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Perron-Frobenius operators

Perron-Frobenius operators
discrete Markov process :

pi(t + 1) =
∑
j

Gij pj(t)

with probabilities pi(t) ≥ 0 and the Perron-Frobenius matrix G such
that: ∑

i

Gij = 1 , Gij ≥ 0 .

For any vector v :
⇒ ‖Gv‖1 ≤ ‖v‖1

⇒ complex eigenvalues |λj| ≤ 1 and (at least) one eigenvalue
λ1 = 1 and its right eigenvector P is the stationary distribution:

P = lim
t→∞

p(t)

provided λ1 is not degenerate !
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Google matrix for directed networks

Google matrix for directed
networks
Define the adjacency matrix A by Aij = 1 if there is a link from the
node j to i in the network (of size N ) and Aij = 0 otherwise. Let
Sij = Aij/

∑
iAij and Sij = 1/N if

∑
iAij = 0 (dangling nodes). S

is of Perron-Frobenius type but for many networks the eigenvalue
λ1 = 1 is highly degenerate [⇒ convergence problem to arrive at the
stationary limit of p(t + 1) = S p(t)].

Therefore define the Google matrix :

G(α) = αS + (1− α)
1

N
eeT

where e = (1, . . . , 1)T and α = 0.85 is a typical damping factor. Here
there is unique eigenvector for λ1 = 1 called the PageRank P and
the convergence goes with αt.

(CheiRank P ∗ by replacing: A→ A∗ = AT ).
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Ulam Method

Ulam Method
(Ermann, Shepelyansky (2010), KF, Shepelyansky (2010))

to construct a Perron-Frobenius matrix as discrete approximation
for the PF operator of dynamical systems with mixed phase space:

• Subdivide phase space in discrete cells.

• Iterate (for a very long time) a classical trajectory and attribute a
new number to each new cell which is entered for the first time. At
the same time count the number of transitions from cell i to cell j
(⇒ nji).

• ⇒ The matrix
Gji =

nji∑
l nli

is of Perron-Frobenius type : Gji ≥ 0,
∑

jGji = 1.
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Ulam Method

Chirikov Standard map

pn+1 = pn +
k

2π
sin(2π xn)

xn+1 = xn + pn+1 , k = kc = 0.971635406
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Ulam Method

Arnoldi method
to (partly) diagonalize large sparse non-symmetric d× d matrices:

• choose an initial normalized vector ξ0 (random or “otherwise”)

• determine the Krylov space of dimension n (typically:
1 � n� d ) spanned by the vectors: ξ0, G ξ0, . . . , G

n−1ξ0

• determine by Gram-Schmidt orthogonalization an orthonormal
basis {ξ0, . . . , ξn−1} and the representation of G in this basis:

Gξk =

k+1∑
j=0

Hjk ξj

Klaus Frahm 6 Trento, 24 July 2012



Ulam Method

• diagonalize the Arnoldi matrix H which has Hessenberg form:

H =


∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
... ... . . . ... ...
0 0 · · · ∗ ∗
0 0 · · · 0 ∗


which provides the Ritz eigenvalues that are very good

aproximations to the “largest” eigenvalues of A.
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Ulam Method

Eigenvectors

λ1 = 1

M = 1600
d = 494964
n = 3000

λ1 = 0.99980431

M = 800
d = 127282
n = 2000
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Ulam Method

λ6

−0.49699831
+i 0.86089756
≈ |λ6| ei 2π/3

M = 800
d = 127282
n = 2000

λ19 =
−0.71213331
+i 0.67961609
≈ |λ19| ei 2π(3/8)

M = 800
d = 127282
n = 2000
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Ulam method for dissipative systems

Ulam method for dissipative
systems
(Ermann, Shepelyansky (2010))

Klaus Frahm 10 Trento, 24 July 2012



Ulam method for dissipative systems

Fractal Weyl law
Nγ = number of Gamow eigenstates that have escape rates
γj = −2 ln |λj| in a finite bandwidth 0 ≤ γj ≤ γb.

Fractal Weyl law for open quantum systems :

(e.g. Shepelyansky (2008))

Nγ ∝ Nd−1 ∝ h̄−(d−1) where d is a fractal dimension of a strange
invariant set formed by orbits non-escaping in the future.

Fractal Weyl law for Ulam networks : Nγ ∝ N ν ∝ Nd0/2

(Ermann, Shepelyansky (2010))
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University networks

University networks
(KF, Georgeot, Shepelyansky (2011))

In realistic WWW networks invariant subspaces of nodes create large
degeneracies of λ1 (or λ2 if α < 1) which is very problematic for the
Arnoldi method.

Therefore determine the invariant subspaces as follows:

Let Nc = bN a certain fraction of the network size N (e.g. b = 0.1).

• For a given initial node i0 determine a sequence of node sets Sn
by S0 = {i0} and Sn+1 is the set containing all nodes of Sn and
those which can be reached by a link from a node in Sn.

• If Sn = Sn+1 with at most Nc elements for some n⇒ Sn is an
invariant subspace .
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University networks

• If for some n the set Sn contains a dangling node (connected by
construction to any other node) or if Sn contains more than Nc

elements ⇒ i0 is identified as a node belonging to the core
space (space of nodes not belonging to an invariant subspace).

• Repeat the procedure for every network node as potential initial
node except for those nodes which are already identified as
subspace nodes. If for some n the set Sn contains a previously
found core space node ⇒ i0 also belongs to the core space.

• Merge all subspaces with common members. In this way one
obtains a decomposition of the network in many separate
subspaces with Ns nodes and a “big” core space .

This procedure can be efficiently implemented as a computer
program. It turns out that for most networks the exact choice of b is
not important (e.g. b = 0.1 or b = 0.9) as long as b = O(1). Note
that a core space node may have a link to an invariant subspace but a
subspace node may not have a link to another subspace or the core
space.
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University networks

The decomposition in subspaces and a core space implies a block
structure of the matrix S:

S =

(
Sss Ssc
0 Scc

)
where Sss is block diagonal according to the subspaces. The
subspace blocks of Sss are all matrices of PF type with at least one
eigenvalue λ1 = 1 explaining the high degeneracies.

To determine the spectrum of S apply:

• Exact (or Arnoldi) diagonalization on each subspace.

• The Arnoldi method to Scc to determine the largest core space
eigenvalues λj (note: |λj| < 1). The largest eigenvalues of Scc
are no longer degenerate but other degeneracies are possible
(e.g. λj = 0.9 for Wikipedia).
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University networks

Cambridge 2006 (left),
N = 212710, Ns = 48239

Oxford 2006 (right),
N = 200823, Ns = 30579

Spectrum of S (upper panels), S∗

(middle panels) and dependence of
rescaled level number on |λj| (lower
panels).

Blue: subspace eigenvalues

Red: core space eigenvalues (with

Arnoldi dimension nA = 20000)
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University networks

PageRank for α→ 1 :

P =
∑
λj=1

cj ψj︸ ︷︷ ︸
subspace contributions

+
∑
λj 6=1

1− α

(1− α) + α(1− λj)
cj ψj .
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University networks

Rescaled PageRank at α = 1− 10−8 :
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University networks

Distribution of dimensions of invariant subspaces
F (x) = fraction of invariant subspaces with dimension larger than
x〈d〉 where 〈d〉 = average subspace dimension.
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University networks

Numerical PageRank method for α→ 1
Combination of power method and Arnoldi diagonalization :

Here: α = 1− 10−8
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University networks

Core space gap and quasi-subspaces

Left: Core space gap 1− λ
(core)
1 vs N for certain british universities.

Red dots for gap > 10−9; blue crosses (moved up by 109) for gap < 10−16.

Right: first core space eigenvecteur for universities with gap < 10−16 or gap

= 2.91× 10−9 for Cambridge 2004.

Core space gaps < 10−16 correspond to quasi-subspaces where it
takes quite many “iterations” to reach a dangling node.
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Twitter network

Twitter network
(KF, Shepelyansky (2012), preprint)

Twitter 2009 : N = 41652230 nodes, N` = 1468365182 network links.

Matrix structure in K-rank order:

Number NG of non-empty matrix elements in K ×K-square:
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Twitter network

Spectrum

nA = 640 ⇒ 250 GB of RAM memory.
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Twitter network

PageRank, CheiRank, eigenvectors

Subspace distribution

Black line: F (x) = 1/(1 + 2x)3/2.
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Integer network

Integer network
(KF, Chepelianskii, Shepelyansky (2012), preprint)

Consider the integers n ∈ {1, . . . , N} and construct an adjacency
matrix by Amn = k where k is the largest integer such that mk is a
divisor of n if 1 < m < n and Amn = 0 if m = 1 or m = n (note
Amn = k = 0 if m is not a divisor of n). Construct S and G in the
usual way from A.
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Integer network

PageRank
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Integer network

Dependence of n on K-index

red: N = 107

blue: N = 106

“New order” of integers: K = 1, 2, . . . , 32 ⇒ n = 2, 3, 5, 7, 4, 11,
13, 17, 6, 19, 9, 23, 29, 8, 31, 10, 37, 41, 43, 14, 47, 15, 53, 59, 61, 25,
67, 12, 71, 73, 22, 21.
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Integer network

Semi-analytical determination of spectrum,
PageRank and eigenvectors
Matrix structure:

S = S0 + v dT

where v = e/N , dj = 1 for dangling nodes (primes and 1) and
dj = 0 otherwise. S0 is the pure link matrix which is nil-potent :

Sl0 = 0

with l = [log2(N)] � N .
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Integer network

Let ψ be an eigenvector of S with eigenvalue λ and C = dTψ.

• If C = 0 ⇒ ψ eigenvector of S0 ⇒ λ = 0 since S0 nil-potent.

• If C 6= 0 ⇒ λ 6= 0 since the equation S0ψ = −C v does not
have a solution ⇒ λ1− S0 invertible.

⇒ ψ = C (λ1− S0)
−1 v =

C

λ

l−1∑
j=0

(
S0

λ

)j

v .

From λl = (dTψ/C)λl ⇒ Pr(λ) = 0

with the reduced polynomial of degree l = [log2(N)] :

Pr(λ) = λl −
l−1∑
j=0

λl−1−j cj = 0 , cj = dT Sj0 v .

⇒ at most l eigenvalues λ 6= 0 which can be numerically
determined as the zeros of Pr(λ). (Note: l ≤ 29 for N ≤ 109).
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Integer network

Furthermore for λ = 1 ⇒ PageRank:

P = C
l−1∑
j=0

Sj0 v , C = dTP .

The subspace of λ 6= 0 is represented by the vectors v(j) = Sj0v for
j = 0, . . . , l − 1

⇒ S v(j) = cj v
(0) + v(j+1) =

l−1∑
k=0

S̄k+1,j+1 v
(k)

“Small” l × l-representation matrix :

S̄ =


c0 c1 · · · cl−2 cl−1

1 0 · · · 0 0
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0

 , P̄ = C


1
1
1
...
1


with P =

∑
j P̄j+1 v

(j) = C
∑

j v
(j) and due to sum rule:

∑
j cj = 1.

Klaus Frahm 29 Trento, 24 July 2012



Integer network

Spectrum I

blue dots: semi-analytical eigenvalues as zeros from Pr(λ) (or eigenvalues of S̄).

red crosses: Arnoldi method with random initial vector and nA = 1000.

light blue boxes: Arnoldi method with constant initial vector v = e/N and nA = 1000.
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Integer network

Spectrum II

γj = −2 ln |λj|
Large N limit of γ1 with the scaling parameter: 1/ ln(N).

Note:

c0 = dTv =
1

N

N∑
j=1

dj =
1 + π(N)

N
≈ 1

ln(N)

where π(N) is the number of primes below N .
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