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Preface

LY

This volume presents a collection of basic papers, some already published others
specially written for this volume, devoted to the study of a new phenomenon,
the so-called quantum chaos. This problem arose from the by now, well known,
classical dynamical chaos. However, unlike the latter, the study of quantum chaos
is still in its early stages, attracting the ever growing interest of many physicists
(but, unfortunately, of many fewer, as yet, mathematicians).

The original intention, of physicists at least, was mainly to understand the very
important generic phenomenon of classical chaos from the viewpoint of the more
deep and general quantum mechanics. At first sight it might seem that quantum
chaos is simply a particular case of the general phenomenon of dynamical chaos
in the well developed ergodic theory of dynamical systems; or it might be a trivial
implication of the correspondence principle. Yet, Nature has turned out to be
much more tricky, and more interesting!

As the present collection of papers clearly shows, there is no classical-like
chaos at all in quantum mechanics. On the other hand since Nature, as is
commonly accepted, obeys quantum mechanics, what is then the physical meaning
of dynamical chaos? As a result of this surprising obstacle, the general situation
in the study of quantum chaos, in the present state of research, might be
characterized as some confusion and disorganization which is of course a typical
situation in the early stages of a new field of scientific research. It greatly
stimulates and encourages the active search for new approaches to the problem,
quite often without any attempts to reconcile the different conceptions. The
primary goal of this collection is just to help in the cure of such a disease of
growth.

For the reader’s convenience we have grouped the papers into four different
main topics: a) “Classical chaos and quantum localization” which is the most
extensively investigated subject; b) “Atoms in magnetic and microwave fields”
which refers also to the laboratory experiments in quantum chaos; c) “Semi-
classical approximations” which examines the transition between classical and
quantum chaos; and d) “Level statistics and random matrix theory” which de-
scribes the relation with the well developed statistical theory of complex quantum
systems.

The collection of papers is preceded by an introductory chapter in which we
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try to link different approaches to the problem of quantum chaos guided by our
current personal understanding of this new field.

We thank Anna Auguadro for her valuable assistance in the preparation of
this volume.

Novosibirsk — Como GIULIO CASATI
BORIS CHIRIKOV
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The legacy of chaos in quantum mechanics

G. CASATI

Dipartimento di Fisica, Universita di Milano
Via Castelnuovo — 22100 Como, Italy

B. CHIRIKOV

Budker Institute of Nuclear Physics
630090 Novosibisrk 90, Russia

The present collection of papers is devoted to a rather new and very controversial
topic, the so-called “quantum chaos”. Some researchers see nothing essentially
new at all in this phenomenon (apart from a number of various examples and
models), and they have good reason to believe so. Indeed, the problems in this
field all belong to the traditional, “old-fashion”, and rather “simple” quantum
mechanics of finite-dimensional systems with a given interaction and no quantized
fields.

Nevertheless, many, including ourselves, consider quantum chaos to be a new
discovery, though in an old field, of a great importance for fundamental physics.
To understand this, the phenomenon of quantum chaos should be put into
its proper perspective in recent developments in physics. The central point of
this perspective is the conception of dynamical chaos (also a rather new topic) in
classical mechanics (for a good review see, e.g., Refs.[1-3]). Thus before discussing
the current understanding of quantum chaos we need briefly to describe classical
dynamical chaos.

1 Dynamical chaos in classical mechanics

The conception of dynamical chaos destroys the deterministic image of the
classical physics and shows that typically the trajectories of the deterministic
equations of motion are in some sense random and unpredictable. The mechanism
for such a surprising property of classical mechanics is related to the most strong
(exponential) local instability of motion. In what follows we restrict ourselves to
Hamiltonian (non-dissipative) systems as more fundamental. The local instability
is described by the linearized equations of motion:

co(EHY . L (2H w
~ \0pdq /, op? r'7

__(eR\, (e
"=7\%r )" \aadp),"

where H = H (g, p, t) is the Hamiltonian; ¢, p are N-dimensional vectors in the
phase space and ¢ = dgq, n = dp are N-dimensional vectors in the tangent space.

o

(1)




4 Introduction

The coefficients of the linear equations (1) are taken on the reference tra-
jectory and hence explicitly depend on time. This dependence is generally very
complicated if, for example, the reference trajectory is chaotic.

The stability of the motion on the reference trajectory is characterized by the
maximal Lyapunov exponent defined as the limit

A= lim 1 In d(t) (2)
[t|—o0 lt‘
where d? = £2 + 4% is the length of the tangent vector and where d(0) = 1 is
assumed.

The exponential instability of motion means positive maximal Lyapunov expo-
nent A > 0. Notice that in Hamiltonian systems the instability does not depend
on the direction of time and, hence, is reversible as is the chaotic motion.

The reason why the exponentially unstable motion is called chaotic is in that
almost all trajectories of such a motion are unpredictable in the following sense:
according to the Alekseev—Brudno theorem (see Ref.[4]) in the algorithmic theory
of dynamical systems the information I(t) associated with a segment of trajectory
of length ¢ is equal asymptotically to

lim I—(t—)=h=ZA+ (3)

t}—oo |t

where > A, is the sum of all positive Lyapunov exponents and h is the so-called
KS (after Kolmogorov-Sinai) entropy. This important result shows that in order
to predict each new segment of a chaotic trajectory one needs an additional
information proportional to the length of this segment and independent of the
full previous length of trajectory. This means that this information cannot be
extracted from observation of the previous motion, even an infinitely long one!
If the instability is not exponential but, for example, only a power law, then the
required information per unit time is inversely proportional to the full previous
length of trajectory and, asymptotically, the prediction becomes possible. Needless
to say, for a sufficiently short time interval the prediction is of course possible
even for a chaotic system and can be characterized by the randomness parameter
[5]
_ k]
| In

(4)

where u is the accuracy of trajectory recording. The prediction is possible in the
finite interval of “temporary determinism” (r < 1) while r > 1 corresponds to the
infinite region of asymptotic randomness.

Notice that the information per unit time (3) does not depend on the accuracy
of recording pu which determines the prediction time scale only. Recently a
powerful technique has been developed which actually predicts a chaotic trajectory
within this limit [6].

The important condition h > 0, which characterizes chaotic motion, is not
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invariant with respect to the change of time variable. (According to Ref.[3] the
only invariant statistical property under change of time variable is ergodicity.) In
our opinion the resolution of this difficulty is in that the proper characteristic of
motion instability, important for dynamical chaos, should be taken with respect
to the oscillation phases whose dynamics determines the nature of the motion.
This implies that the proper time variable must vary proportionally with the
phases.

The exponential instability implies a continuous spectrum of motion. (In
a discrete spectrum the instability can be at most linear in time [57].) The
continuous spectrum, in turn, implies correlation decay; this property, which is
called mixing in ergodic theory, is the most important property of dynamical
motion for the validity of the statistical description. The point is that mixing
provides the statistical independence of different parts (sufficiently separated in
time) of a dynamical trajectory. This is the main condition for the application
of probability theory which allows the calculation of the statistical characteristics
such as diffusion, relaxation, distribution functions etc. However, it is not clear
as yet whether or not the strongest property of exponential instability is really
required for a meaningful statistical description of dynamical motion.

In the modern theory of dynamical systems the latter property corresponds to
one limiting case of dynamical motion which is called dynamical chaos (Fig. 1).
The opposite limiting case is the so-called completely integrable motion which
possesses the full set of N motion integrals (where N is the number of freedoms) in
involution and in which, moreover, the action-angle variables can be introduced.
The property of complete integrability is very delicate and non-typical as it
is destroyed by an arbitrarily weak perturbation which converts a completely
integrable system into a KAM-integrable system [7]. (Unlike integrable motion,
chaotic motion is very robust: it is structurally stable and is not affected by
weak perturbations [58].) The structure of the KAM motion is very intricate;
the motion remains completely integrable for most initial conditions yet a single,
connected, chaotic motion component (for N > 2) arises of exponentially small
(with respect to perturbation) measure which is nevertheless everywhere dense.
Interesting enough, the chaotic trajectories in this component approach arbitrarily
close to any point on the energy surface, yet the motion is non ergodic due to
the positive measure of the stable component. Ergodicity means that almost all
trajectories not only approach every point on the energy surface, but cover it
homogeneously that is the sojourn time of a trajectory in any region of phase
space is proportional to its invariant measure. The property of ergodicity which
has given the name to the whole ergodic theory turned out to be neither necessary
nor sufficient for the statistical description. Indeed chaotic components of the
motion may cover only a part of the energy surface (which is rather a typical case
in dynamical systems); on the other hand for a meaningful statistical description
a mixing property is needed which provides the relaxation to some statistical
steady state.
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GENERAL THEORY OF DYNAMICAL SYSTEMS

H(,6,0 = H () + ev(l9.)

ASYMPTOTIC ERGODIC THEORY

|t| - CO
|
algorithmic theory
COMPLETELY KAM MIXING
INTEGRABLE INTEGRABLE ERGODIC correlation RAR‘EOOM
| = CONST decay
discrete spectrum continuous spectrum
QUANTUM S - TRUE CHAOS
(PSEUDO) CHAOS R oo > N>1 _
bounc?‘e; r1notion correspondence principle (semDﬁ::TI‘?tssmal
lim lim = lim lim
N.g=e e» t| > e t|~eas Nq=>e»
?N
(finite)
LOCALIZATION PSEUDO-CHAOS TRUE CHAOS
ta ~q" ﬁnit_e—time 2 t ~iInqg
ergodic theory *
Now
TRADITIONAL
STATISTICAL
MECHANICS
Thermodynamic
limit

Fig. 1. The place of quantum chaos in modern theories: action-angle variables I, §; number
of freedoms N; Lyapunov exponent A; quasiclassical parameter q; time scales tg and ¢, ;
Planck’s constant . Two question marks indicate the problems in a new ergodic theory
non-asymptotic in N and | ¢ | (see also section 10).
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Instead in terms of trajectories an equivalent description of classical dynamics
can be given by means of distribution functions which, if non-singular, represent
not a single trajectory but a continuum of them. As is well known the distribution
function obeys a linear Liouville equation. Thus the condition of non-linearity for
dynamical chaos to occur is restricted to the description in terms of trajectories
where the role of non-linearity is to bound the linearly unstable motion. In terms
of distribution functions ergodicity means that the time-averaged distribution
function is constant with respect to the invariant measure. Instead, the stronger
property of mixing implies the approach, on average, of any initially smooth
distribution to a steady-state. This process is called statistical relaxation. The
relaxation is of course time-reversible as is the motion along a particular trajectory.
However, unlike the latter, the evolution of the distribution function is non
recurrent. Notice that according to the Poincaré theorem the trajectory recurs
infinitely many times independent of the type of motion (regular or chaotic); the
difference is that for regular motion the recurrence time is strictly bounded from
above whereas in the latter case arbitrarily large recurrence times are possible.
The time-reversibility of the distribution function is related to its very complicated
structure which becomes more and more “scarred” as the relaxation proceeds. In
the case of exponential instability of motion the spatial scale of the oscillations
also decreases exponentially with time. It is in these fine spatial oscillations that
the memory of the initial state is retained forever, which is only possible in a
continuous phase space.

To get rid of this complicated structure, the distribution function must be
“coarse-grained”, that is, averaged on some domain. The evolution of the coarse-
grained function is described by a kinetic equation, e.g., a diffusion equation. The
coarse-grained function converges to a smooth steady state which is a constant
with respect to the invariant measure.

In closing this section we would like to stress again the two crucial properties
of classical mechanics necessary for dynamical chaos to occur: (i) a continuous
spectrum of the motion, and (ii) a continuous phase space.

- 2 Quantum chaos vs the correspondence principle

The problem of quantum chaos arose from the attempts to understand the
very peculiar phenomenon of classical dynamical chaos in terms of quantum
mechanics. Preliminary investigations immediately unveiled a very deep difficulty
related to the fact that the above mentioned conditions for classical chaos are
violated in quantum mechanics. Indeed the energy and the frequency spectrum of
any quantum motion, bounded in phase space, are always discrete. According to
the existing theory of dynamical systems such motion corresponds to the limiting
case of regular motion. The ultimate origin of this fundamental quantum property
is discreteness of the phase space itself or, in modern mathematical language, a
non-commutative geometry of the latter. This is the very basis of all quantum
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physics directly related to the fundamental uncertainty principle which implies a
finite size of an elementary phase-space cell: Ax - Ap 2 F (per freedom).

The naive resolution of this difficulty would be the absence of any quantum
chaos. For this reason it was even proposed to use the term “quantum chaology”
[8] which essentially means the study of the absence of chaos in quantum
mechanics. If the above conclusion were true, a sharp contradiction would arise
with the correspondence principle which requires the transition from quantum to
classical mechanics for all phenomena including the new one: dynamical chaos.
Does this really mean a failure of the correspondence principle as some authors
insist (see, e.g., Ref.[9]) ? If it were so quantum chaos would, indeed, be a great
discovery since it would mean that classical mechanics is not the limiting case of
quantum mechanics but a different separate theory. “Unfortunately”, there exists
a less radical (but also interesting and important) resolution of this difficulty
which is discussed below.

A recent breakthrough in the understanding of quantum chaos has been
achieved, particularly, due to a new philosophy which, either explicitly or im-
plicitly, is generally accepted; namely the whole physical problem of quantum
dynamics is considered as divided into two qualitatively different parts:

(i) proper quantum dynamics as described by a specific dynamical variable,
the wavefunction y(t); and

(ii) quantum measurement including the recording of the result and hence the
collapse of the y function.

The first part is described by some deterministic equation, for example, the
Schrodinger equation and naturally belongs to the general theory of dynamical
systems. The problem is well posed and this allows for extensive studies. In the
following, as well as in all papers of the present collection only the first part is
discussed.

The second part still remains very vague to the extent that there is no common
agreement even on the question whether this is a real physical problem or an ill-
posed one so that the Copenhagen interpretation of (or convention in) quantum
mechanics gives satisfactory answers to all the admissible questions. In any event
there exists as yet no dynamical description of quantum measurement including
the y-collapse.

The absence of classical-like chaos is true for the above mentioned first part of
quantum dynamics only. Quantum measurement as far as the result is concerned,
is fundamentally a random process. However, there are good reasons to believe
that this randomness can be interpreted as a particular manifestation of dynamical
chaos [10].

The separation of the first part of quantum dynamics, which is very natural
from a mathematical viewpoint, was introduced and emphasized by Schrodinger
who, however, certainly underestimated the importance of the second part in
physics.
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3 Characteristic time scales of quantum chaos

3.1 The models

One way to reconcile the discrete spectrum with the correspondence principle is
to introduce some characteristic time scales of quantum motion. The main idea is
that the distinction between discrete and continuous spectra is non ambiguous in
the limit t — oo only. This idea was suggested by our first numerical experiments
in quantum chaos in which a very simple model was used (the so-called “kicked
rotator”)[11]. In the classical limit this model is described by the Hamiltonian

n2

H=7+k-cos\9-5r(t) (5)
where (n,3) are action-angle variables, k and T are the strength and period of
the perturbation, and d7(t) is the é-function of period T. The corresponding

equations of motions are given by the so-called standard map (SM)

=n+ksin9
n Sin } (6)

34+nT

wol =
Il

The only parameter of this map is K =kT.

For K < 1 the motion is strictly bounded while for K >> 1 it is ergodic, mixing
and exponentially unstable with a Lyapunov exponent per step:

K
A=~In 5 (7)
This model can be considered either on the infinite cylinder (unbounded
motion) or on a finite torus (bounded motion) of circumference
2nm ’
L= 7 (8)
where m is an integer to avoid discontinuities.

The SM is very popular in studies of dynamical chaos both classical and
quantal because of its apparent simplicity and intrinsic richness. (The nickname
“kicked rotator” is related to a particular physical interpretation of this model
as a rotator with angular momentum n driven by a series of periodic pulses, or
“kicks”.) Yet, it can also be considered also as the Poincare surface-of-section
map for a conservative system of two freedoms. Particularly, the map on a
torus (8) models the energy shell of a conservative system which is the quantum
counterpart of the classical energy surface. What makes the SM almost universal
is the local (in momentum) approximation it provides for a broad class of more
complicated physical models.

One well studied example of such models is the photoeffect in Rydberg atoms.
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The main features of this problem are described by the one-dimensional Hamil-
tonian [12] (see also Section.7)

H=—L+€z(n, 3)coswt 9)
2n?

where ¢ and @ are the strength and the frequency of the linearly polarized
electric field, n, 9 are the action-angle variables and z the coordinate along the
field direction.

If the field frequency exceeds the electron frequency the motion of system (9)
is approximately described by a map over one Kepler period of the electron, the
so-called Kepler map:

V=v+k-sing; —v)~2 (10)

i
\/2(0(
where v = E/o = —(2wn?)"!, ¢ is the field phase at perihelion and k is
perturbation parameter (in atomic units)

k ~ 2.58 —— (11)

a)5/3

Linearizing the second Eq.(10) in v reduces the Kepler map to the SM (6) with
the same k, and parameter

T = 6nw’n’ (12)

provided k < v. Thus, the SM describes the dynamics locally in momentum. In
this particular model the momentum v is proportional to the energy E as the
conjugate phase ¢ is proportional to time.

Interestingly, the Kepler map can be derived from a simple expression for the
electron free fall on the Coulomb center which, in reversed time, reads:

3 2/3
=(&)
N

Then, the perturbation parameter is given by the integral

k= —2¢ / z(t) - cos wt dt = (48)/°T°(2/3) - W ~ 258 573 (13)
0
Another, less known, example is the “kicked top”, or the spin dynamics on a
sphere [13] which is described by the Hamiltonian (cf. Eq.(5)):

2 2 2
H = S—+@ Sy 6T(t)=s—z+k0\/1—S—ZCOS(p-éT(t) (14)
2 2 52

where s,, sy are the components of spin whose modulus squared s* = s7+s2+s3 =
const is the motion integral, and ¢ is the azimuthal angle canonically conjugated
to the momentum s, = s - cos § where 6 is the polar angle. As is easily verified,
the invariant measure ds, - ds, - ds, = sds- ds; - do is proportional to the area on
the sphere.
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If ko < s the spin dynamics can be approximately described by the SM with

the perturbation parameter
2
k(s:) =koy/1— 3 (15)
S

depending on action s,. This approximation is valid if the change Ak of k in one
kick is less than k. This is true on the whole sphere except a narrow ‘polar’ region

S— S, ko 2
S|l —) <<1 (16)
S S

The restriction s, < s [14] is therefore not necessary.
An interesting version of this model [15] is the motion on a hyperboloid

S§+s§—sg=is2 (17)

In this case the SM perturbation parameter becomes

k(sz)=ko\/§— + 1 (18)

where the sign coincides with that of motion integral (17).
The local description via the SM allows the determination of the chaos border
in all these models from the condition

K =Tk(s;) ~ 1 (19)

The statistical properties of the SM are described by a diffusion in action n
with the rate

< (An)? > . k?

T2

where the integer time 7 = t/T is the number of map iterations, and the function

C(K) accounts for dynamical correlations. Particularly, C(K) — 1 for K > 1,

and C(K) — 0 at the chaos border (19). The diffusion Green function is Gaussian

ex (_ (n — no)z)
( ) . P 2D0‘C
gL T = ./27IDO‘C

For the bounded SM (on a torus) the diffusion leads to the statistical relaxation
of any non-singular distribution function to the ergodic state:

Do = C(K) (20)

(21)

fn— 1 (22)

with a characteristic time 7, ~ L?/Dj.
The quantized standard map (QSM) on a cylinder, first introduced in Ref.[11],
is described by the relation:

Y= ﬁ'w = exp(—ik cos 9) - exp(—i g )y (23)



12 Introduction

where U is a unitary operator, fi = —id/d3, and h = 1. Notice that, while for the
bounded classical SM on a torus (8) the only change is to take n mod L, for the
QSM expression (23) becomes more complicated [16].

If k > 1 the perturbation couples approximately 2k unperturbed states per
iteration of map (23). For k < 1 all the transitions are suppressed. Thus, k ~ 1
is a specific border of quantum stability due to the discrete spectrum and is
independent of the behaviour in the classical limit [61,11]. This is also called the
perturbative localization border.

For the spin model the unitary operator is obtained from the first expression
of Hamiltonian (14):

P = exp(—i0 3 expl—i 3 )y 24)

(The second expression in Eq.(14) is only a quasiclassical approximation for
s > 1. The same is also true for model (17).) The transition to the classical limit
corresponds to k — oo, T — 0, while K = kT = const, LT = const (for model
(5)) and k/s = const, s, /s = const (for models (14) and (17)).

3.2 The relaxation time scale

In Fig. 2(a) we show an example of quantum ‘diffusion’ in the SM (< n? >~ 1).
It is seen that during a finite time interval (t &~ 200) quantum diffusion is close to
the classical diffusion (the straight line) in accordance with the correspondence
principle. Moreover, during this time interval quantum diffusion follows many
other details of classical diffusion as shown in Fig. 3. These are very satisfactory
results; however, for longer times something breaks down and quantum diffusion,
unlike classical diffusion, completely stops [11,17,18] (Fig. 2(b)).

The general explanation of this phenomenon is related to the fundamental
uncertainty principle [19]. Indeed, the discrete spectrum cannot be resolved if

t < po~ LR (25)

where tg is called the relaxation time scale, and py is the energy (or quasienergy)
level density for those eigenstates which are actually present in the initial state (0)
and, hence, determine the system’s dynamics. We call these operative eigenstates.

Generally, po < p where p is the total level density. The latter may even
be infinite, like for the unbounded SM. On the torus the quasienergy density
p = L/(2n/T) = m which is, surprisingly, a classical quantity that does not
change in the quasiclassical transition and which determines the upper bound of
the relaxation time scale in continuous time t. This is because the physical time
for the model under consideration is the number of map iterations t = ¢/T in

which the relaxation time scale

(26)

0
TR = N—%_‘-S

S|=
~| 3
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Fig. 2. Classical and quantum diffusion in the SM for K = 5, k = 25, T = 0.2. (a)
Classical (solid curve) and quantum (dotted curve) unperturbed energy < n?(z) >= 2E as
a function of time T (number of map iterations). (b) Classical (solid curve) and quantum
(dashed curve) probability distribution after time 7 = 1000. The stars give the Husimi
distribution integrated over the angle 9.

grows indefinitely in the classical limit T — 0, also in accordance with the
correspondence principle.

For the kicked rotator the explicit estimate for this time scale has the remark-
able form [19]

TR ~ Do (27)

which relates the essentially quantum characteristic Tg with the classical diffusion
rate.

3.3 The random time scale

As discussed above the main peculiarity of quantum chaos is its restriction to a
finite time interval: for this reason the term quantum pseudo-chaos is sometimes
used to distinguish it from the “true” chaos in the classical limit. This is also true
for a stronger chaotic property — the exponential instability. Indeed, according to
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25 v T 7 T

0 10 20 30 40 50

Fig. 3. Classical (circles) and quantum (crosses) diffusion rates in the SM vs the classical
parameter K. Here Dy = k?/2 and the solid curve is the prediction of a simple theory [63].
(From Ref.[43].)

the well-known Ehrenfest theorem, as long as a quantum wave packet remains
narrow it follows a beam of classical trajectories. During this time interval the
wave-packet motion is as random as the classical trajectory. Particularly the
packet is exponentially spreading with the classical rate h. However, the initial
size of the quantum packet (unlike in the classical case) is restricted from below
by the elementary cell of quantum phase space which is ~ # (equal 1 in our units).
The final size for a bounded motion is proportional to some (large) quasiclassical
parameter g which is of the order of the characteristic value of the action variable.
Therefore, the full time for the exponential spreading of the packet is of the order

In g
Ty ~ T (28)

This time scale has been introduced and explained in Ref.[20] (see also
Ref.[69]). For the standard map there are two quantum parameters, k and 1/T.
If we consider the optimal, least-spreading, wave packet (A3 ~ (Ang)™! ~ \/T )
the latter estimate becomes [19]

o~ |In T|
d K

11’1?

This is another time scale, much shorter than g (26), which we call the random
time scale. It increases indefinitely as T — 0, again in accordance with the
correspondence principle.

(29)
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In Fig. 4 an example of the evolution of an initially narrow wave packet is
shown demonstrating both the random ((a)—(c)) and the relaxation ((d)—(f)) time
scales compared with the classical evolution.

Even though the estimates (28, 29) appear very simple, almost trivial, some
questions remain open. One is why only stretching of the packet shows up in Fig.4
without any substantial squeezing (see also Ref.[21]). Apparently, this is related
to the particular phase-space density used (the Husimi distribution). Indeed,
this density is obtained by the projection of an evolving quantum state on the
coherent states whose width is fixed in both coordinate and momentum separately
whereas the uncertainty principle restricts the product only. The problem is how
long this product is going to remain unchanged (particularly minimal) which
is the quantum counterpart of the phase-space volume conservation in classical
mechanics. To the best of our knowledge, nobody has analysed this as yet. In
our understanding, the Wigner function is much more suitable for the study of
this problem.

The rate of “inflation” of the phase-space volume occupied by a quantum state
can be estimated from the Liouville equation for the Wigner function [22]. In the
particular case of the SM it can be written in the quasiclassical region as

aw ~ _1 83_H . 9_3_1/1/_ (30)
dt 24 09 on’

To obtain an estimate for the inflation we substitute in the rhs the “unper-
turbed” classical density Wy(n, 9, 7) in the form of a Gaussian packet of rms
dimensions A and a < A with the minimal area 4 - a = 1/2, stretching at angle
T < 1 with the n-axis. Then, W /on ~ W (T /a) while *H/89* ~ k 61 (t), and
we obtain from Eq.(30)

d

— In W ~ k(AT)’
dt

Since A = Ao - exp(At) where A = In(K/2) is the Lyapunov exponent, and
Ay = Ang ~ 1/ /T for the least spreading packet, we arrive at the estimate

W k(AT)?
Wo A
which determines the inflation time scale t;; and the maximal packet length prior
to a substantial inflation A9y = (AT );;:

2 A2 1/3
[ In(TK*/A)] . Ay ~ (é) >> A9 ~ TH? (32)

In

1 (31)

Tif ~ ;
v 6A k

Another mechanism for the destruction of the unstable quantum packet is

related to discrete (integer) values of action n. Apparently, it begins to work for

a < T when the continuous derivative ¥ breaks down. This determines the
n

destruction time scale
|In T|
2A

A8y ~ 1 (33)

Td ™~
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Fig. 4. A comparison between classical and quantum evolution in the kicked rotator for
the same parameters as in Fig. 2. The initial quantum state is a coherent packet. As to
the classical evolution we considered 2000 trajectories starting in the same area, of size
hi(= 1), occupied by the initial quantum state (Fig. (a)). In the following figures ((b)—(f)),
the dots represent the classical trajectories while the curves are level curves of the Husimi
distribution. For each figure, taken at different times, we divide by 8 the maximum value
of the Husimi distribution by 8 and then plot the seven level curves: (b) T =2; (¢) T = 3;
(d) T =10; (e) T = 100; (f) t = 1000. From this figure, as well as from fig. 2, the quantum
localization phenomenon is clearly evident.
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Fig. 4. —Continued, for figure caption see previous page

The scales 7iy and 7,4 are comparable to each other and also to the well-known
estimate (29). However, the critical values of the packet length, A3;s and AS,
are essentially different for k — co. The numerical evidence seems to agree better
with the destruction, rather than the inflation, mechanism but the latter may be
hidden by the Husimi distribution.

We think that the concept of characteristic time scales of quantum dynamics is a
satisfactory resolution of the apparent contradiction between the correspondence
principle and the quantum transient (finite-time) pseudo-chaos. Some physicists,
however, feel that such an explanation is, at least, ambiguous because it includes
the two limits which do not commute:

lim lim # lim Iim

ft| o0 g0 g—0 |t|—00
While the first order leads to classical chaos, the second one results in an essentially
quantum behaviour with no chaos at all. To resolve these doubts we note that
in physics one does not need to take any limit at all, and, in principle, we can
describe anything quantum-mechanically. If, nevertheless, we would like to make
use of the much simpler classical mechanics (for practical purposes) then only
one limit (g — o) is quite sufficient as the physical time is certainly finite. Finally,
even if it would be helpful for some reason (e.g., for mathematical convenience)
formally to take the limit || — cc this should be conditional; namely, one should
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Ny,
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Fig. 5. Time scales of classically chaotic quantum motion: curve 1 - random time scale
t, ~ In q; curve 2 - relaxation time scale tg ~ ¢*; g > 1 is the quasiclassical parameter.

keep the ratio |t|/tr(q) or |t|/t.(g) fixed. In other words the two above limits
should be taken simultaneously. The general structure of quantum dynamics on
the plane (q, t) is outlined in Fig. 5.

The limit |t| — oo is related to the existing ergodic theory which is asymptotic
in t. Meanwhile the new phenomenon of quantum chaos requires the modification
of the theory to a finite time which is a difficult mathematical problem still to
be solved. On the other hand, the practical importance of statistical laws even
for a finite time interval is that they provide a relatively simple description of the
essential behaviour for a very complicated dynamics.

In any event, if quantum mechanics is the universal theory, as is commonly
accepted, then the phenomenon of the “true” (classical-like) dynamical chaos
strictly speaking does not exist in nature. Nevertheless, the conception of “true”
chaos is very important in the theory as the limiting pattern to compare with real
quantum chaos.

3.4 Dynamical stability of quantum diffusion

Even though quantum diffusion and relaxation proceed on a fairly long time scale
(25) they are very unusual and qualitatively different from their classical counter-
parts, namely they are dynamically stable. This was shown in several numerical
experiments with time reversal [23]. Particularly, for the diffusive ionization of
the Rydberg hydrogen atom in a microwave field (Fig.6) the electron velocity was
reversed at t = 60 field periods, and the backward motion was observed. In the
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Fig. 6. Classical (dashed curve) and quantum (full curve) ionization probability as a
function of time. Notice the perfect symmetry of the quantum curve about the time of
reversal (z = 60 field periods). Both classical and quantal diffusive ionization lag in time
which is a characteristic distinction from direct multiphoton ionization. (after Ref.[12]).

classical case the reversed motion reproduces the forward motion for a very short
time only because, due to exponential instability, unavoidable computational er-
rors immediately restore the diffusion. Unlike this, in the quantum system the
“antidiffusion” goes back to the initial state with very high accuracy (~ 10~1%)
and only after passing the initial state does the quantum diffusion continue. The
stability of quantun chaos over the relaxation time scale is comprehensible since
the random time scale is much shorter. Yet, the accuracy of the reversal is sur-
prising. Apparently, this is explained by the relatively large size of the quantum
wave packet as compared to the unavoidable rounding-off errors (3). In the
SM, for example, the size of the least-spreading wave packet A9 ~ JT. On the
other hand, any quantity in the computer must exceed the error 6. Since T > 6,
then (A9)?/6% ~ (T/3)6~! > 1. This experiment clearly indicates that there
is no appreciable instability in quantum chaotic motion. It is also an example
which demonstrates that exponential instability is not necessary for a meaningful
statistical description. An interesting version of the time-reversal experiment with
controlled perturbation, much in excess of rounding-off errors, is described in
Ref.[24].

The statistical relaxation to a steady state as described by a diffusion equation
is typically exponential, yet this does not mean that the underlying dynamical
motion is necessarily unstable as is sometimes assumed [25].
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4 The quantum steady state

The quantum statistical relaxation results in the formation of the steady state
which crucially depends on the ratio

2~k (34)
Tel
We call A the ergodicity parameter. If A > 1 then the relaxation time scale
is long enough for the system to approach the steady state which is close to
the classical ergodic steady state (22). (In a different quantum model behaviour
close to the classical one was also observed but misinterpreted [65]). Nevertheless
neither the y — function nor the density matrix are identical to the classical steady
state. The essential difference is in finite stationary oscillations in the quantum
case due to the discrete spectrum. For example in the SM on the torus the
expected fluctuations of the energy E =< n? > /2 are
AL ~ L (35)
E; /L

where E; = L?/24 is the average energy on the torus (—L/2, L/2). This would
imply that the y-function represents a finite ensemble of ~ L systems even
though formally it describes a single system. In other words the yp-function
plays an intermediate role between the trajectory and the distribution function
in classical mechanics. Indeed, |p|? is not a constant like the classical (coarse-
grained) distribution function in the steady state but its fluctuations are much

smaller than those of a single classical trajectory which would be AE/E; ~ 1.
If 4 < 1 the relaxation time scale is insufficient to reach the classical steady
state and a qualitatively different quantum steady state is formed. For example, in
the SM the steady state distribution in momentum is approximately exponential

[26]

g ~ exp (2 36)

This is the well known phenomenon of quantum diffusion localization. Here
I; is called the localization length, and a sufficiently narrow initial state g(n, 0) ~
d(n — ng) is assumed. From the diffusion law [2 ~ Dgtr hence from Eq.(27)
I ~ Dy. Numerical experiments confirm this estimate and give the more accurate
result [26]

ls = Dy (37)

The distribution (36) is completely different from the classical ergodic state
and we call it the quantum steady state. This state represents a finite ensemble
of about [; systems; hence, as with Eq.(35), we would expect the fluctuations to
be of the order 1/ \/75 ~ 1/k. However, numerical experiments show that the
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fluctuations are much bigger:
AE

N

~ k—0.6 (38)

These are possibly related to the so-called Mott states (see below) [27,59].
Eq.(36) allows the definition of the ergodicity parameter (34) in a more precise
way in terms of I:

ls DO
A= I®T (39)
The first equality makes sense only for small 4, when the steady-state distri-
bution 1s exponential (36). At larger A = 1 the approximate equality in Eq. (39)
should be taken. The ratio Dy/L is an important parameter of this model and its
relation to the ergodicity will be considered in Section 9.
Numerical experiments [19] show that all eigenfunctions are, on average, also

exponentially localized:

ontn) ~ exp (51 exp (121 (40)

where the signs correspond to symmetric and antisymmetric eigenfunctions, re-
spectively, and the localization length is given by
Is Do

lz§~2 (41)

The two exponential peaks in Eq.(40), separated by a distance of 2|m|, are due
to the exact parity conservation that is to the symmetry with respect to reflection
$— -3 or n > —n in the SM.

The difference between the two localization lengths, | and [, is due to very
big fluctuations around the simple average law (40). This law actually holds
asymptotically as |m + n| — oo. Indeed, the central part of each peak in Eq.(40)
is not only substantially affected by big fluctuations but may have a very special
shape in the case of the so-called Mott states [28] (see also Ref.[18]). These states
appear as pairs of approximately symmetric and antisymmetric superposition of
the two exponential peaks separated by a distance M (in n) for each of the peaks
in Eq.(40). The main characteristic of Mott states is the dependence on M of the
quasienergy splitting Ae in the pair. According to numerical experiments [59] this
dependence is approximately

0.3 M M
Ae =~ Tl (1 + T;) exp <—Z) (42)

Even though there are only relatively few Mott states they essentially affect
the asymptotic relaxation to the quantum steady state [18].
Another definition of the localization length Iy was introduced in Ref.[45]
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using the entropy of eigenfunctions
L/2
In = exp(H); H=-Y |o®[In|en) (43)
n=1

This definition is especially convenient in the intermediate case where the
ergodicity parameter 4 ~ 1 and the eigenfunctions are quite different from the
exponential shape (40). The entropy localization length (43) is a particular case
of the Renyi participation ratio £; which can be defined as (cf. Ref.[30])

fi - (Z |rp(n)|2")m = (lp(n)2aDyz (44)
q

n

where g i1s a continuous parameter. It is easily seen that Iy = &;.

For a single exponential peak <| on) > = (%) exp (—2|n|/ l)) we have:

1 q <1

I (1\& 1/e g=1
el ) B P @)

1 g>1

All SM eigenstates are doubly degenerate. If this symmetry is broken by an
additional perturbation the localization length, or better to say, the ratio /Dy,
generally rises [34] due to the increase of the number of operative eigenfunctions.
However, this effect is generally different for different eigenstates [35].

The fluctuations of Iy for 4 < 1, are fairly wcll described by the following
empirical expression for the differential probability [60]

1
p(H) = cosh [n(H — H)|

(46)

where H is the entropy averaged over all eigenstates. Therefore, unlike the
fluctuations of the asymptotic localization length [, the fluctuations of Iy are quite
big, namely, the rms Aly/ly ~ 1/2. No explanation of the simple dependence
(46) exists as yet. Notice that [ is determined essentially by the tail of the
eigenfunction, while /g is mainly determined by the central part.

Numerical experiments [16] showed that the dimensionless localization length
pg = exp(H—H.) = 2l (y/L)(y =~ 2) depends only on the dimensionless
ergodicity parameter A (39) and not separately on Dy and L. Here H, = In(L/2y)
is the entropy of the ergodic state which is less than maximal (In (L/2)) because
of fluctuations.

The explicit empirical dependence is given approximately by

A<05

1—— A>0.1
oA

with a =~ 4.
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A partial explanation of the first scaling in Eq.(47) is related to the dependence
of any £, on the position of the exponential peak inside the interval (0, L) due to
the symmetry of eigenfunctions. Then, averaging over the different eigenvectors
we obtain for 41 < 1

1 1 C
— ) = + -4 48
(&)~ zm*1 @)
where £,(o0) is the localization length in the limit L — oo and where the constant
1 1
C, = — — 49
M @)

depends on the shape of eigenfunctions, including fluctuations. Relation (48) is
equivalent to the first scaling (47) with C; = y and y&;(00) = aDy. The second
scaling (47) has still to be understood.

In the classical limit A ~ k?/L = (K/LT)k ~ k — oo hence all eigenfunctions
become ergodic in accordance with the Shnirelman theorem (see below).

An interesting microstructure of chaotic eigenfunctions was discovered by
Heller (see Ref.[31]) and was termed “scars”. These are enhancements of the
density of eigenfunctions along classical periodic orbits in spite of the fact that all
these orbits are unstable. A general theory of scars was developed in Refs.[29,32]
using a very powerful method of Gutzwiller based on classical periodic orbits.
In particular each such orbit determines the corresponding scar, the change of
density being proportional to exp(—h, Tp/2) where T, is the orbit period, and
h, ® > Ay is the sum of positive Lyapunov exponents, the analogue of KS
entropy for the unstable periodic orbit. Thus, appreciable scars appear only
along the short-period orbits with T, < 1/h, ~ 1/h where h is the classical KS
entropy.

At first glance scars contradict the Shnirelman theorem [33] which states,
loosely speaking, that classical ergodicity implies ergodicity for most eigenfunc-
tions sufficiently far in the quasiclassical region (see also Refs.[54]). However,
this 1s not the case because the spatial size of scars is minimal (of the order of
the elementary quantum cell) while the Shnirelman theorem is of integral type.
Indeed, according to Shnirelman the definition of an ergodic eigenfunction W,
(in Wigner’s representation) is given by the expression

[apia w0 05 0.0) — [ dpdag, v )1 6.0 (50)
for any sufficiently smooth function f of phase space. Here
dE
gu—5(H(q,p)—E)M (51)

is the microcanonical measure. The quantity p(E) = dqdp/dE is the classical
counterpart of the mean level density. The above definition of ergodicity is
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insensitive to the microstructure of the eigenfunction. Some eigenfunctions are
known to be almost completely localized on a periodic orbit but the proportion
of these rapidly decreases as n — oo [55].

5 A phenomenological theory of quantum relaxation

In this section we derive a diffusion equation which describes the quantum
relaxation process. As is known, in classical statistical mechanics the relaxation
process is described by a diffusion equation. The same equation describes the
quantum relaxation for 4 > 1 when the final steady state is ergodic. However,
in the case 4 < 1 the quantum diffusion leads to a localized, non ergodic, steady
state, and therefore it is necessary to modify the classical diffusion equation to
include the phenomenon of localization. One way to do this is to use the complete
Fokker—Planck equation with the so-called drift term [36]

Jg _ 1 0 0
dt  20n Din )__7 & (52)
where
_ <An> dD(n) \
B = . T (53)

In our problem this term describes the so-called backscattering, that is, the
reflection of the yp-wave propagating in n (see Section 6).

For sufficiently short times the diffusion is determined by the first term on
the rhs of Eq.(52) and coincides with the classicai diffusion. However, as time
increases the backscattering eventually suppresses the diffusion and leads to a
steady state (36). The general expression for the steady state g(n) can be derived

from Eq.(52) and is given by
B(n)dn
Ing,=2 4
ng=2 [ 0k (54)
In the case of homogeneous diffusion where D = const, the steady state Green
function g is given by Eq.(36) with Iy = D. Hence, from Eq.(54) we obtain

B={+1 n<ng
—1 n> ngy

(35)

where ng is the initially excited state. It is remarkable that B turns out to be
independent of the system’s parameters and this may point to a quite general
applicability of the method. Since the backscattering function B(n) depends on
the particular initial condition, the diffusion Eq.(52) describes the Green function
only, which is initially g(n, t) = é(n — ng). Without loss of generality we can take
no = 0. Due to the symmetry with respect to n = 0 we can consider only the
region n > 0. The diffusion equation then reads

dg _ D 0%g g

ot 2 om? ' on (36)
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with boundary conditions

g(oo, 1) =

D (0g
5 (%)rFO + (g)n=0 =0

The solution of Eq.(56) can be found via Laplace transform and in the dimen-
sionless variables x = n/2D, s = 1/2D reads:

(x +s)?

] + exp (—4x)erfc (x — S) (57)

_— 1 _—
g(x,s) = T exp [ 7

where
2 o0
fo(u) = — —p?
erfc(u) ﬁ /u exp(—v-) dv

Initially, all the probability ( f0°° g(x,s)dx = 1/2) is in the first term of (57)
while asymptotically the whole probability goes in the second term, and for s — oo
the steady-state distribution is given by

g(x) = 2 exp(—4x) x>0 (58)

Let us now compute the first two moments < x > and < x*> >. The equations
for them are

di<x> =lg(0,s)—1
A : (59)
zi—s<x >=§—4<x>

which lead to the solution
1

<x>= g = gerte () 5 ] + 575 expls)

E 1 1 1

< x? >=E)—5=§+§erfc(\/§) [s+sz—z] \/,\/Eexp( s (1 s) (60)

From this equation it follows that the relaxation to the steady state value
< x? >— 1/8 is exponential. This is not in agreement with numerical computa-
tions where a power law relaxation was found for sufficiently large s [18]. To
explain such a behaviour we need to take into account the explicit time de-
pendence of D(t) = Do d(t) which follows from the discrete quantum spectrum.
Notice that the ratio D(z)/B(z) must be independent of time, at least asymptot-
ically, to provide the exponential steady state (36). It follows that B(t) = —d(r)
with d(z) » 1l as 7 — 0.

As was remarked in Ref.[43] the diffusion rate must be proportional to the
number of quasi-energy levels which are not yet resolved in time 7. This number
decreases, for T > tg as 1/7. We may therefore take

d(s) =

a+Ss



26 Introduction

where a is some unknown parameter ~ 1. The new solution of the diffusion
equation (56), with time-dependent diffusion coefficient, remains the same “g (x, o)
in (57)” in a new time variable

a=/d(s)ds—+aln(1+§)

where now x = n/2Dy and s = 1/2Dy. Notice that the above logarithmic
dependence is the only one which provides a power law relaxation in s for
g(x, a(s)).
Asymptotically, the relaxation goes as s~* (s — oc0). Comparison with numerical
data [18,27] shows that « &~ 1 which is also the result of a different theory [18].
From Eq.(60) we may then obtain the asymptotic relaxation law (s — o)
E 1 1 _ dE D;

— m— 7t

D} 4  [rs(ns)? ds ~ Jns(in s

while for s — 0 we have
E
] — ——
5= (-7 %)

in agreement with the classical diffusion.
Eq.(61) is close to but not identical with the result in Ref.[18] which, in our
notations, reads:

(61)

dE. _ Djlns

s T s

This expression seems to agree quite well with the numerical data in [18] with

fitting parameter ¢ ~ .3. On the other hand Eq.(60) was also confirmed by

numerical data in Ref.[27] for the whole integration time interval. This problem
therefore requires further analysis.

Another interesting characteristic of quantum relaxation is the so-called staying

probability g(0, ¢) [30] which is given by

(62)

g0, 6) = 2+ PN _ orp( Jo) (63)

N

and it has the same asymptotic behaviour (61) of the energy

1
2 /s (In 5)/2

At this point it is necessary to stress that in the SM, where diffusion is
homogeneous in n, quantum localization is a universal phenomenon. This is no
longer the case when the diffusion rate depends on n. Consider, for example, the
case

2(0,s) =~ 2 +

(64)

D(n) = Dy n*™ (65)
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Then, from Eq.(54) we obtain for the steady state distribution:

21— 1
= o =
In gy(m) =4 (=290 2 (66)
—BE Inn o= 5
where we have assumed that B = —1 as before since it does not depend on

the system’s parameters. In agreement with previous results the critical value is
a. = (1/2). For o < o, the localization remains exponential (as was rigorously
shown for a similar solid state model [70]) while for « > «, delocalization occurs
because gs(n) — const # 0 as n — oo. In the critical case the steady state
distribution is a power law

gs ~n= P (67)

and the localization takes place for Dy < 2 only, when gy (n) is normalizable.

Notice, however, that unlike the exponential localization, for a power law
distribution the conditions of localization depend on the quantity one considers.
The above condition Dy < 2 refers to probability localization. However, the
energy localization, that is, for the mean energy to be finite in the steady state, a
stronger condition is required, namely 2/Dy —2 > 1, or

Do< > (68)

which is in good agreement with numerical results, as is shown in Fig.7 [71].

One may also consider the SM (6) with parameter k(n) depending on the
dynamical variable n. In this case, however, the map is no longer canonical and
in order to obtain the correct description of the global motion, the energy-time
dynamical variables should be taken [43] as in the Kepler map (10). As is easily
verified the expression for the steady state distribution (54) remain unchanged
after appropriate rescaling of both D and B.

A more interesting example is the spin model (14) where the diffusion rate in
s, 18 given approximately by:

ké 52
J==2(1- =
pis) =2 (1- %) (69)
Consider, for instance, a steady state centred at s, = 0. We have
1/2 |
s = |Sz|
s\Wz) ™~ 70
) ~ (24 (10

where A = ly/s is the ergodicity parameter, and ly = k3/2 is the localization length
at s, & 0. Contrary to the previous understanding [13,14] the diffusion in this
model is localized, even for A = 1, provided kg < s. For a steady state centred at
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Fig. 7. The spread of the wave packet An® over the unperturbed states (second moment
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no = 10: filled triangles: w = 2.52, ¢y = 0.4. The dashed line is drawn to guide the eye.

the “pole” s, = s we have

1/
&m)~(3+*) (1)

Unlike this, for the motion on hyperboloid (17) the diffusion is always delo-
calized since for s; > s the situation is the same as in model (65) with o = 1.
Consider, finally, the diffusive photoeffect in Rydberg atoms. Instead of using
the Kepler map (10) we may solve the problem in the principal quantum number
n. Then, the diffusion rate [39] and the backscattering parameter are
ag? dn dt

Dn=a)7/3n ; B(n)=B(v)-E-E = B(v) = +1 (72)
where t 1s measured in the number of field periods. From Eq.(54) we thus obtain

20)7/3
In gi(n) = ———~|E — Eo| (73)

that is an exponential localization in energy with the same localization length as
from the Kepler map (a ~ 3.3) [12].

The above examples show that the phenomenological theory described in this
section gives a reasonable description of the quantum relaxation process. In
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particular it would be interesting to check the predictions of Egs. (70) and (71)
numerically.

6 Quantum chaos and Anderson localization

The localization of eigenfunctions for the dynamical problem is similar to the
celebrated Anderson localization in disordered solids [72,74]. For the latter prob-
lem, of particular interest are the so-called tight binding models which are lattice
discretizations of the Schrodinger equation. These models play an important
role in the investigation of transport properties of solids at low temperature,
where the electron wave function becomes very sensitive to local impurities and
imperfections of the crystal lattice.

The simplest well-known example is the Lloyd model which is described by
the eigenvalue equation:

(Hu), = upy1 + Vyu, + uy,—1 = Eu, (74)

where the Hamiltonian H is a sum of a nearest-neighbour interaction term
(How), = Wnt+1 + wp—1 and a local term describing the interaction energy of
the electron with the crystal site (Vy), = V,yp,. The boundary conditions are
up = uny1 = 0 and the potential {V,} is a set of N independent random
variables, with the same probability distribution:

1 %4
n V24 W2
It is mathematically proven that the above random model in the large N limit
displays exponentially localized eigenfunctions, no matter how small the disorder
W; the rate of decay is measured by the smallest Lyapounov exponent y which
may be evaluated by Thouless’ formula [74] or by the transfer matrix method
[75]. Although v for a finite N depends on the realization of the disorder, in the
limit N — oo it converges to a non-random value, the inverse of which is known
as the localization length &.
For the Lloyd model, this quantity can be found analytically:

P, (V)= W >0 (75)

¢! =y = Arcosh [%\/(2 +EX+ W2+ %\/(2 —E)? + w2 (76)

The formal analogy between tight binding models and the quantum kicked
rotator was discovered in Ref.[40]. It was shown that the equation for the
quasienergies or for the Floquet operator

f]lp = exXp (—ik cos 9) exp (—i%ﬁz) p = exp(—ieT )y (77)

can be written as an eigenvalue problem for a “tight binding model”

(WO - Tm) Um + Z W, Umtr = 0 (78)
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where

€ T , 1 , k
T, = tan (ET—Zm)’ Wr—%/dS exp(ir 3) tan (50059>
0

and u, is the Fourier coefficient of the expansion of P(3) =~ % [1+
exp(ik cos 3)] w(93) in the momentum basis.

Eq.(78) is the eigenvalue equation for an electron in a crystal with site m, site
energies T,, and hopping matrix elements W,. This particular transformation
must satisfy the bound |k cos 9| < m. This restriction can be avoided at the
expense of a more complicated transformation as shown in Ref.[41].

For this particular example in the generic case in which T is an irrational
multiple of 4n, the localization of the eigenfunction was proven by several
numerical computations. This implies that Anderson localization is also possible
in a non-random potential. It should be stressed that in the dynamical case
no external random element is introduced since the perturbation is periodic
and that localization is related here to quasienergy eigenfunctions and occurs in
momentum instead of configuration space.

When T /4rn is rational it is apparent that the potential becomes periodic, the
electron 1s described by Bloch waves and moves freely in the crystal. This situation
corresponds to the so-called quantum resonance in the kicked rotator. Indeed let
us observe that the quantum description is endowed with two different periods:
the first is explicitly specified by the perturbation, the second is 4n and follows
from the peculiarity of the free evolution of having a spectrum given by integers.
Naively speaking, the free rotator has energy levels E, = n?/2 and the photon’s
energy 1s 2n/T; the resonance condition is met whenever an integer number of
photons matches the energy for a transition between unperturbed levels. This
condition corresponds to rationality of the ratio T /4n between the two periods.

The general resonant case T /4n = p/q has been investigated by Izrailev and
Shepelyansky [62]. In this case the search for quasienergies is reducible to the
problem of diagonalizing a gxq unitary matrix. In fact, they obtained the
following Floquet map depending on the parameter 0

(o4 %m) =5 st (04320

g—1
S = exp[—ikcos(6 + 2nr/q)] - Zexp[ 2ni(zm2+m ;r)] (79)

m—O

The eigenvalues exp[il;j(6)] of the unitary matrix S¢ have a continuous de-
pendence on the angle 6 € [0,2n/q], and the spectrum of the resonant Floquet
operator is therefore continuous with g bands.

The -introduction of a second, incommensurate perturbing frequency in the
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kicked rotator produces a sharp increase in the localization length, which grows
exponentially with the classical diffusion rate [79]. Again, this is in agreement
with the theory of localization in two-dimensional disordered lattices [80].

Since new, incommensurate frequencies in the time-dependent problem in-
troduce new dimensions in the extended phase space, a time-dependent model
with three incommensurate frequencies is expected to correspond to a three-
dimensional lattice problem, where a transition from localized to extended states
occurs at some critical parameter value. Such a transition has indeed been ob-
served [81] and by analysing it, some indications were obtained that may be
helpful in clarifying the nature of the Anderson transition itself, which is still
in discussion in solid-state physics. In this connection, we wish to emphasize
that the one-dimensional character of our time-dependent model allows for a
sharp reduction of the computation time needed to analyse the transition, so that
recourse to scaling assumptions can be avoided [80].

Let us consider in general the following time-dependent Hamiltonian:

+00
H=Ho+V(0,0) ) 8(t—s) (80)
§=—00
The second term describes kicks occurring periodically in time with period
one. The free evolution between kicks is given by the Hamiltonian Hy:

Holn) = Enln),  |n) = exp(inf)/(2n)"/> (81)

We assume the eigenvalues E, to be random numbers uniformly distributed in
(0,2n). Unlike for the usual kicked rotator, we also assume V' to depend explicitly
on time according to

V=V(0,0 +wt,0 +mt) (82)

where V is a periodic function of its three arguments to be specified later,
and 0; and 6, are arbitrarily prescribed phases. We would like w; and w; to
be incommensurate with each other and also with the frequency of the kicks.
Therefore, we take w; = 2n4~! and w, = 2nA~2, with A = 1.3247 - - - the real root
of the cubic equation A*> — A — 1 = 0. With this choice, w; and w; are a “most
incommensurate” pair of numbers. Thus (80) describes the motion of a rotator
subjected to periodic kicks, the strength of which is modulated in time by the
frequencies w; and w;.

The evolution of this rotator, from just after one kick to just after the next, is
given by

p(0,t + 1) = exp [—iV(0,t + 1)] exp(—iHo)y(0, 1) (83)

This formulation of the rotator dynamics is very convenient for numerical
simulations because the time dependence of V is known explicitly. Nevertheless,
in order to elucidate the connection of this time-dependent problem with a three-
dimensional tight-binding model, we must resort to a different formulation as
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follows. First of all, we consider the phases 6, and 6, as new dynamical variables,
with conjugate momenta n; and n,. Then we consider the Hamiltonian

+00
H' = Ho(R) + w1ty + oaft + V(0,01,62) Y 8(t—s) (84)
§=—00
with 7y = —id/00;,. Eq.(84) describes a quantum rotator with three freedoms

(6,0, 6,) subjected to periodic kicks, the strength of which is not explicitly time-
dependent. The one-period propagator for this rotator is the unitary operator
exp[—iV (6, 01, 62)] exp{—i[Ho(R) + w171 + wafiz]}

In order to show that the three-dimensional quantum model defined by (84) and
the one-dimensional model defined by (80) and (82) are substantially equivalent,
we rewrite the Schrédinger equation for the three-dimensional model

8 p(0,61,62,0) = H'(6, 01,02,
in the interaction representation defined by
(0,01, 0,,t) = exp[—i(w1fty + wah2)t]P(8, 01,62, 1)

In this way we obtain

40
idp/dt = Hop + V (0,0, + o110 + cnt) Y 8(t —s)ip

§=—0

i.e., the Schrodinger equation for the evolution of the one-dimensional model.
Then, as shown above, the problem of determining the quasienergy eigenvalues
and eigenvectors turns out to be formally equivalent to solving the equation

Tnun + Z Wrunir = €un (85)
40

where n = (n,n(,n;) and r label sites in a three-dimensional lattice,

1
Th = —tan |:-2- (En + njw, + nawy + ﬂ.)

Here A is the quasi-energy, Wy are the coefficients of a threefold Fourier
expansion of tan [1V(0,60y,6,)], and e = —W,.
We now chose

V(6,6,,6,) = —2tan”! 2k (cosb + cosb + costy)]
so that (85) becomes (compare with Eq.(78))

Toun+kS ur =0 (86)
r

where the sum 5’ includes only the nearest neighbours to n. The tight-binding
model (86) with the potential T is in a sense equivalent to the original rotator
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problem. The quasienergy eigenfunctions of the rotator will be localized or
extended over the unperturbed eigenstates of Hy depending on whether the
tight-binding model has localized or extended eigenstates; in the localized case,
the localization length will be the same. Since the dynamics of the rotator
is determined by the nature of its quasienergy eigenstates, any change from
localized to extended states that may take place in the tightbinding model (86), as
the coupling parameter k is increased, will be mirrored by a simultaneous change
in the rotator dynamics, from a localized recurrent behaviour to an unbounded
spreading over the unperturbed base. As we mentioned above, the latter type of
transition can be numerically detected with less effort than directly tackling the
three-dimensional tight-binding model.

The model was investigated by numerical simulation of the quantum dynamics
defined by (80) with phases 6; = 6, = 0. A transition between two different types
of motion was observed around a value k. =~ 0.47, with localization occurring
for k < k., and unbounded diffusion taking place for k > k.

The dependence of the diffusion rate D = ((n — ng)?)/t (in the delocalized
regime) and of the inverse localization length y = I~! (in the localized regime)
on the perturbation parameter k is shown in Fig. 8. The dependences of D and
v near k., are consistent with power laws, D ~ Do(k —k)S,, v ~ yo (k — k)" with
Dy ~ 2.5, k., = 0.46, and s ~ 1.25. An analogous fit for the dependence of y gave
y0 ~ 3.5, ko, = 0469, and v ~ 1.5. Thus the two fittings give very close values of
k., consistent with renormalization theory predictions [78].

The fruitful analogy between Anderson localization and the dynamical problem
is extensively used to share various methods and some results in both fields [76,77].
One of the important implications of this analogy is that a random potential is
only a sufficient but not a necessary condition for Anderson localization. Hence
a new problem arises: the localization in regular (but, of course, not periodic)
solids.

One should bear in mind however that this analogy is restricted to the eigen-
functions only. For example the time evolution of a given initial state may be
completely different in both problems. In particular, in one-dimensional disor-
dered solids there is no diffusion stage [42] so that Anderson localization is the
localization of the free spreading of the initial state. This is immediately seen
from the same uncertainity principle which gives the following density of the
operative eigenstates

ldp

l
~ T~ = 87
po~ o~ (87)

This is just the localization (relaxation) time scale which is always of the
order of the time interval for a free spreading of the initial wave packet at a
characteristic velocity u. Thus, only backscattering remains, and its picture is
expecially simple, being the interference of scattered waves from different parts

of the potential.
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Fig. 8. Diffusion rate D (dots) and inverse localization length y = 1/I (circles) as a function
of perturbation parameter k. Error bars were obtained from statistics over ten different
realizations of the random spectrum. The dotted lines result from a three parameters
least-squares fit of numerical data.

The reason why this general very complicated interference always gives an
average backward flow is related to the fact that in a random (or sufficiently
irregular) potential there is always a resonant harmonic which provides the
complete reflection of the incoming wave. From this explanation it may seem
that for localization one needs potentials with continuous spectra. However, this
would only be true for an infinitely small amplitude of potential variation. For
a finite amplitude the Schrodinger equation in periodic potential is the Mathieu
equation with finite instability zones which almost overlap for a sufficiently large
amplitude. However, in a periodic potential there are no solutions which would
decay in both directions and hence localization is impossible. One needs at least
two different periods in the potential to construct a solution decaying in both
senses. This would not be universal localization because the instability zones
overlap only for sufficiently strong amplitudes. Our conjecture is that the same is
true for any discrete spectrum of the potential. Another plausible conjecture is
that a continuous spectrum of the potential is a necessary condition for universal
localization. However, it may not be sufficient as the interesting example in [73]
demonstrates. ’
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7 Experimental observation of localization: the hydrogen atom in a
microwave field

One of the most significant cases where classical and quantum chaos confronted
each other was in the explanation of an experiment on hydrogen atoms, first
performed in 1974 by Bayfield and Koch [82]. Single atoms prepared in very
elongated states with a high principal quantum number (ng =~ 63 — 69) were
injected into a microwave cavity and the ionization rate was measured. The
microwave frequency was 9.9 GHz, corresponding to a photon energy well below
the ionization energy of level 66 and even lower than the transition from state
66 to 67. Much surprise therefore followed the discovery that a very efficient
ionization occurred when the electric field intensity exceeded a threshold value of
about 20 V per cm (for ng = 66), much lower than the static Stark value. More
surprisingly, a numerical simulation by Leopold and Percival [83] showed that
classical mechanics could reproduce the experimental data quite well. The subse-
quent analysis [39,85], still in classical terms, explained the threshold intensities
as critical values for the onset of chaotic diffusion in action space. A condition
for the occurrence of full chaotic diffusion is that the microwave frequency is
greater than the frequency of the electron’s motion, namely wn} > 1. However,
the hydrogen atom is a quantum object. The quantum mechanical evolution was
investigated in the one-dimensional approximation [86] and for wn3 > 1 it was
predicted an ionization threshold higher than the classical value, to overcome the
occurrence of quantum localization. This effect vanishes when approaching the
main resonant region wnj = 1, and this may explain why classical mechanics
works so well at lower values of wng.

The classical Hamiltonian for a one-dimensional hydrogen atom interacting
with a time-periodic microwave field in the dipole approximation is

/ /Lt plz 82 / 1,/ /
H(x',p',t')= — — = + eEpz'cos(w't) z >0
2m  Z
One goes to natural atomic units by setting z’ = zap, where ap = h?/me? is the
Bohr radius, and t' = tTy, where Ty = h*/me?. Defining the rescaled parameters

e = Eoa}/e and o = o' Ty, the dimensionless Hamiltonian is (cf. Eq.(9))

2
H(z, p,t,) = % _ % + ez cos (wt) (88)

the energy being measured in units of e?/ag. The unperturbed Hamiltonian
describes both bounded (with negative energy) and unbounded motions; since we
are interested in exploring the dynamics that precedes ionization, we are confined
to negative energies, and accordingly introduce action-angle variables (n,0) thus
obtaining Eq.(9).

In the time-independent formalism, the Hamiltonian (9) is replaced by

H(n, 0,v, d)= + wv + €z(n, 0)sin ¢ (89)

22
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where ¢ = ot and v is the canonical momentum. Their variations in the
auxiliary time s are given by d¢/dn = w, implying n = t + const and dv/dn =
—ez(I, B)cos ¢. Since H is a constant of motion, to zero order in € one may view
the variation of v as the number of photons exchanged by the atom with the field.
We now want to write an approximate map for the canonical variables (v, ¢).
The equations are first integrated over one period of the unperturbed orbit, to
first order in e:

(90)

where k ~ 2.6 ¢/w>/? (see egs.(11) and (13)).
To remove the unwanted n-dependence, one may set from Eq.(89) n = Qwv —
4#)71/2 and replace v with v. The resulting canonical map is Kepler’s map.

v =v+ksing
¢ = ¢+ 2n0(20V — 2#) 32 } (91)

which coincides with Eq.(10) after setting the motion integral s# = 0. A lin-
earization around the initial value vy = v(ng) and a phase shift, yield once again
the SM:

Vv =v+ksing } 92)

p=0¢+TV

with T = 67ra)2n(5,. The actual value of v is arbitrary, and reflects the arbitrariness
in choosing the zero energy in (89). We decide to take vy = 0, corresponding to
the initial value ng. The relation between the action and the number of photons
1s therefore

1

VO = —s — ——
2n}  2n?

In spite of the various simplifications introduced so far, the map (92) still
gives a good description of the mean behaviour of the system and allows some
conclusions.

The condition kT =~ 1 gives the threshold for transition to classical chaos
leading to fast ionization.

1

o _ 93
50 nd w1/3 3)

€c

In the corresponding quantum model we expect, similarly to the kicked rotator,

localization of the wave function in v. After the relaxation time 7z the system
reaches the steady state (cf. Eq.(36))

g(v) ~ llexp (—2|—;—|> (94)



The legacy of chaos in quantum mechanics 37

The predicted localization length in the number of photons is

2
I, ~ % ~ 3.36%w

—10/3

and equals the diffusion coefficient in v-space. If I is greater than the number
of photons required to ionize the atom I > (2wn3)~!, then localization cannot
prevent ionization. This takes place for field intensities greater than the quantum
delocalization border

e, ~ 0.4 Cn5! (95)

Unexpected though these predictions may have been at their first appearance
[12,86,87], they were confirmed by recent experimental results on the microwave
ionization of hydrogen atoms [89, 90]. It was found that experimental and
numerical data agree fairly well with localization theory and at the same time
appreciably deviate from classical predictions. The experiments described in [90]
were designed precisely for the purpose of checking localization theory; as a
matter of fact, special care was taken in order that numerical computations
could simulate as closely as possible the experimental conditions. Therefore, they
provide experimental evidence of the quantum suppression of classically chaotic
diffusion due to the localization phenomenon.

In Fig. 9 a comparison of the theory with the experimental data obtained in [39]
is presented. The circles represent the experimentally observed threshold values
of the microwave peak-field intensity for 10% ionization. Here the microwave
frequency w/2n = 36.02 GHz, ey = en} is the rescaled peak field intensity,
wo = wny is the rescaled microwave frequency and ng is the principal quantum
number of the initially excited state value. Both in the experiment and in the
quantum numerical computations the ionization probability is defined as the total
probability above a cutoff level n.. The dotted curve is the classical chaos border
and the dashed curve in Fig. 9 is the theoretical prediction of localization theory
for the 10% threshold value. Unlike the previous case of Ref. [90], the numerical
data here were obtained from the numerical simulations of the “quantum Kepler
map”. In such simulations the interaction time, including the switching on and
off of the microwave field, was chosen to be the same as in actual experiments.

The agreement between experimental and numerical data is the more remark-
able, in that the quantum Kepler map is only a crude approximation for the
actual quantum dynamics. In particular, from Fig. 9 it is seen that when the prin-
cipal quantum number ng of the initial state is increased the data follow the
predictions of localization theory.

Though the numerical model was one-dimensional, in actual experiments the
initially excited state corresponds to a microcanonical distribution over the shell
with a given principal quantum number. The classical counterpart for this would
be a microcanonical ensemble of orbits. Nevertheless, the experimental data
agree fairly well with the predictions of the one-dimensional quantum Kepler
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Fig. 9. Scaled 10% threshold fields from experimental results (taken from Fig. 2a, Ref. [89]),
(circles), and from numerical integration of the quantum Kepler map (full circles). Curves
have been drawn to guide the eye. The dashed line is the quantum theoretical prediction
according to localization theory. The dotted curve is the classical chaos border (from

Ref.[77)).

map. The reason for this agreement was found in Ref. [12]: due to the existence
of an approximate integral of the motion, the main contribution to excitation
turns out to be given by orbits which are extended along the direction of the
(linearly polarized) external field. For such orbits, the use of the one-dimensional
model is fully justified (see, e.g., Fig. 18b in Ref. [12]). Moreover, by using the
Kepler map formulation, it has been theoretically and numerically shown [88]
that the introduction of a second incommensurate frequency leads to a significant
decrease of the threshold border for ionization. It would be interesting to have
an experimental confirmation of this prediction.

In closing this section we would like to mention a new feature of this problem
which is currently under investigation. Namely it has been shown recently [84]
that, at field amplitudes much larger than the classical chaos border, the classical
ionization probability decreases with increasing field intensity. This effect should
be observable in laboratory experiments.
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8 Fractal spectrum and anomalous diffusion

For motion bounded in phase space the quantum spectrum is always discrete as
for example in the kicked rotator on a torus where the spectrum consists of L lines.
For unbounded motion the spectrum has, generally, a very complicated structure,
even for such a simple model as the SM on the cylinder. This problem has as yet
no rigorous solution. In the QSM the spectrum is known to be continuous if the
parameter T /4n = r/q is any rational number other than % Notice that such a
spectrum does not mean any chaotic motion but corresponds to a peculiar process
which is called quantum resonance since the quantity T /4w is the ratio between
the unperturbed and driving frequencies [11, 62]. In quantum resonance (which
has no classical counterpart) the momentum n grows, on average, proportionally
with time and hence the energy E ~ 12. Using the analogy with the solid state
problem described above quantum resonance corresponds to the free motion of
the electron (quantum particle) in an exactly periodic potential (the so-called
Bloch states).

Quantum resonance is a peculiarity of the kicked rotator model, which is
periodic in n. Even though the resonant values of T /4n have zero measure
they are everywhere dense and this leads to difficulties in the analysis of the
typical dynamics of this model when T /4x is irrational. The resolution of this
difficulty is in that the rate of the resonant motion (E/t?) rapidly decreases as the
denominator g increases. This is approximately described by the semiempirical
expression

<>~ D7 exp (—%‘i ) (96)

which is valid for g 2 D.
A detuning from resonance e(q) = | T /4n —r/q| would stop the growth after
a time t(e) which, on account of Eq.(23), can be assumed to be

2

e’ =v ~ 1 97)
Consider now the irrational
T 1
ap = (mmy ey ) = 1 (98)
n
m+ ———
m2 + e
in the continued-fraction representation, and its convergents r;/g;
T
rifgi = (my, - mi) = o~ gi+1 = Mit1 4i + gi-1

Our aim is to identify the set of irrationals T /4n for which a growth law of the
form

<n>=G7° (99)
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occurs for any G > 0 and ¢ in the interval (0, 2). To this end we substitute (99)
in (97) and after eliminating t with Eq.(96) we have

1490

D\>_35 —2q; 1+ 6
e(qi)=%(5)2 %xp(qu_j_é) (100)

On the other hand from the continued-fraction representation of T /4m we
have
c
qi qi+1
with ¢ ~ 1. Then, from (100) and (101) we obtain the relation which allows the

- construction of the irrational values of T /4r giving the desired growth rate (99)
and therefore the continuous spectrum

€(qi) = (101)

1406

w1 ¢G [G\21—3 2 1+ 6
miay o 2L o (5>2 5exp(3q—2_—5> (102)

In the whole interval 0 < § < 2 the motion is unbounded and the spectrum is
singular continuous with a fractal structure. The maximal allowed value § = 2
corresponds to the resonant values of T /4n for which the spectrum is absolutely
continuous. We would like to attract the reader’s attention to the fact that
Eq.(102) leads (for ¢ > 0) to the irrationals that are approximated by rationals
to exponential accuracy (the so-called Liouville, or transcendental, numbers)
in agreement with known rigorous results [44] which prove the existence of the
irrationals T /4n leading to a continuous spectrum and unbounded energy growth.
However, from the above discussion a new conclusion can be drawn, namely,
that even inside those transcendental values of T /4n there are infinitely many
such ones which lead to localization. They correspond to § = 0 with finite G.
This implies localization for typical irrationals. From Eq.(102) with = 0 we can
derive the asymptotic condition for the set of irrationals leading to localization:

m; < exp (%) (103)

Therefore in the case of a quantum kicked rotator, dynamical localization takes
place for almost all irrational values of the ratio between the unperturbed and
external frequencies. Correspondingly the spectrum has a pure point character.
The band structure obtained by approaching the irrational value via a sequence of
rational approximants is characterized by bandwidths which shrink exponentially
with respect to the number of bands and this excludes the possibility of self-
similarity.

However, fractal features of the spectrum with a corresponding rich variety
of dynamical behaviour have been shown to appear in an interesting model, the
so-called kicked Harper model which is obtained by quantizing the following
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area-preserving map [94]

w1 = pn + K sinx,
Pni1l =D } (104

Xpy1 = X, — Lsinp,

In particular this model describes the motion of electrons in two-dimensional
lattices in the presence of a magnetic field and can lead to a better understanding
of the physics of such systems.

The classical map (104) is known to be chaotic for KL 2 1. As in the case of
the kicked rotator, the quantum motion is governed by the one-period evolution

operator
U =exp l:—i (%) cos (A r‘z)] exp [——i (I%) cos x] (105)
A . d
where i = —i Ix

Quantum motion has been studied for a strongly irrational value i = 2n/(m +
peMm) With pgy = (\/3 + 1)/2. Approaching this value via a sequence of ra-
tional convergents {p,/q,} (by successive truncations of the continued fraction
expansion of /2r) one obtains, at each convergent, a band spectrum with Bloch
eigenfunctions. Analysis of the spectrum shows that regular scaling behaviour
coexists with irregular scaling [91]. Moreover, the dynamical behaviour shows
anomalous diffusion < An?(t) >~ t* where the exponent 0 < a < 2 depends on
the parameters K and L (Fig. 10(a)) [92]. This anomalous diffusion builds up at
sufficiently large times while initially the diffusion is always close to the classical
one (x = 1) in accordance with correspondence principle (see Fig. 10(b)).

In conclusion the structure of the quasienergy spectrum and the quantum
motion of classically chaotic systems appear to be much more rich than previously
expected. While for the KR problem this complex structure is confined to a set of
zero measure, for the kicked Harper model it appears to be the generic case. In
spite of the progress made in the last 15 years the above results indicate that we
are still far even from a qualitatively clear understanding of the quantum motion
of classically chaotic systems and, moreover, a rigorous mathematical analysis
appears to be more and more difficult.

There are also examples of the “true” chaos in quantum mechanics which have
the strongest statistical property — the exponential instability of motion for the
infinite time interval. One particular model is the following: consider a classical
dynamical system on a N-dimensional torus specified by the equations:

9i = wi(%) ik,=1,2,--* N (106)

If N > 3 classical chaos is possible with exponentially unstable solutions of
the linearized equations.
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Fig. 10. (a) Dynamical exponent o vs K /L for some fixed values of L. Circles are for
L =5and 1.3 <K < 7, squares for L = 6 and 1.5 < K < 7, triangles for L = 7 and
1.5 < K < 8. Notice the minimum corresponding to the critical line (K = L). Each o was
determined by examining a time series up to 3 x 10* kicks. (b) Example of anomalous
quantum diffusion (solid line) for K = L = 5 and A = 2n/(18 + g¢um), compared with
classical diffusion (dotted line) for the same K = L = 5. Notice that the quantum diffusion
is close to the classical up to a finite time (which increases as i — 0).
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One particular example due to Arnold is

84 = cos 9, + sin
92 = cos 33 + sin I (107)
33 = cos 9 + sin %,

Consider the Hamiltonian

3
H(n, 9) =  m ox (9) (108)
1k
The equations of motion are
% = o (9) :
Jdw (109)
— 2k a9, k

The equations for the momenta coincide (apart from a time-reversal) with the
linearized equations of system (106). Therefore if system (106) is chaotic and time-
reversible (like example (107)), then the momenta in (109) grow exponentially

with time.
- Consider now the quantized version of system (108)

1<~ . . . 0
=3 > (onfy + Py ) iy = —15@- (110)
k

From the Schrodinger equation we obtain, for the quantum probability density
8, 0= lw( 0

+Z agk 7q (f o) = (111)

This equation exactly coincides with the continuity equation of the classical
system (106) and therefore, the quantum probability evolves in time exactly like
the probability of the classical chaotic motion.

Even though the above, and other similar examples, are quite exotic, they are
very useful for understanding the nature of quantum chaos. A common feature of
these examples is that, in order to have the “true” quantum chaos, the momenta
must grow exponentially with time. Indeed, as we stated in the introduction,
the exact (not coarse-grained) classical distribution function does not approach
a homogeneous distribution even in the case of chaotic motion. On the contrary,
it becomes more and more scarred due to the local instability of motion and,
correspondingly, the wave numbers of the Fourier harmonics grow exponentially.
In quantum mechanics this corresponds to an exponential growth of momenta.
Notice, however, that even in these exotic examples the true quantum chaos is
restricted to configurational space only. (For further discussion of such examples
see Ref.[56].)
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9 Quantum chaos and the random matrix theory

The complete solution of the dynamical quantum problem is given by the diago-
nalization of the Hamiltonian to find the energy (or quasienergy) eigenvalues and
eigenfunctions. The evolution of any quantity can be expressed as a sum over
these eigenfunctions. For example the energy time dependence is

E@®)= tnCp Emm expli(wm — om)i] (112)
mm’
where E,,y are the matrix elements and the initial state is w(n, 0) =>_, cm @m(n).
For chaotic motion the dependence is generally very complicated but the statistical
properties of the evolution can be related to the statistics of eigenfunctions ¢, (n)
(and hence of the matrix elements E,..) and of eigenvalues wpy.

There exists a well-developed random matrix theory (RMT) which describes
some average properties of a typical quantum system with a given symmetry of
the Hamiltonian. At the beginning the object of this theory was assumed to be a
very complicated, particularly many dimensional, quantum system as a represen-
tative of a certain statistical ensemble. After understanding the phenomenon of
dynamical chaos it became clear that the number of freedoms of the system is
irrelevant. Instead, the number of quantum states or the quasi-classical parameter
is of importance provided the dynamical chaos is in the classical limit.

Until recently ergodicity of eigenfunctions was assumed in this theory which
means that in the expansion

N
Om = amjlij (113)
J

where the u; form a physically significant, for example unperturbed, basis all
probabilities
1
2
< |amj|® >= N (114)
are equal on average, and N is the size of the matrix. Under this condition
the distribution of neighbouring level spacings is given approximately by the

Wigner-Dyson law
p(s) =~ As’ exp(—Bs?) (115)

where A4, B are obtained from normalization and the condition < s >= 1. The
repulsion parameter § takes three values only (1, 2, or 4) depending on system’s
symmetry.

A new problem here is the impact of localization on the level statistics. This was
first addressed in Ref.[45], and a new class of semiempirical spacing distributions
was discovered

p(s) =~ AsPexp [—T—;ﬁsz— (B— 34[5> s] (116)
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where f is now a continuous parameter in the whole interval (0, 4). This
distribution is also called the intermediate statistics in contrast to the limiting
statistics (115) for the ergodic eigenfunctions. This intermediate statistics should
be distinguished from that of Berry—Robnik [66] which describes the lack of
ergodicity in the classical limit.

The repulsion parameter f was shown to be closely related to the entropy
localization length [16], namely

B =~ B‘ﬁ = . exp [H— H, (,Be)] = y(ﬁve)

where ., = 1, 2, 4 is the repulsion parameter for ergodic eigenstates with limiting
statistics (115) and average entropy H,. The reason for this simple relation
remains an open question (see also below).

Unlike the statistical RMT, the intermediate statistics was introduced and
studied in dynamical systems like the SM. The statistical counterpart of the latter
is the band random matrix (BRM) theory recently developed [48] which was
a revival of Wigner’s old work [67]. In this theory an ensemble of matrices is
considered whose non-zero elements occupy some band of width 2b around the
main diagonal.

Indeed the one-period evolution of the kicked rotator, in the angular momen-
tum representation, is given by a unitary N X N matrix. This matrix has a band
structure of width 2k. The ergodicity parameter which describes the statistical
properties in the regime of full classical chaos is the ratio k2/N. This similarity
suggests that the appropriate ergodicity parameter in BRM theory is [46]

b2

h=r (118)

where r is some numerical factor. This was recently confirmed analytically in
Ref.[53]. It turns out [46] that the scaling fz(4,) is similar but not identical to that
for the dynamical problem (47). In fact, in the region of small 4, up to 4, = 3, the
dependence is the same with r ~ 1.5. The second region (S5 ~ 1) is apparently
different but it has not yet been studied in detail. Notice, that the origin of the
difference can be attributed not so much to the distinction between “random”
and “deterministic” matrix elements as to the different boundary conditions for a
square matrix and a torus. The scaling in the first region was recently theoretically
confirmed in Ref.[50]. However, no explanation for the observed deviations from
this scaling at large A, was given.

A similar scaling behaviour was also found for tridiagonal symmetric matrices
describing the Anderson and Lloyd models in disordered solids [49]. Unlike
previous models, no deviations from the first scaling were observed, and the
scaling was presented in a ‘model-independent’ form (cf. Eq.(48)):

1 1 1
EN, W) &0, W) T &N, 0)

- (117)

(119)
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where W is the disorder parameter. However, the scaling may depend on the
imposed boundary conditions (in the latter two models zero boundary conditions
were chosen).

Notice that for 4, << 1 the matrix of eigenfunctions (113) is also a band
matrix with a;; smoothly decreasing off the diagonal, and with a much larger
effective width ~ b2,

Until recently homogeneous BRMs were studied which do not describe the
global structure of conservative systems. Indeed, the level density p of such
matrices grows indefinitely as N — co. Clearly, N is an irrelevant (technical)
parameter for a conservative system with its energy shells of a finite width AE.
Instead, inhomogeneous BRM were introduced [52] with increasing diagonal
elements (also considered by Wigner [67])

(Hyp) =™ 'p‘s'"" : (H2) =% m+n (120)

In such a model the localization length is bounded from above by the energy
shell width [51-53]

| <1, ~530pb~ pAE (121)
After the introduction of the parameter

o) 12

A= n I (122)
the scaling is described by the relation (cf. Eq.(47))
by = " < s (123
1

The scaling function s(d) was found numerically in Ref.[51] and has the
following properties [52,53,64]: s(0) = 1, As(1) = 1 as A — oo. In the latter case
the localization length reaches the maximum, I;, which corresponds to the ergodic
eigenfunctions (within an energy shell). For this reason we call A the ergodicity
parameter, similar to the parameter (39) for an SM on a torus. Nevertheless, the
eigenfunctions remain globally localized. We call this the transverse localization
(across the energy shell) as contrasted to the longitudinal localization (along the
shell) for | < 1.

As was shown in Ref.[52] the parameter 1 determines the level statistics.
Moreover, using numerical data from this paper we have found [51] that the level
repulsion parameter f ~ f(1) is again surprisingly close to the scaling function
(Fig.11) (cf. Eq.(117)) in spite of the fact that the scaling itself is qualitatively
different. Namely:

Bs(A) = 1 —exp(—4) (124)

in the whole range of available data (0 < 4 < 4). Remarkably, this relation
between statistical (f) and localization (B;) characteristics of eigenfunctions has
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Fig. 11. The dependence of Brody’s (points) and Izrailev’s (circles) level repulsion param-
eters as well as of the localization parameter (squares) on the ergodicity parameter A. The
straight line is exponential scaling (124) (after Ref.[51}]).

actually no fitting parameter. Yet, the scaling (124) may depend on the model
via a particular structure of the energy shell, especially, of its borders.

Notice that the localization lengths ¢, introduced in (44) depend on g and
hence the surprisingly accurate relation f ~ fs holds for one localization length
only namely the entropy localization length.

To conclude this section, we would like to attract the attention to a very
interesting and less known theorem due to Shnirelman [37] (for the proof of
both his theorems see Ref.[38]). It is related to KAM integrability in the classical
limit which is intermediate between complete integrability with corresponding
independent quantum levels (see Eq.(116), § = 0) and quantum chaos with
level repulsion (B # 0). The classical KAM structure is highly intricate as its
chaotic part, being of exponentially small measure, is everywhere dense. In
quantum mechanics the beautiful Shnirelman theorem, which does not even need
translation, asserts:

VNICy >0, Vn>1 min(Anps — Any An — An—y) < Cyn™N (125)

where 42 are the energy eigenvalues. Thus, asymtotically as n — oo, a half of level
spacings are exponentially small. A striking difference from both the complete
integrability and quantum chaos!
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10 Conclusion: some random remarks on quantum chaos

In a mathematical theory the definition of the main object of the theory procedes
the results; in physics, expecially in new fields, it is quite often vice versa. First,
one studies a new phenomenon, like dynamical chaos and only at a later stage,
after understanding it sufficiently, do we try to classify it, to find its proper place
in the existing theories and eventually to choose the most reasonable definition.

So far there is no common agreement, even among physicists, as to the
definition of quantum chaos. The classical-like definition related to the exponential
instability is not completely adequate since such a chaos is possible only in very
exotic examples and does not describe typical quantum behaviour. On the
other hand, the most popular definition, as some specific quantum properties for
classically chaotic systems, seems to us also unacceptable (and even somewhat
unhelpful) from the physical point of view. For example such a “chaos” may
happen to be a perfectly regular motion in the case of perturbative localization
discussed above.

In attempts to construct a more reasonable definition of quantum chaos, we
would like to emphasize the most striking peculiarity of this phenomenon as
discussed above, namely that all statistical properties of classical dynamical chaos
are present in quantum dynamics but only within restricted and different time
scales. Thus we think that the best definition of quantum chaos is: “finite-time
dynamical chaos”. In other words, this new phenomenon reveals an intrinsic
complexity and richness of the motion with discrete spectrum which has long
been considered as the most simple and regular. This is also true for any classical
linear waves but the linearity of quantum equations is not an approximation as
in classical physics but a fundamental and universal physical property.

The practical importance of statistical laws even for a finite time interval is
in that they provide a relatively simple description of the essential behaviour
for a very complicated dynamics. The existing ergodic theory of dynamical
systems which is asymptotic in time seems to be inadequate to describe this new
phenomenon properly. With the latter definition of quantum chaos we feel that
a new ergodic theory is required which could analyse the finite time statistical
properties of dynamical systems. Of course this is much more difficult than the
asymptotic relations in the existing theory but we believe that otherwise it would
be impossible adequately to describe the new and important phenomenon of
quantum chaos.

Since quantum mechanics is commonly accepted as a universal theory, the
phenomenon of classical dynamical chaos strictly speaking does not exist in
nature. Nevertheless it is very important in the theory as the limiting pattern to
compare with real quantum dynamics. It is instructive to compare the brand new
phenomenon of quantum chaos with the old mechanism for statistical laws in
the thermodynamic limit N — oo which is the standard approach in traditional
statistical physics both classical and quantum. Thus, for infinitely dimensional



The legacy of chaos in quantum mechanics 49

quantum systems true chaos is possible and also non-physical. When we speak
about the absence of true chaos in quantum mechanics, we mean finite, and even
few-dimensional, systems.

It turns out that both mechanisms are very similar since for any finite N in
the latter or g in the former, the dynamics is formally regular and in particular is
characterized by a discrete spectrum. The main difference is in the nature of the
large parameter N or q. The similarity comes from the fact that if any of these
parameters is large, the motion is controlled by a large number of frequencies
which makes it very complicated. The study of quantum chaos helps us to
understand better the old mechanism for chaos in many-dimensional systems;
particularly we conjecture the existence of characteristic time scales similar to
those in quantum systems.

The direct relation between these two seemingly different mechanisms of chaos
can be traced back in some specific dynamical models. One interesting example
is the non-linear Schrédinger equation [47] (for another example see Ref.[69]).
From a physical point of view this describes the motion of a quantum system
interacting with many other freedoms whose state is expressed via the y function
of the system itself (the so-called mean field approximation). This approximation
becomes exact in the limit N — oo which is a particular case of the thermodynamic
limit. Therefore the mechanism for chaos in this system is the old one. On
the other hand the non-linear Schrddinger equation has generally exponentially
unstable solutions hence the mechanism of chaos here is the new one. Thus
for this particular model both mechanisms describe the same physical process.
We would like to emphasize that the true chaos present in these apparently
few-dimensional models actually refers to an infinite-dimensional system.

Also, we would like to make a few comments on the problem of quantum
measurement. Studies of quantum chaos suggest that it may have a close relation
to this problem. First the measurement device is a macroscopic system for which
the classical description is a very good approximation. In such a system true chaos
with exponential instability is quite possible. The chaos in the classical measuring
device is not only possible but unavoidable since the measuring system has to
be, a highly unstable system; indeed, a microscopic intervention here produces
a macroscopic effect. The importance of chaos for the quantum measurement is
that it destroys the coherence of the initial pure quantum state to be measured
converting it into an incoherent mixture. In the existing theories of quantum
measurement this is described as the effect of external noise [93]. Chaos theory
allows us to get rid of the unsatisfactory effect of the external noise and to
develop a purely dynamical theory for the loss of quantum coherence (see also
Ref.[68]). Unfortunately this is not yet the whole story. Indeed, besides the loss of
coherence the most important effect of quantum measurement is the redistribution
of probabilities |y |? according to the result of the measurement, the famous p-
collapse, which remains to be explained. It seems that any dynamical explanation
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of the y-collapse requires some changes in the existing quantum mechanics and
this is the main difficulty both technical and philosophical.

In conclusion we would like to emphasize the importance of the so-called
numerical experiments (the computer simulation of motion equations) in this as
well as in many other fields of research. As a matter of fact, most information
about non-trivial dynamics both classical and quantal has been gained in precisely
this way, not in laboratory experiments. With all their obvious drawbacks and
limitations numerical experiments have very important advantage as they provide
complete information about the system under study. In quantum mechanics
this advantage becomes crucial because in the laboratory one cannot observe
(measure) the quantum system without causing a radical change of its dynamics.
Nevertheless, we believe that laboratory experiments remain vitally important
because the basis of numerical experiments — the fundamental equations of
physics — may (and eventually will) be found to be incomplete or even incorrect.
No matter how negligible the probability, in view of the thousands of experiments
already done, any new possibility like quantum chaos should be used carefully to
check the fundamental equations in the laboratory again and again.
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