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Abstract—A family of models determined by a smooth canonical 2D-map that depends on two parameters is
studied. Preliminary results of numerical experiments are reported; they are evidence of substantial suppression
of global diffusion in a wide range of perturbation values. This effect is caused by the little-known phenomenon
of the conservation of resonance separatrices and other invariant curves under the conditions of strong local
dynamic chaos. Such a total suppression of diffusion occurs although invariant curves are only conserved for a
countable zero-measure set of parameter values. Simple refined estimates of diffusion rates in smooth systems
without invariant curves were obtained and numerically substantiated. The principal boundary of diffusion sup-
pression in a family of models with invariant curves was described by a semiempirical equation in dimension-
less variables. The results were subjected to a statistical analysis, and an integral distribution for diffusion sup-
pression probability was obtained. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the principal concepts of the modern theory
of nonlinear Hamiltonian systems is the assertion that
splitting of a nonlinear resonance separatrix and the
formation of a chaotic layer in its place in a typical (that
is, nonintegrable) system occurs under an almost arbi-
trary perturbation. It is also believed that precisely sep-
aratrices are destroyed first, because the period of
motion along them is infinite, and the interaction of
nonlinear resonances in their vicinity is always substan-
tial (e.g., see [1–4]). Invariant curves (surfaces) experi-
ence breakup and disappear as perturbation increases.
This as a rule causes overlapping of chaotic layers of all
resonances and the appearance of so-called “global”
chaos.

The conditions of global chaos formation and the
possibility of diffusion over the whole unified chaotic
component in the phase space depend not only on the
value but also on the smoothness of perturbation. The
smoothness can conveniently be characterized by the
rate of decreasing Fourier amplitudes. An analytic per-
turbation decreases exponentially, and a threshold per-
turbation value εtr always exists. Global diffusion only
arises at ε * εtr . If ε < εtr, chaos is localized in compar-
atively narrow chaotic layers (which are formed at arbi-
trary ε > 0 values), and there can be no global diffusion
in a conservative system with the number of degrees of
freedom 1 ≤ 2.

Note that, if 1 > 2, global diffusion can only take
place under special initial conditions (Arnold diffusion,
e.g., see [1]). The rate of this diffusion and the measure
of its region decrease exponentially with respect to the
1/ε parameter as ε  0.
1063-7761/02/9501- $22.00 © 0154
The character of motion changes considerably for a
smooth perturbation of the Hamiltonian whose Fourier
amplitudes decrease as some power β + 1 of their num-
ber n (e.g., see [5] and the references therein). In the
simplest case of a 2D map, to which our analysis will
be restricted, the εtr > 0 threshold of the appearance of
global chaos always exists if β > βcr = 3. This critical
smoothness value was obtained from the simple esti-
mate made in [5] (also see Section 3), but it neverthe-
less requires verification by numerical experiments. So
far as we know, a rigorous proof can only be obtained
for βcr = 5 (see [6], where the suggestion is made that,
in reality, βcr = 4). This uncertainty is of no significance
for our purposes, because, for the model under consid-
eration (Section 2), the inequality β = 2 < βcr is always
satisfied. Interestingly, the situation has long remained
unclear precisely for the β = 2 index.

Even in early numerical experiments on systems
whose smoothness was lower than critical, trajectories
that did not go beyond some limited phase space region
in long-time computations were observed along with
global diffusion [7, 8]. This was, however, nothing
more than a suspicion of diffusion suppression or
weakening. A rigorous result was obtained by Bullett
[9], who proved the existence of global invariant curves
with both irrational and rational rotation numbers for a
symmetrical piecewise linear 2D map [β = 2—see (2.1)
and (2.2) below; also see [10] and Section 2]. Precisely
global invariant curves have a complete phase extent,
which prevents unlimited diffusion over action. In [9],
it was found for the first time that, among invariant
curves with rational rotation numbers, there are also (at
special perturbation parameter values) intact nonlinear
2002 MAIK “Nauka/Interperiodica”
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resonance separatrices. Especially important and unex-
pected was that the system nevertheless remained non-
integrable, but the separatrix not only was conserved
under strong chaos conditions but also prevented global
diffusion.

A similar theorem for the same model was later
proved by Ovsyannikov [11], who not only specified a
countable set of parameter values at which the separa-
trix of an integer resonance is conserved but also found
an explicit and very simple expression for the separa-
trix. Although Ovsyannikov proved his theorem inde-
pendently, such a coincidence of the models was not
fortuitous, because solving a linear (even though piece-
wise) map considerably simplifies the problem. Note
that completely solving even a linear map is only pos-
sible if the separatrix is conserved, because otherwise
two branches of a split separatrix form random trajec-
tories. For the same reason, a symmetrical piecewise
linear 2D map cannot be simplified to a purely linear
map of the type of the Arnold map, in which nonlinear
resonance separatrices are always split. The mathemat-
ical works by Bullett and Ovsyannikov are therefore
restricted to studies of only new-type invariant curves
themselves. The first examples of such curves were pre-
dicted in [10].

Precisely the Ovsyannikov theorem prompted us to
thoroughly study the symmetrical piecewise linear 2D
map and its modifications [12–15]. Unfortunately, this
theorem was not published by its author (the complete
formulation of the theorem can be found in Appendix in
[14]). Instead, the theorem was generalized in [16] to
arbitrary map parameter values. The result obtained in
[16] contradicts that of [9] and our numerical experi-
ment data.
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Fig. 1. Diffusion rate D(K) in model (2.2) with the d = 0
parameter (without invariant curves): dots are the data from
[17], open circles are our data averaged over 250 trajecto-
ries t0 = 4 × 107 iterations long with random initial condi-
tions, solid line is power dependence (4.1), and dashed line
is limiting mode (3.10).
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A certain perturbation parameter value corresponds
to each invariant curve in the symmetrical piecewise
linear 2D map (including invariant curves of the new
type with rational rotation numbers, that is, also integer
and fractional resonance separatrices). The set of all
such values is a Cantor set (see Figs. 2 and 3 in [9]), and
there are intervals of parameter values in which global
diffusion certainly takes place (one of such intervals is
identified in [9]; also see Section 5). As the density of
this set is fairly high, we can expect strong (although
incomplete) suppression of global diffusion at an arbi-
trary perturbation parameter value. Studies in this
direction were performed in the present work.

2. MODEL

The selected model is a two-dimensional map in the
canonical variables of action p and phase x,

(2.1)

Here, K = ε > 0 is the perturbation parameter (not nec-
essarily small), and “force” f(x) has the form of an anti-
symmetric [f(–y) = –f(y), y = x – 1/2] piecewise linear
“saw” with period 1.

We will study the whole family of sawtooth pertur-
bations1 (see Fig. 1 in [15]),

(2.2)

1 A family similar but not identical to that of the model used in [9].
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Fig. 2. Example of diffusion in a smooth map with invariant
curves of measure zero: model (2.2) with the d = 1/2 param-
eter, 50 trajectories, computation time t0 = 2.5 × 106. The

solid straight line is D2 = 0.8K5 according to (5.1), and the
dashed line is limiting mode (3.10).
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where y = x – 1/2, and 0 ≤ d ≤ 1 is the distance between
saw “teeth” |f(x)| = 1 situated at the points y = y± = ±d/2.
The most thoroughly studied particular case of the sym-
metrical piecewise linear 2D map corresponds to the
bias parameter d = 1/2.

We are interested in global diffusion over momen-
tum, which is suppressed by invariant curves with a
complete extent over phase. We call these invariant
curves global and, in what follows, only consider such
curves unless otherwise stated. Note that these invariant
curves (including unbroken separatrices of integer and
fractional resonances) exist for an arbitrary bias param-
eter value in the interval 0 < d < 1 at special K values
[9, 12–15].

If 0 < d < 1, force (2.2) can be written as the Fourier
series

(2.3)

where

(2.4)

The passage to the d  0 limit in (2.3) and (2.4) for
the discontinuous saw yields

(2.5)

One can see that, in the d = 0 limit, the smoothness
index of the system, β, is smaller by one than within the
interval, and both indices are smaller than the βcr = 3

f x( )
f n

nβ----- 2πnx( ),sin
n 1≥
∑=

f n
2

π2
----- nπ( ) nπd( )sincos

d 1 d–( )
-------------------------------------------, β– 2.= =

f n
2
π
--- nπ( ), βcos– 1.= =
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Fig. 3. Part of fractal diffusion region extended along K with
invariant curves shown in Fig. 2. The computation parame-
ters are the same as in Fig. 2 except that t0 = 4 × 107 for most
of the points. For some points, including the leftmost with
K = 0.294, computation time t0 = 109. The smooth curve at
the right was constructed by (5.5); it approximates the
boundary of the principal diffusion region.
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critical value. The second d  1 limit is not consid-
ered in this work, because motion then becomes regular
(see [15]).

Map (2.1) can be written as a continuous system
with a Hamiltonian that explicitly depends on time and
perturbation in the form of impulses [1–3, 14]:

(2.6)

where

denotes the δ function with period 1. Note that selecting
the δ function in this form also defines the time unit of
the continuous system; this unit equals one iteration of
the initial map.

Each term of the double sum in (2.6) is proportional
to cos[2π(nx – mt)] with integer m and n and determines
“its own” primary nonlinear resonance (details are
given, e.g., in [1]). Supposing that these resonances do
not interact with each other, we can describe any of
them by the Hamiltonian of a “pendulum”

(2.7)

Introducing the resonance momentum value pnm =  =

m/n, we find that, in the new variables  = nx – mt and
 = (p – pnm)/n, each such solitary resonance is a con-

servative system with motion strictly bounded with
respect to momentum. Returning to the old variables,
we determine the frequency of phase oscillations

(2.8)

and the total momentum width of the resonance

(2.9)

In the next section, these equations are used to obtain
very simple and unexpectedly accurate estimates of the
rate of diffusion for a smooth map without invariant
curves.

3. DIFFUSION RATE ESTIMATES

Our estimates are based on the criterion of overlap-
ping of nonlinear resonances (see [1–3, 5]), which can
be written in the simplest form as

3 ~ 1, (3.1)

H x p t, ,( )
p2

2
-----=

+ K
f n

2πnβ 1+
------------------ 2πnx( )δ1 t( ),cos

n 1≥
∑

δ1 t( ) 1 2 2πmt( )cos
m 1≥
∑+=

Hnm x p t, ,( ) p2

2
-----

K f n

2πnβ 1+
------------------ 2π nx mt–( )[ ] .cos+=

ẋnm
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p̃

Ωn
2 2πK f n

nβ 1–
-----------------=

δp( )n 4
K f n

2πnβ 1+
------------------.=
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where

(3.2)

Here, 3 is the approximate sum of widths (2.9) of all
primary resonances in a unit interval with respect to
momentum p. For simplicity, we assume that all Fourier
coefficients are equal, fn = f0.

Note that the sum diverges at β ≤ 3, and this deter-
mines the critical smoothness value specified above,
βcr = 3, in the approximation that we use. Global diffu-
sion then occurs at an arbitrary K value, including
K  0, and, generally, its rate depends on all reso-
nances (2.7) and is described by complex and cumber-
some equations (cf. [17]). As in [5], our simple esti-
mates are based on the following hypothesis, which we
consider physically plausible and which is substanti-
ated by the numerical experiments described below. We
assume that the mean rate of global diffusion at β ≤ 3 is
largely determined by a finite number of resonances up
to some critical harmonic n = nc. These resonances, in
combination with various m values in (2.7), provide
overlapping (3.1). Indeed, stronger resonances (n < nc)
cause faster diffusion, but this diffusion is local because
of incomplete overlapping of resonances. On the other
hand, weaker resonances (n > nc) more than provide
overlapping, but the rate of diffusion for them

(3.3)

rapidly decreases as n increases. Here, the total reso-
nance width (2.9) and the period of the corresponding
phase oscillations 2π/Ωn [see (2.8)] are used as
dynamic diffusion scales.

Replacing the sum in (3.2) by the integral in n @ 1
yields

(3.4)

It follows from (3.2) that the number of the critical har-
monic is

(3.5)

Lastly, (3.3) is used to obtain the rate of diffusion,

(3.6)

3 n δp( )n

n 1≥
∑∼ 4
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----------6,=
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n 1≥
∑=

D
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t
-------------

δp( )n
2Ωn

2π
--------------------∼=

6
2

3 β–
------------n 3 β–( )/2.≈
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π
32
------ 3 β–( )2

K f 0
-------------------

1/ 3 β–( )

.∼

Dβ 3< K( )
4 2π
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--------------∼
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π 3 β–( )2
---------------------- 

  3β 1+( )/2 3 β–( )
K f 0( )5/ 3 β–( ).
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Generally, this equation only gives an estimate of
the order of magnitude. We, however, deliberately leave
various numerical coefficients in it in the hope that its
accuracy can be substantially increased through the
introduction of empirical correction factors. This will
be done in the next section in considering a simple and
thoroughly studied example of such diffusion.

Note that all these estimates are only valid at K ! 1.
Indeed, as mentioned, diffusion in the system under
consideration has two dynamic scales,

(3.7)

with respect to momentum (2.9) and

(3.8)

with respect to time [from (2.8)]. Both scales are
bounded because p is periodic and t discrete. This
imposes the limitation on the system parameter

K & 1. (3.9)

The same limitation arises also from the condition
imposed on critical harmonic (3.5), namely, nc * 1. At
K ! 1, the time of the decay of perturbation correla-
tions satisfies the inequality tc @ 1. At K ~ 1, this time
is shortened to tc ~ 1, and at K @ 1, correlations
between closely spaced impulses become negligibly
small. The rate of diffusion is then determined by the
mean square perturbation,

, (3.10)

and ceases to depend on bias parameter d for the whole
family of maps (2.1), (2.2).

4. NUMERICAL EXPERIMENTS
FOR A MODEL WITHOUT INVARIANT CURVES

First, consider the simplest example of a smooth 2D
map, which corresponds to the d = 0 parameter in fam-
ily (2.2). According to [15], invariant curves are absent
in this limiting case, and global diffusion occurs at arbi-
trary positive K > 0. Diffusion in such a model was
thoroughly studied numerically and analytically fairly
long ago [17]. Note that both the diffusion rate and per-
turbation parameter K are normalized differently in
[17] and this work, and the data obtained in [17] and
cited below were therefore recalculated to our model.

Substituting β = 1 and f0 = 2/π [see (2.5)] into (3.6)
yields Dβ = 1(K) = 0.84K2.5. Recalculating the value
numerically obtained in [17] yields

δp( )c 4
K f 0

2πnc
β 1+

------------------ K2/ 3 β–( )
 & 1∼ ∼

tc

2πnc
β 1–

K f 0
----------------- K 1/ 3 β–( )–

 * 1∼ ∼

DK ∞→ K2 f 2 x( ) xd

0

1

∫ K2

3
------= =
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(4.1)

where the correction factor for the diffusion rate CD =
0.68. In what follows, we use the assumption made by
the authors of [17], namely, B1 = 2.5, for comparison
with their theory.

The CD correction to our theoretical estimate is
small, but it heavily depends on the smoothness index
β. By way of example, we set β = 2. Equation (3.6)
gives Dβ = 2(K) = 1199K5 against the numerical calcula-
tion result D2(K) ≈ 0.8K5 [see (5.1) and Fig. 2]. A com-
parison of these values gives a correction factor CD ≈
6.7 × 10–4 (!), which makes this factor physically mean-
ingless.

Physically unreasonable results are obtained
because the principal approximation for constructing
estimates is related to an intermediate result in the for-
mulation of the condition of resonance overlapping,
Eqs. (3.1) and (3.2), rather than directly to diffusion
rate D. In such a form, this condition always overesti-
mates the overlapping effect because it contains maxi-
mum widths of resonance separatrices, whereas, in
reality, separatrices may have mutual phase shifts. This
circumstance can be taken into account by introducing
correction Cs in place of CD,

(4.2)

Cs is essentially different from CD in (4.1) because it is
raised to some power, which depends on β and can be
fairly large,

(4.3)

To obtain CD ≈ 1 for β = 2 (see above), it suffices to set
Cs ≈ 2.84 [see (5.1)]. This is evidence that such a
method for introducing an empirical correction into
order-of-magnitude estimates is very effective.

The Cs correction is much smaller for β = 1, Cs ≈ 1.2,
because the perturbation spectrum at β = 1 contains all
harmonics, whereas only odd harmonics remain at β =
2. As a result, sum (3.2) decreases twofold. This addi-
tional effect is easy to take into account in (4.3) by the
replacement Cs  2Cs. The necessary correction for
β = 2 then decreases from 2.84 to 1.42, which is close
to the Cs ≈ 1.2 value found above for β = 1.

The most important results obtained in studying the
simple model with d = 0 and the approximating straight
line found in [17] [Eq. (4.1)] are shown in Fig. 1. This
straight line is also fairly well described by our simple
theory (4.3) with correction Cs = 1.2. Both equations

D1 K( ) A1K
B1 CDDβ 1= K( ),= =

A1 0.5680 0.0034,±=

B1 2.4940 0.008,±=

3 Cs 1.>=

Dβ 3< K( )
4 2π

π2
--------------≈

× 32

π 3 β–( )2Cs
2

----------------------------- 
  3β 1+( )/2 3 β–( )

K f 0( )5/ 3 β–( ).
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closely agree with the empirical data up to the K ~ 1
value, at which the transition to mode (3.10) occurs.

Numerical data were compared in [17] with a very
complex theory developed by the authors, which was
also based on the concept of overlapping of resonances
(more exactly, of their destroyed separatrices). This
theory did not include adjustment parameters of any
kind, but the accuracy that it provided was in reality not
high (approximately 10%, see Fig. 2 in [17]). The the-
ory actually referred to a qualitatively different model
with an analytic Hamiltonian with a finite number of
harmonics n retained in its Fourier transform. Such a
“cutting off” of the spectrum was accompanied by the
appearance of a threshold for the arising of global dif-
fusion, as is characteristic of analytic systems, which
limited the applicability of this theory to the most inter-
esting region of small parameter K values, K & Kc(n). In
the example given in [17] (see Fig. 2 in [17]), nc = 21
and Kc ~ 0.02 (in our normalization). The mechanism of
this limitation resembles that of restriction (3.5)
imposed on the critical harmonic in our theory, but our
restriction is much weaker. For instance, at nc = 21 and
Cs = 1.2, the minimum value is

(4.4)

which is one order of magnitude smaller than in [17].
We turn to the most interesting part of our study,

when the bias parameter of model (2.2) is d ≠ 0. It has
been proved in [9] that there exists a critical perturba-
tion parameter value KB such that, at K > KB, there is no
global invariant curves in the system. The exact equa-
tion for KB in our normalization takes the form

(4.5)

According to [9–15], generally, there is a countable
set of special K ≤ KB values at which invariant curves
are formed in the system under strong local chaos con-
ditions.

Our main interest is how strongly the existence of
these invariant curves suppresses global diffusion at
arbitrary K values, although the measure of the set of
special K values and the probability of fortuitously fall-
ing into it are zero.

5. DIFFUSION SUPPRESSION 
BY “VIRTUAL” INVARIANT CURVES

First consider the most thoroughly studied example
of family (2.2) with the bias parameter d = 1/2, for
which the results of our numerical experiments are
shown in Figs. 2 and 3.

In the computations, the whole time interval was
divided into four equal portions, and the diffusion rate
was output at the end of each interval. For this reason,
four points generally correspond to each K value in

K Kc nc( )
πCs

4nc

--------- 
 

2

0.002,≈ ≈ ≈

KB d( )
2d2

1 d+
------------, 0 d 1.< <=
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Figs. 2–5. Their arrangement along vertical lines allows
the diffusive case to be distinguished from the nondif-
fusive one. Characteristic of the latter is a decrease in
the rate of diffusion in time, which results in mutual
“dispersal” of these points. The spread of points for dif-
fusion characterizes the accuracy of diffusion rate val-
ues. In the region without invariant curves, this accu-
racy is quite satisfactory (approximately 10%), as for
d = 0. However, in the region with virtual invariant
curves and in its vicinity (at K ~ KB), the error increases
and sometimes reaches 2. Of the same order is a sys-
tematic decrease in the mean diffusion rate caused by
nonergodicity of motion in this region. Nonergodicity
of motion results in the formation of a stable motion
component of a very complex structure (so-called criti-
cal structure, e.g., see [5]). Currently, we have not been
able to substantially increase the accuracy of determin-
ing the rate of diffusion. However, we believe the
attained accuracy to be sufficient for our purposes.

The d = 1/2 value is the only one (except the d = 0
limiting value) when the | fn | = const simplification in
(3.2) is possible. This simplification substantially facil-
itates a theoretical analysis of numerical data. By virtue
of this simplification, Eq. (4.3) with | fn | = 8/π2 is appli-
cable to odd harmonics, and the same equation with
| fn | = 0, to even harmonics at β = 2 with correction Cs =
2.84 [see (2.4) and the preceding section], but only in
the region without invariant curves. In addition, (4.3) is
only valid in a very limited range of perturbation
parameter values (see Fig. 2), namely,

(5.1)

The upper bound is determined by the well-known tran-
sition to the limiting diffusion conditions without cor-
relations (3.10). An essentially new feature of the diffu-
sion picture is the lower bound, clearly related to the
appearance of invariant curves, which suppress diffu-
sion. According to (4.5), invariant curves at d = 1/2 are
completely absent if

(5.2)

It is, however, obvious from Figs. 2 and 3 that strong
diffusion suppression begins much earlier, that is, in the
region of K values where invariant curves are actually
absent! Hence our new term “virtual invariant curve.”
In other words, every real invariant curve, which is
formed at some strictly definite special K = K0 value, in
reality substantially distorts the structure of the phase
plane of the system in some finite neighborhood of K0.

Diffusion in the vicinity of a single invariant curve
in system (2.2) with d = 1/2, in the vicinity of an unde-
stroyed integer resonance separatrix formed at K = K0 =
1/8, was for the first time studied in [13]. The first thing
observed was sharp asymmetry at K > K0 and K < K0.

At K > K0, the separatrix begins to transmit other tra-
jectories, but the mean time (the number of iterations)

D2 K( ) 0.8K5, 0.4 & K  & 0.8.=

K KB
1
2
--- 

 > 1
3
---.=
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Tc of passing the resonance depends on the detuning
K – K0 > 0. The following measurements were pre-
formed to determine this dependence in the interval
1.25 × 10–7 ≤ K – K0 ≤ 1.25 × 10–5, where there was no
other invariant curves. In the region between two neigh-
boring integer resonances (see Fig. 4 in [13]), 100 ran-
dom chaotic trajectories were generated, and time Tc of
the first appearance of each of them in the region either
below the lower or above the higher resonance was
fixed. To facilitate comparison of these data with the
results of the present work, we give the equation for the
diffusion rate

(5.3)

The Fex = D2(K)/Dc(K) ratio, where, according to (5.1),
D2(K) determines the diffusion rate on the assumption
of the complete absence of invariant curves in the sys-
tem, is the quantitative measure of diffusion suppres-
sion. For instance, in the whole K – K0 range that we
studied, this coefficient changed from 40 000 to 200,
which was evidence of substantial diffusion suppres-
sion (also see Figs. 2 and 3).

Note beforehand that (5.3) is in a certain way similar
to Eq. (5.5) for the boundary of the principal diffusion
region; this similarity is discussed below.

At K < K0 and in the region arbitrarily close to the
separatrix, many closely spaced invariant curves were
observed; because of their presence, the problem of
determining the resonance passage time was virtually
unsolvable. The question of diffusion in this region
remains open.

All these fairly simple observations are, we believe,
most important at the same time, because they show
that the zero measure of the set of invariant curves and
even their finite density do not prevent strong diffusion
suppression in the model under consideration.

The next important problem is that of quantitatively
estimating diffusion suppression. Complete diffusion
suppression is likely to be possible only at special K0

values, that is, only for real invariant curves. Generally,
everything depends on their structure in the space of
system parameters (K, d). This structure appears to be
fairly complex and is likely to be fractal. In particular,
it also includes whole regions of finite width without
invariant curves. One of such regions, 0.2295 < K <
0.2500, has been predicted in [9] and is well seen at the
left of Fig. 2. The rate of diffusion rapidly decreases at
the boundaries of this region, as at the principal bound-
ary K = 1/3 (5.2). This causes diffusion suppression

Dc K( )
1
Tc〈 〉

-----------≈ 0.089 K K0–( )1.193,=

K K0> 1
8
---.=
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Parameters of diffusion regions shown in Fig. 3

Kmax Dmax Fex CF ∆K × 100 δK × 100

0.3322 9.9 × 10–7 3.26 × 103 1.99 × 100 0.080 0.051

0.3309 4.0 × 10–6 7.93 × 102 1.30 × 100 0.155 0.130

0.3282 1.0 × 10–8 3.05 × 105 1.20 × 102 0.060 0.003

0.3270 5.0 × 10–8 5.98 × 104 1.85 × 101 0.051 0.007

0.3240 1.1 × 10–5 2.60 × 102 1.65 × 100 0.382 0.274

0.3216 2.0 × 10–6 1.38 × 103 1.15 × 100 0.099 0.090

0.3204 1.0 × 10–7 2.70 × 104 5.58 × 100 0.039 0.012

0.3196 8.0 × 10–7 3.34 × 103 1.73 × 100 0.072 0.050

0.3178 2.0 × 10–6 1.30 × 103 4.01 × 10–1 0.051 0.094

0.3163 1.0 × 10–6 2.53 × 103 1.84 × 100 0.090 0.060

0.3146 4.0 × 10–7 6.16 × 103 1.58 × 100 0.045 0.033

0.3139 8.0 × 10–7 3.05 × 103 7.81 × 10–1 0.045 0.053

0.3130 5.0 × 10–8 4.81 × 104 2.04 × 101 0.063 0.008

0.3043 4.0 × 10–5 5.22 × 101 1.59 × 100 1.090 0.798

0.2978 3.0 × 10–7 6.25 × 103 4.05 × 10–1 0.018 0.033

0.2960 2.5 × 10–6 7.27 × 102 3.22 × 100 0.301 0.138

0.2941 4.3 × 10–7 4.06 × 103 2.00 × 10–1 0.0150 0.044

Note: Kmax and Dmax are the perturbation parameter and the rate of diffusion in the center of the region, respectively; Fex is the experi-
mental diffusion suppression factor in the center of the region; CF = Fex/Fth is the ratio between the experimental and theoretical
suppression factors; Fth is calculated by (5.6); ∆K is the experimental region width; and δK is the region width recalculated by (5.5)
under the additional requirement of providing the CF ≡ 1 equality.
even at the maximum. The width of this region is ∆K ≈
0.02, and the diffusion suppression factor is

(5.4)

Here, Dmax ≈ 4.6 × 10–5 is the maximum measured dif-
fusion rate near the center of the region Kmax ≈ 0.24, and
D2(Kmax) ≈ 6.4 × 10–4 is the diffusion rate expected in
the complete absence of invariant curves in the system,
Eq. (5.1).

A crude estimate of Fex can be made by comparing
the boundary of this region and the DB(K) principal
boundary, which, according to Fig. 2, is satisfactorily
approximated by the equation (to the left of the arrow)

(5.5)

This particular case substantiates the natural suggestion
that the KB critical value from (4.5), which is the bound-
ary value for the principal region without invariant
curves, coincides with KD (or is close to it) at the
DB(KD) = 0 boundary of the principal diffusion region.

In addition, we make the suggestion (which should
also be verified) that the boundaries of all diffusion

Fex

D2 Kmax( )
Dmax

--------------------- 14.≈=

DB K( )
1
2
--- K

1
3
---– 

  3/2

≈

Db K( )
1
2
--- K Kb–( )3/2.≈
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regions exhibit similar behaviors, and Eq. (5.5) to the
right of the arrow is therefore applicable to an arbitrary
region without invariant curves with the Kb left bound-
ary.

Equation (5.5) yields

(5.6)

Here, coefficient 2 characterizes interference of two
region boundaries, which amplifies diffusion suppres-
sion; Kb ≈ 0.23 and Kmax ≈ 0.24 are the left boundary
and the center of the region under consideration, and
Db(Kmax) ≈ 5 × 10–4 is the rate of diffusion in the center
obtained from Eq. (5.5) for the boundary. Lastly,
D2(1/3) ≈ 3.28 × 10–3 is the diffusion rate at the bound-
ary of the principal region calculated by (5.1) on the
assumption of the absence of invariant curves (we
ignore the small Kmax – Kb correction and use K = 1/3).

For the model under consideration, the measured
(5.4) and theoretical (5.6) values very closely agree
with each other, which substantiates the suggestion
made above that diffusion region boundaries are simi-
lar. By analogy with (4.1), we may introduce an empir-
ical correction factor GF = Fex/Fth ≈ 1.1, which is close
to one. Note that approximation (5.5) is only valid for
d = 1/2 (see below), and applying it to narrow diffusion

Fth

2D2 1/3( )
Db Kmax( )
---------------------- 13.≈ ≈
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regions appears to be justified only in the vicinity of the
principal boundary.

We stress once more that dependence (5.3) for dif-
fusion rate Dc(K) close to one invariant curve and
dependence (5.5) for the DB(K) boundary of the princi-
pal region are similar; not only both are power depen-
dences but also their exponents differ insignificantly.
This difference is likely to arise because (5.3) is calcu-
lated at K = 1/8 and (5.5), at K = 1/3.

Several other narrower diffusion regions are also
shown in Fig. 2. They are reproduced in Fig. 3 on an
enlarged scale. The empirical values are connected by a
polygonal line, which helps us to distinguish between
closely spaced narrow regions. In the centers of these
regions without invariant curves, diffusion is also sup-
pressed the stronger, the narrower the region. For
17 regions that we were able to discern, calculations by
(5.4)–(5.6), similar to those made above, were per-
formed. These data are summarized in the table, which
also contains the CF = Fex/Fth empirical correction fac-
tors. Given in the last column are region widths calcu-
lated by (5.5) under the additional requirement to pro-
vide fulfillment of the equality CF ≡ 1. For the widths,
agreement with empirical estimates is much worse,
which appears to be caused by difficulties of determin-
ing the width of a narrow ∆K region based on a limited
number of perturbation parameter K values used in the
calculations (see below).

Diffusion suppression at several bias parameter d
values is shown in Fig. 4. Similarity of D(K) depen-
dences at different d values attracts attention. This sim-
ilarity gives promise that a unified description of diffu-
sion in some dimensionless variables can be con-
structed.

On the assumption that KD ≈ KB (see above), it is
natural to write dimensionless perturbation parameter
K* as

(5.7)

The determination of the second dimensionless vari-
able D* involves serious difficulties because, generally,
| fn | ≠ const (see Section 3) and an explicit expression
for the D(K) function cannot therefore be obtained.
This function can, however, be described approxi-
mately if the argument of the sine function in (2.4) is
small. We then have sin(πnd) ≈ πnd and [see (2.3)]

(5.8)

Clearly, the D(K) dependence at d ! 1 is the same as in
the d = 0 limit.

This approximation [and, therefore, asymptotic
equation (4.1)] is valid at [see (3.5) with β = 1]

(5.9)

K∗ K
KB

------
1 d+

2d2
------------K .= =
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2
π
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K  * K1
π4d2
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32
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On the other hand, if the inverse inequality holds
(πncd * 1, d ! 1, β = 2), sin(πnd) in (2.4) can be aver-
aged over n. As the sum in (3.2) satisfies the proportion-
ality relation

we can introduce the new parameter

(5.10)

and set (d ! 1)

(5.11)

The averaging condition can also be written as

(5.12)

We then have

(5.13)

where the A1 value is taken from (4.1), and Kcr is the
intersection point between two asymptotic depen-
dences, (5.13) and (4.1). The position of this point is
not known, and it is not clear how it can be determined,
because, at d ! 1 (as distinguished from the case of d =
1/2 in Fig. 2), there is no diffusion region with β = 2. At
the same time, both K1 and K2 boundaries are fairly
close to KB. For this reason, the abscissa of the intersec-

f n πnd( )sin ,∝

S0 πnd( )sin〈 〉 0.76≈=

f 0
2

π2
-----

S0
2

d
-----, β≈ 2.=

K  & K2
π2d
8S0
-------- 

 
2

2.6d2 1.3KB K1.<≈≈ ≈

D K( ) A2K5, A2

A1

Kcr
2.5

---------,≈≈

10–16

10–5

D

K

10–12

10–4

1

10–4 10–3 10–2 10–1 1

10–8

Fig. 4. General picture of diffusion in model (2.2) at seven
bias parameter d values, d = 0.004, 0.008, 0.02, 0.3, 0.4, 0.5,
and 0.6 (from left to right). The number of trajectories 50–
250, computation time t0 = 2.5 × 106 iterations. The straight
line is the upper bound of diffusion rate (4.1); also see text
and Fig. 5.
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tion point between the two asymptotic dependences can
be assumed to be

(5.14)

In this approximation and taking into account (5.7) and
(5.13), the second dimensionless variable can be
selected in the form

(5.15)

Strictly, variables (5.7) and (5.15) are suitable only if
d ! 1, when simple asymptotic dependences (4.1) and
(5.13) can be used. The general similarity picture, how-
ever, persists to d ~ 1, but not for d  1.

The results of our numerical experiments for d ! 1
are shown in dimensionless variables in Fig. 5 together
with two asymptotic dependences (4.1) and (5.13). The
smooth curve, which can with difficulty be traced in the
dense system of points, corresponds to the purely
empirical universal boundary of the principal diffusion
region found by us,

(5.16)

which is written in the decimal logarithms of dimen-
sionless variables.

Kcr KB.≈

D∗ 1 d+

2d2
------------ 

  5/2

D.=

Dl
5
2
---Kl

0.4

Kl

---------,–=

Dl
D∗
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------- 

  , Kllog K∗ ,log= =

–6

0

D1 = log(D*/A1)

K1 = logK*

–4

–2

0

2
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6

–0.5 0.5 1.0 1.5 2.0–1.0

Fig. 5. General picture of diffusion in model (2.2) for the
three smallest d parameter values, d = 0.004, 0.008, and
0.02, in dimensionless variables (5.7) and (5.15). The curve
is the empirical approximation of the principal boundary of
diffusion (5.16). The straight lines describe asymptotic
behaviors of diffusion without invariant curves: the solid
line corresponds to (4.1) with β = 1, and the dashed line, to
(5.13) with β = 2 in approximation (5.14).
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This equation contains dimensionless variables
(4.5) and (5.15), in which the suggestion of the equality
of the KB critical number and the KD boundary of the
principal diffusion region is implicit. Preliminary
experiments (see Figs. 3–5) confirm this suggestion to
high accuracy,

The interesting question of exact equality of these two
parameters, however, remains open.

In [9], only one region without invariant curves was
found (see above), and the suggestion was made that
the number of such regions grew infinitely as K  0.
Our results (Fig. 3) show that a set of such regions also
exists in the immediate vicinity of the principal diffu-
sion boundary. An important problem is the statistics of
such regions related to the distribution of diffusion rates
with respect to perturbation parameter K and, accord-
ingly, to its suppression by virtual invariant curves.

We performed a statistical treatment of the experi-
mental diffusion suppression coefficients Fex for N =
134 parameter K values in the interval 0.293 < K <
0.333 of width as small as ∆ ≈ 0.04 (see Fig. 3). An
effective method for obtaining a statistically significant
distribution P(Fex) for such poor statistics is the special
method for constructing an integral distribution with a
“floating” cell width (see [18] and the references
therein). This method is also called “rank-ordering sta-
tistics of extreme events.” This effective procedure was
for the first time suggested in 1949 and used in mathe-
matical linguistics [19]. It turns out that it suffices to
arrange all Fex(n), n = 1, 2, …, N values in decreasing
order, Fex(n + 1) < Fex(n). The sought distribution is
then given by the approximate equality

(5.17)

The distribution obtained in this simple way is shown in
Fig. 6. Its most interesting feature is an exceedingly
slow decrease in the probability of strong diffusion sup-
pression,

(5.18)

Here, the left boundary is related to the very narrow
interval of K values used in the calculations, ∆ ≈ 0.04.
The rapid decrease in probability P(Fex) at Fex > 3 × 105

is explained by the limited time of calculations (t0 = 4 ×
107). Indeed, as regular oscillations ∆p ~ K ≈ 0.3, the
minimum observed diffusion rate is given by

(5.19)
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which closely agrees with the experimental data shown
in Fig. 3. At smaller K values, this minimum decreases
even to D ≈ 10–17 at K ≈ 3 × 10–5, t0 = 4 × 108 (see
Fig. 4). Interestingly, at such a slow decrease in proba-
bility (5.18), both the mean Fex value and its variance
are determined by the Fmax value and diverge approxi-
mately proportionally to t0  ∞ [see (5.19)].

Small deviations of the empirical distribution shown
in Fig. 6 from law (5.18) are likely to be related to non-
uniformities of the Kn values used in the calculations.
This may easily be corrected, but will require consider-
able computation time or a substantial statistical reduc-
tion.

Empirical law (5.18) can, in particular, be used to
analyze enigmatic trajectory “jamming” observed in
old work [7], which still remains unexplained. This
phenomenon is also related to map (2.2) with d = 1/2,
but in a somewhat different normalization, as in [9]. In
the notation that we use, it corresponds to K = 0.29 <
1/3 and, therefore, it fortuitously falls into the region
with invariant curves. At a t0 = 3 × 106 time of compu-
tations, the minimum diffusion coefficient is Dmin ~ 3 ×
10–8, which corresponds to the minimum diffusion sup-
pression factor Fmin ~ 105 with a reasonable probability
P ≈ 36%.

Instead of separate Fex(n) values, we can take the Fm

values [here, the notation is simplified: Fm stands for
Fex(m)] for the centers of all m = 1, 2, …, M (M = 17)
discernible in the K = 0.293–0.333 selected interval of
diffusion regions (see table). The probability is then

1

10–2

n/N

Fex/105

5 × 10–1

2 × 10–1

10–1

10–3 10–1 100 101 102

Fig. 6. The first empirical results on the statistic of the Fex
factor (5.4) of diffusion suppression by virtual invariant
curves according to our numerical experiments shown in
Fig. 3 (d = 1/2). The slanted straight line corresponds to
integral power distribution (5.18). The total number of Fex
values is 134; 100 of them lie within the principal interval
Fex < 3 × 105 (see text).
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proportional to the normalized sum of the widths of
these regions dKm, which are found either empirically
from Fig. 3 (∆K in the table) or by recalculation accord-
ing to (5.5) from the empirical suppression factor
Fm value (δK in the table). The normalization is per-
formed with respect to the total width of the K interval
as dKm  dKm/∆, where ∆ = 0.04. In addition, it
should be taken into account that the normalized sum of
the widths of all M = 17 diffusion regions is S ≈ 0.664
for ∆K and S ≈ 0.468 for δK. In both cases, significant
loss of narrow regions with large F * 104 occurs (see
Fig. 7). We eventually obtain

(5.20)

The result of such a processing of the empirical data
summarized in the table is shown in Fig. 7 together with
the data from Fig. 6, which are plotted by a thick line
corresponding to (5.18). Agreement for such limited
statistics can be considered satisfactory. This especially
refers to the δK data (within the F & 104 limitation
introduced above). Note that outside this region, that is,
at F * 104, where the P(F) probability is almost con-
stant, we simultaneously observe a sharp increase in the
CF empirical correction (see Fig. 7).

Agreement is worse for ∆K, and we observe not
only spread of data but also a systematic although small
deviation. As previously, the empirical distribution
remains a power function (see the lowest slanted

P Fm( ) 1 S– Ki.d
i m=

M

∑+≈

10–2

P(Fex)

Fex/105

10–1

10–3 10–1 100 101

1

10

102

Fig. 7. The same as in Fig. 6 but over the width of 17 dis-
cernible diffusion regions (see table and text). Thick line
corresponds to the data from Fig. 6 (5.18), circles are inte-
gral probabilities (5.21) determined from the experimental
∆K width of diffusion regions, crosses are integral probabil-
ities for the δK width recalculated by (5.5), polygonal line
is the experimental CF correction to (5.6), and dashed hori-
zontal lines are the fractions of “lost” (indiscernible)
regions at large F * 104.
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straight line in Fig. 7) but with a somewhat different
exponent,

(5.21)

where the left boundary is determined by the minimum
F value in the studied K range. The reason for these dis-
crepancies is not known and requires further inquiries.
We suggest that the observed discrepancies are largely
caused by underestimation of the empirical width of the
∆K region, which increases as F grows. This in all prob-
ability occurs as a result of overlapping of neighboring
regions, which also increases with F. The difference
between empirical equations (5.18) and (5.21) amounts
to about 30% in the exponent and 20% in the probabil-
ity [within the range of the applicability of (5.21)],
which is not bad for preliminary results.

Note that diffusion rate fluctuations mentioned
above (not exceeding twofold rate changes) change
probability (5.18) by a factor of 20.15 ≈ 1.11; that is, by
as little as 11%.

6. CONCLUSION

Studies of a family of piecewise linear maps of types
(2.1) and (2.2) have a long history (e.g., see [7, 9, 11–
15, 17] and the references therein). In this work, we use
very simple models to study a comparatively new and
little-known but very complex phenomenon of fractal
diffusion under the action of virtual global invariant
curves and under the conditions of strong local chaos.

However, first, it would be useful to understand why
studies of such simplified constructions as piecewise
linear maps deserve attention. Let us return to work
[17], where a complex analytic function with 21 Fou-
rier harmonics was used to study the properties of such
a map, and a certain similarity between the dynamic
behaviors of this function and the map was observed.
We can therefore use the opposite approach and, for a
complex continuous analytic function, for instance, for
a function with sharp turns, seek a piecewise linear
function close to the analytic function and study the
corresponding map, which is much simpler. This
approach, we believe, offers much promise, but
requires special consideration.

Our studies show that, in the family of models (2.1),
(2.2), there always exists a comparatively wide (princi-
pal) region of “normal” diffusion, as in other smooth
systems without invariant curves. We were able to
obtain fairly simple and fairly accurate diffusion rate
estimates in this region (Sections 3 and 4), which were
of considerable help in analyzing the most important
empirical data on fractal diffusion in the region with
virtual invariant curves (Section 5).

Our studies were performed in the range of bias
parameter values 0 < d < 0.6 [with invariant curves at
K < KB, see (4.5)]. We found that the presence of a set
of invariant curves, although of measure zero, caused

P F( )
2.3

F0.20
----------, 64 F & 104,<≈
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strong diffusion suppression at K < KB, which prompted
us to suggest a new term, namely, “virtual invariant
curve.”

The case of d = 1/2 was studied most thoroughly.
For this case, we were able to obtain quantitative esti-
mates of diffusion suppression. Preliminary treatment
of empirical data allowed us to construct integral distri-
bution (5.18) for the probability of the Fex diffusion
suppression coefficient. The most interesting feature of
this distribution was an exceedingly slow decrease in
the probability of Fex, slow to the extent that the mean
Fex value diverged as the time of computations
increased (see Section 5). We also thoroughly studied a
series of narrow diffusion regions to the left of the prin-
cipal boundary (see table). This also allowed us to sub-
stantiate important result (5.18) by another method [see
(5.21)]. The reason for such unusual statistics of Fex
[and, therefore, of the rate of fractal diffusion Dmax in
(5.4)] is not known and requires further inquiries.

Studies of the D(K) dependences at different d val-
ues revealed obvious similarity of their behavior, which
was an indication that their universal description might
be possible. We were able to give such a description on
the additional assumption that d ! 1 and construct
empirical dependence (5.16) for the boundary of the
principal diffusion region in dimensionless variables.
This simple dependence fairly well described the char-
acteristic sharp transition from the chaotic region with-
out invariant curves with well-known regular diffusion
to an also chaotic region but with a dense system of
invariant curves of a new form with absolutely
unknown very irregular (fractal) diffusion.

On the whole, we consider this new phenomenon
fairly interesting and important; in our view, it deserves
further investigation.
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