≤ M except in the case
where d = 0. The simplest distribution is for the ergodic
motion (d = 0). It has the form of an almost vertical
step, whose derivative dF/dΛ ~ 104 is a very narrow
δ function. We note that the regular chain of points
along the F axis has no special physical meaning but
simply reflects a particular type of distribution
accepted, F(Λj) = j/J with integer j [see (4.1)]. The
mean value of Λ depends only on K [see Eq. (2.10)] but
not on the initial conditions. This example in Fig. 3
shows the empirical/theoretical ratio, which is very
close to unity, as expected.

The other two examples correspond to the same val-
ues K = 0.45 and M = 104 but different motion times t =
104 and 105 iterations. Both distributions have the same
step at the largest Λ, which corresponds to diffusive
components (not necessarily a single one) of the
motion, similarly to the ergodic case. But the most
interesting part is the rest of the distribution, which rep-
resents a rich motion structure, contrary to a dull one in
the ergodic motion.

The largest (but not the most interesting) part of this
structure is related to the steep distribution cutoff at
small Λ. Comparison of the two distributions for differ-
ent motion times t = 104 and 105 shows that, in this
region, the Λ values of the trajectories decrease with
increasing time approximately as Λ ~ 1/t. This means
that all these trajectories are regular [see Eq. (5.1)]
because the tangent vector ρ does not grow. The relative
number of such trajectories gives the total area of regu-
lar motion on the phase cylinder of the system. In the
example under consideration, it is given by Areg =
3177/10 000 ≈ 0.318 (t = 105). Generally, this value
depends on a particular choice of the cutoff border (see
the arrow in Fig. 3). This delicate experimental problem
is considerably mitigated by a fortunate feature of the Λ
distribution in our model, namely, the occurrence of a
relatively wide plateau of F(Λ) immediately above the
cutoff with only several trajectories on it. But the statis-
tical accuracy

(5.2)

is typically much worse and can be improved by
increasing the number of trajectories (and the computa-
tion time) only.

Another interesting feature of the Λ distribution in
our model is a characteristic “fork” shape of the cutoff.
This is a result of negative Λ for many regular trajecto-

∆Areg

Areg
------------- MAreg( ) 1/2–≈
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ries. Such a peculiar representation is obtained by
ordering Λ(t) values with their signs but plotting the
moduli |Λ(t) | only. The lower prong of the fork there-
fore corresponds to Λ(t) < 0, while Λ(t) > 0 on the upper
one. This is because of the complex-conjugate
Lyapunov exponents, resulting in a strictly bounded
oscillation of the tangent vector (dx, dp) in this case.
However, the area A± [see Eq. (5.4) in what follows] is
noticeably smaller than the total area of regular
domains Areg, A± ≈ 0.20 < Areg ≈ 0.318. The rest is filled
with trajectories that are also regular but linearly
unstable.

This implies the linear growth of the tangent vector
in time, ρ(t) ~ t, such that Λ(t)  0 remains positive
but vanishes in the limit as t  ∞. This is the so-called
marginal local instability with both Λ± = 0 equal zero
(see [19] for a discussion). A curious point is that this
seemingly exceptional case becomes the typical one in
a nonlinear oscillator system because oscillation fre-
quencies depend on the trajectory initial conditions. In
fact, the bounded ρ oscillation producing negative Λ(t)
is the exceptional case. The origin of this peculiarity is
in a piecewise linear force in our model (2.2). As a
result, the motion in the main (and, for large K, the big-
gest) regular domain around the fixed point x = 1/2,
p = 0 is precisely the harmonic oscillation with the fre-
quency (for K < d)

(5.3)Ω 1 K
d
----– 

 arccos 1.47,≈=

0.2

0

F

|Λ|

0.4

0.6

0.8

1.0

10–6 10–4 10–2 110–8

ORDER

CHAOS

Fig. 3. Examples of the distribution function F(Λ) of type
(4.1) with the Lyapunov exponent in model (2.2) for d = 0,
M = M' = 80, t = 104 (the rightmost step F(Λ), ergodic
motion) and for d = 1/2, M = 104, M' = 1000, t = 104, 105

(nonergodic motion); in all cases, K = 0.45. The horizontal
line indicates the total share Areg ≈ 0.318 of the motion reg-

ular components. The arrow at Λ = 10–4 shows the lower
border of chaotic trajectories chosen for further analysis
(for t = 105).
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which remains the same in the entire regular domain of
the area

(5.4)

Here, y± = x± – 0.5 = ±d/2 is the position of two singu-
larities of the force (see Eq. (2.2) and below) that
restrict the size of the regular domain surrounded by the
limiting ellipse to which both lines of the singularity
y± = d/2 = 0.25 are tangent. This ellipse is determined
by the initial conditions

(5.5)

All the numerical values above correspond to K = 0.45
and d = 1/2. Within the ellipse, the motion of the tan-
gent vector obeys the same equation as the main
motion, the only difference being an arbitrary length ρ
of the tangent vector (for details, see [3] and references
therein).

Returning to Fig. 3, we note that the measured area
A± decreases as the motion time increases. This is
explained by the penetration of trajectories into a very

A±
2πK
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2 1 K
2d
------– 
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D*

F

Fig. 4. Three characteristic examples of the diffusion statis-
tics in the critical structure including virtual invariant
curves (d = 1/2). Shown are the integral distributions F
[Eq. (4.1)] of the normalized diffusion rate D* = D/Dnorm.
The numbers at the curves are the critical diffusion expo-
nents cm. The largest one c0 = 0.5 corresponds to the ergodic
motion (d = 0) without any critical structure (the dashed
curve). Two straight lines show the averaged (c1 = 0.3) and

local (  = 0.4) critical exponents for K = 0.45 (the solid

line connecting 500 values of F(D*)). The distribution
for K = 0.335 with two local critical exponents (c2 = 0.09

and  = 0.45) is represented by 300 points shifted to the

right to avoid overlapping with the other two distributions.
The third distribution (a solid line through 1000 points, K =
0.3294) is surprisingly close to that in the ergodic case
(dashed line). In all three examples, M = 104, t = 105. 

c1'

c2'
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complicated critical structure at the chaos border sur-
rounding each regular domain (for details, see, e.g.,
[4]). For the same reason, the direct measurement of the
entire regular region Areg ≈ 0.40 by a single chaotic tra-
jectory for 109 iterations gives a noticeably larger value
compared to Areg ≈ 0.318 obtained from 104 trajectories
with 105 iterations each.

With all the curiosity of the Λ(t) distribution being
in regular components of the motion, our main interest
in the present study is in the intermediate region
between the regular cutoff at smallest Λ(t)  0 and
the chaotic step at maximum Λ independent of t. In this
region, the distribution is also independent of the
motion time and characterizes the proper critical struc-
ture of the chaotic motion. In the example in Fig. 3, this
structure is represented by a relatively small probability
step ∆F ≈ 0.06 at Λ ≈ 0.03. Several other examples are
also considered in the next section.

6. DIFFUSION AMID VIRTUAL INVARIANT 
CURVES: THE CRITICAL STATISTICS

In Fig. 4, we present three characteristic examples
of the effect of the critical structure on the diffusion sta-
tistics. The dashed curve shows the “unperturbed” dis-
tribution F(D*) of the normalized diffusion rate D* =
D/Dnorm [see Eq. (4.1)], with the normalizing rate Dnorm
to be chosen in each particular case (see below). The
term “unperturbed” refers to the ergodic case d = 0
without any invariant curves and critical structure (see
Section 4; the problem of the critical structure in this
case is not as simple as it may seem; see below and Sec-
tion 7). The normalizing rate Dnorm = D∞ is then the true
asymptotic diffusion rate (4.5).

We are now interested in the effect of the critical
structure that typically arises in a nonergodic motion
with its barriers for the chaos, or chaos borders. The lat-
ter are a particular, and a very important, case of an
invariant curve transformed into itself under the
dynamics of the system. As discussed in Section 1,
there are several different types of invariant curves.

One is the well-studied and rather familiar chaos
border surrounding any domain with regular motion. In
this paper, we call it the local invariant curve (LIC); it
does not block the global diffusion around such a
domain. An important property of a LIC is the robust-
ness, which means that a small change of the system,
e.g., of the parameter K or d, cannot destroy the LIC but
can only deform it slightly. This implies that LICs are
always present in any divided phase space.

Here, we are mainly interested in invariant curves of
a different type, the global invariant curves. Each GIG
cuts the entire phase-space cylinder (x mod 1) of our
model and therefore completely prevents global diffu-
sion in p. Such invariant curves are less known, espe-
cially the most surprising of them, the separatrix of a
nonlinear resonance. But those GICs are not robust in
the model under consideration (see [9]), being
AND THEORETICAL PHYSICS      Vol. 95      No. 3      2002
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destroyed by almost any arbitrarily small perturbation
of the system, in particular by a change of even a single
one of its parameters. In other words, such GICs exist
only for special values, e.g., K = Km. Although there are
typically infinitely many such special values, the prob-
ability of finding a GIG in a randomly chosen system is
zero. This is why we are interested in a more generic
situation where our model has no GICs at all. But the
effect of those still persists in a certain domain around
each Km! For this reason, we call such GICs virtual
invariant curves (VICs) in analogy with other virtual
quantities in physics, e.g., virtual energy levels in quan-
tum mechanics. We note that unlike a GIG, a VIC is
robust and, hence, generic.

Both LICs and GICs produce the so-called critical
structure of motion (see, e.g., [4]), which is typically
characterized by a power-law distribution of principal
quantities. The corresponding exponents cn are called
critical exponents. Their values are shown in Fig. 4 at
the related distributions. We note that the opposite is
generally not true; that is, a particular power law does
not necessarily indicate any critical structure. In our
model, this is the case for the ergodic motion where the
diffusion rate distribution is also characterized by an
asymptotic (D  0) power law with the exponent
c0 = 0.5 (see above and Section 7). An important differ-
ence between ergodic and nonergodic dynamics, how-
ever, is that, in the latter case, all the critical exponents
cn < c0 are less than the (generally noncritical) ergodic
exponent c0. This is the main physical result of our pre-
liminary numerical experiments that we can present
and already discuss now (see Fig. 4).

We start with the distribution for K = 0.45 (the upper
solid line), which is far in the region without VICs (the
border of this region is at KB(d = 1/2) = 1/3; see
Eq. (2.3) above and [16]). But the regular trajectories
(Areg ≈ 0.318) together with LICs and the related critical
structure are present. As a result, the distribution (with
Dnorm = D∞) deviates considerably from the unperturbed
one for the ergodic motion with d = 0. The critical struc-
ture of this type in a relatively narrow layer around a
LIC is well studied by now (see, e.g., [4]), including the
case where the typical distribution deviates from a pure
power law. The latter would imply the exact scale
invariance of the underlying critical structure in both
the system phase space and its motion time.

The critical structure is described by the so-called
renormalization group, or renormgroup for brevity. On
the other hand, the equations of motion also form a cer-
tain (dynamical) group for any dynamical system. Such
a fundamental similarity allows interpreting the critical
structure as a certain dynamics, which was called the
renormdynamics [4, 20]. In this picture, the exact scale
invariance with a pure power-law distribution corre-
sponds to the simplest, periodic renormdynamics, even
though the original dynamics may be the most compli-
cated chaotic motion. The resolution of this apparent
paradox is that the complexity of the original dynamics
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
is “transferred” to the dynamical infinite-dimensional
space of the renormdynamics, leaving behind the sim-
plest renormdynamics itself (sometimes!).

This case is best studied only because it is the sim-
plest one. But the generic case is just the opposite—a
typical renormchaos is also chaotic [20, 21]. This
implies a certain chaotic oscillation of the characteristic
distribution around some average power law. This is
precisely the case for the upper distribution in Fig. 4. It
is characterized by the average critical exponent c1 =
0.3 with fluctuations of the order  – c1 = 0.1. Such an
interpretation of the critical structure in question is
known to be typical but not necessarily unique (see
below). The truly unique property of this critical struc-
ture is the infinite power law, with or without fluctua-
tions. The term “infinite” here corresponds to the range
of a renormdynamical variable lnD  –∞ with an
unrestricted variation, even though the diffusion rate
itself D > 0 is strictly bounded from below.

This is no longer the case for the critical structure of
a new type that we have encountered in our problem
and which is produced by VICs (=robust GICs) rather
than by robust LICs. As explained above, the principal
difference between the two is that the VIC is not an
invariant curve at all. In terms of renormdynamics, this
implies that a VIC can mimic a GIC for relatively large
lnD only. This is clearly seen in Fig. 4 in the upper part
of the distribution with the local critical exponent c2 =
0.09 and the parameter K = 0.335 (points). Here, we
have taken Dnorm = 10–6 < D∞ ≈ 2 × 10–5 much smaller
than the true diffusion rate D∞. This shifts the entire dis-
tribution to the right in order to avoid overlapping with
other distributions. This value is slightly above the bor-
der KB(1/2) = 1/3 [see Eq. (2.3)], where there are many
VICs without any GIC. As a result, the range of the
characteristic critical exponent c2, ∆lnD* ≈ 5 is very
short compared to the total available range ≈25. The
rest of the distribution remains sufficiently close to the
unperturbed one. This implies the absence of the criti-
cal structure or its sharp change at lnD & 2 at least.
With this interpretation, the renorm-motion stops in the
specified region.

This in turn implies a “dissipative” rather than
“Hamiltonian” renormdynamics. We note that the main
part of the distribution is close but not identical to the
unperturbed one because of a slight difference in the
characteristic exponent. Whether this implies a certain
very slow renorm-motion remains a very interesting
open question. Interestingly, the larger critical expo-
nent  = 0.45 is also close to the local critical exponent

 = 0.4 in the region without VICs or GICs; above, it
was interpreted as a random fluctuation in renorm-
chaos. Whether this is indeed true remains unclear.

Finally, the third distribution in Fig. 4 (the lower
solid line) actually coincides with the unperturbed dis-
tribution (Dnorm ≈ D∞), even though it corresponds to the

c1'

c2'

c1'
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region with many VICs and a strong suppression of the
diffusion (K = 0.3294—see Fig. 3 in [16]). A deviation
for very small D* is due to poor statistics at this end. We
note that the coincidence of both distributions is not
only asympotic (as F  0), but also complete, includ-
ing the opposite limit as F  1. This occurs in spite
of a rather large regular region Areg ≈ 0.581. The origin
of this peculiarity for a particular K value remains
unclear. One possibility is that the area of the critical
structure at the chaos border around this regular domain
is unusually small for some reason. Examples of such a
peculiarity are known in different models (see [22])
where the critical structure was found to be unusually
large but hidden. In other words, the motion was
ergodic but with strong correlations [cf. the unusual dif-
fusion rate in Eq. (2.8) for K ! 1 in the ergodic system
at d = 0]. Returning to this case in Fig. 4, we conclude
that our “unperturbed” power-law distribution with the
exponent c0 = 0.5 (dashed line) may well represent a
peculiar critical structure related to the strong hidden
temporal correlations rather than to a purely spatial
geometry of the phase space. If this is true, the correla-
tion decay may indeed be not a power-law one, as is the
case in the model in [22], where such a hidden decay is
purely exponential (see Fig. 6 in [22]).

We finally mention another peculiarity of the critical
structure in question: all the critical exponents found so
far are smaller, albeit by a small amount, than the
“unperturbed” or “hidden” one c0 = 0.5. The physical
meaning of this universal inequality is that the critical
structure under consideration always increases the
probability of a very low diffusion rate D  0. The
general mechanism of this effect is known (see, e.g.,
[4]) and is explained by the trajectory “sticking” within
a complicated critical structure, which slows down the
diffusion. Interestingly, the sign of the sticking effect
can be opposite when the sticking accelerates the diffu-
sion up to the absolute maximum D(t) ∝  t of the homo-
geneous diffusion rate [23, 24].

To summarize, we see that our “simple” model con-
sidered in this paper reveals a great variety of critical
structures still to be further studied and understood.

7. CONCLUSION: 
A HIDDEN CRITICAL STRUCTURE?

In this paper, we present some preliminary results of
the numerical experiments with a family of simple
models specified by the smooth canonical 2D map (2.1)
with global virtual invariant curves. As in [16], we use
here the same strongly chaotic model and again focus
on the statistics of the diffusion rate D, which proves to
be of a very complicated (apparently fractal) type deter-
mined by the so-called critical structure of both the
phase space and the motion (see, e.g., [4]). In [16], we
studied the statistics of the mean diffusion rate 〈D(K)〉
averaged over the ensemble of trajectories with random
initial conditions. Our main result there was the obser-
JOURNAL OF EXPERIMENTAL 
vation of very big and irregular fluctuations of the
dependence 〈D(K)〉  and a long and very slowly decay-
ing tail of the 〈D〉  distribution as 〈D〉   0. We termed
the latter effect the VIC diffusion suppression.

In the present paper, we continue studying this inter-
esting phenomenon in more detail. For this, we pass
from the statistics of averages 〈D(K)〉  as functions of
the model parameter K to the statistics of individual tra-
jectories for a given K. In principle, this approach pro-
vides the deepest insight into the statistical problem. As
the main statistical characteristic, we have chosen the
integral distribution F(D) in form (4.1) for poor statis-
tics as 〈D〉   0. Preliminary results of our extensive
numerical experiments presented in Fig. 4 confirm our
earlier conjecture on a critical structure underlying the
fractal dependence 〈D(K)〉  in [16], the true sign of such
a structure being various power-law distributions
found. Moreover, in addition to the familiar well-
known critical structure exemplified in Fig. 4 by the
case with the parameter K = 0.45, we observed many
cases of a rather different structure, as the one with K =
0.335. The principal difference of the latter is its finite
size in the structure variable ∆lnD & 5. A natural expla-
nation of this difference is as follows. First, the VIC is
not a true invariant curve like a GIC. The latter com-
pletely blocks the global diffusion, while the former
can at most inhibit the diffusion only. The mechanism
of inhibition is known to be the trajectory sticking
inside a very complicated critical structure. The stick-
ing is the stronger (longer), the smaller the spatial
and/or the longer the temporal scale of the critical struc-
ture. But for the VIC structure, both scales are strictly
limited. On the other hand, this restriction is the
weaker, the higher the VIC density. In the system under
consideration, the VIC density is rather large, and
hence, the restriction leaves enough freedom for a
strong suppression of the global diffusion for almost
any K. Moreover, because the critical exponent of the
VIC structure is typically very small (for example, c2 =
0.09 in Fig. 4), the probability of large suppression is
high even for a short critical structure (cf. [16] for a dif-
ferent characteristic of this phenomenon). This slowly
decaying suppression probability is well ascertained in
our numerical experiments, but we have no theoretical
explanation of such behavior.

We now come to possibly the most interesting result
of our current studies. Strange although it may seem,
this brings us to the apparently simplest case of our
model with d = 0, when the motion is ergodic. The
problem is whether it can still reveal any structure on
the grounds that the distribution F(D) is also a power
law (Fig. 4). This is certainly not the case if in addition
K @1 and the diffusion rate has standard form (2.11),
D ∝  K2. But if K ! 1, the diffusion rate becomes qual-
itatively different at least, D ∝  K5/2. This does not imply
anything in general. But in the particular case under
consideration, this dependence D(K) can be, and actu-
ally was, derived [16] from the resonance structure of
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motion. If the system were not ergodic (with a divided
phase space), this structure would be clearly seen in the
phase space. The question is what happens for the
ergodic motion with the same dependence D(K). In
[16], we conjectured that some structure would persist
in the form of correlations that determine the diffusion
rate, which is in some “hidden” form and cannot be
directly seen in the picture of the motion in phase space.
An example of such a hidden critical structure was
found in [22] (see Section 6). But in that case, a partic-
ular distribution function was exponential rather than a
power-law one(?). Hence, the question is whether this
qualitative difference can depend on a particular char-
acteristic of the critical structure. Another question
arises from a very strange temporal behavior of the dif-
fusion rate in the same “simple” case of the ergodic
motion for d = 0—a “mysterious” plateau at the very
beginning of diffusion under a weak perturbation (K ! 1;
see Fig. 1). In this case, the dependence D(K) = K2/3 is
the same as in the opposite limit of strong (K @ 1)
uncorrelated perturbation(?) but for a very short time
only, the shorter the stronger the perturbation(?!).
Moreover, the correlations on the plateau not only are
very large as in the weak-perturbation limit K  0 but
also increase during the entire plateau regime [see
Fig. 1, dashed lines for the variances VM(τ) in Eq. (3.2)].
At present, we have no definite explanation for this con-
troversial behavior. A discreet current conjecture is as
follows. The duration of the plateau is tpl ≈ 1, or τpl ≈
1/Λ ≈ 1/Ω [see Eq. (2.9)]. But the latter expression
gives the phase oscillation period on the critical nonlin-
ear resonance that determines the diffusion rate [16].
One can then imagine that this period characterizes not
only the correlation decay, as usual, but also the corre-
lation uprise. But, the invariable diffusion rate over the
entire plateau region is yet to be explained.
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