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Graph decomposition

Let G= (V, E) be a graph. We aim at decomposing G into some parts
while :

» minimizing the number of edges in-between the parts,
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Graph decomposition

Let G= (V, E) be a graph. We aim at decomposing G into some parts
while :

» minimizing the number of edges in-between the parts,

» balancing the sizes of the parts.
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Two (main) criterions

The normalized cut Ncut (Shi and Malick, 1997) is inspired from the
minimum cut and corrects it to produce balanced cuts.
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Two (main) criterions

The normalized cut Ncut (Shi and Malick, 1997) is inspired from the
minimum cut and corrects it to produce balanced cuts.

The modularity Q (Newman, 2003) mesures the quality of the

partitioning using a comparison with a random model. The quality is
simply the ratio of edges that are internal (inside a cluster).
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Mathematical notations

Let A be the adjacency matrix of G, D the diagonal matrix of the
degrees of the vertices.

Jérome Galtier and Mikaila Toko-Worou Spectral Decomposition and Community Detection 4/35



orange™

Mathematical notations
Let A be the adjacency matrix of G, D the diagonal matrix of the

degrees of the vertices.
Given a partitioning € = { (... (,} :

Jérome Galtier and Mikaila Toko-Worou Spectral Decomposition and Community Detection 4/35



orange™

Mathematical notations

Let A be the adjacency matrix of G, D the diagonal matrix of the
degrees of the vertices.
Given a partitioning = { (... (p} -

(: the set of vertices of i part, i € {1,...,p},

Jérome Galtier and Mikaila Toko-Worou Spectral Decomposition and Community Detection 4/35



orange ™

Mathematical notations

Let A be the adjacency matrix of G, D the diagonal matrix of the
degrees of the vertices.
Given a partitioning € = { (... (,} :
(: the set of vertices of i part, i € {1,...,p},
dC the set of edges in-between the parts,

Jérome Galtier and Mikaila Toko-Worou Spectral Decomposition and Community Detection 4/35



orange ™

Mathematical notations

Let A be the adjacency matrix of G, D the diagonal matrix of the
degrees of the vertices.
Given a partitioning € = { (... (,} :
(: the set of vertices of i part, i € {1,...,p},
dC the set of edges in-between the parts,
OC; the set of edges in-between the part ; and others,

Jérome Galtier and Mikaila Toko-Worou Spectral Decomposition and Community Detection 4/35



orange ™

Mathematical notations

Let A be the adjacency matrix of G, D the diagonal matrix of the
degrees of the vertices.
Given a partitioning € = { (... (,} :
(: the set of vertices of i part, i € {1,...,p},
dC the set of edges in-between the parts,
OC; the set of edges in-between the part ; and others,
k; the size of (, given by

hi= 2|E| L deg(v

vel

Jérome Galtier and Mikaila Toko-Worou Spectral Decomposition and Community Detection 4/35



orange ™

Mathematical notations

Let A be the adjacency matrix of G, D the diagonal matrix of the
degrees of the vertices.
Given a partitioning € = { (... (,} :
(: the set of vertices of i part, i € {1,...,p},
dC the set of edges in-between the parts,
OC; the set of edges in-between the part ; and others,
k; the size of (, given by

hi= 2|E| L deg(v

vel

Note thatwe have )} k=1and ) [8G|=2[8(C].
i€{1,....p} i€e{1,....0}
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What is NCut

Computing the minimum cut is very easy (it minimizes |3C]), but
usually isolates small parts of the graph
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What is NCut

Computing the minimum cut is very easy (it minimizes |3C]), but
usually isolates small parts of the graph
The minimum NCut consists in minimizing :

St

K;

i=1
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What is modularity

Random(E) is a random set of edges giving the same vertex degree
as G. We consider a clustering C (a partition of V).
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Random(E) is a random set of edges giving the same vertex degree
as G. We consider a clustering C (a partition of V). The intuitive
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» p is the probability that an edge of E taken at randomis in a
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What is modularity

Random(E) is a random set of edges giving the same vertex degree
as G. We consider a clustering C (a partition of V). The intuitive
definition of Newman is :

> p is the probability that an edge of E taken at random is in a
cluster G of C,

» p’is the probability that an edge of Random(E) taken at random
is in a cluster C; of C,
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What is modularity

Random(E) is a random set of edges giving the same vertex degree
as G. We consider a clustering C (a partition of V). The intuitive
definition of Newman is :
> p is the probability that an edge of E taken at random is in a
cluster C; of C,
» p’is the probability that an edge of Random(E) taken at random
is in a cluster C; of C,

The modularity Q(C) is p — p’
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Formulas for the two criterions

The normalized cut Ncut
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Formulas for the two criterions

The normalized cut Ncut

i=p :
Neut(C) =Y \Sk_C,|
i=1 A
The modularity Q
5| &
QC)=1~- % DL
i=1

Jérome Galtier and Mikaila Toko-Worou Spectral Decomposition and Community Detection 7135



orange

Formula for a bipartition (p=2)

We have ki + ko = 1 and we derive the
following expressions in ki ko :
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0.25
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g 015

We have k; + ko = 1 and we derive the = o1

following expressions in kyko : 005 -
02 04 06 08 1

i k1
Normalized cut | .
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Formula for a bipartition (p=2)
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0.25

g 015

We have k; + ko = 1 and we derive the = o1
0.05

following expressions in kK : o

0
Normalized cut | cl
Neut(C) = P
Modularity 5C
Q(C) = 2kikp — —— -
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Insight for a bipartition
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Insight for a bipartition

ISCIA ISCIA

Ncut Q

lEl T IEI'

/

0 /4 kl1k2 0 14 klk2
minimizing Ncut maximizing Q

— the two criterias are extremely similar !
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& is the nindicator vector (£, = 1 if node u is in Cy and —1, otherwise)

Further analysis for the NCut using matrix form

1 1
NCUT(C) = 2‘86| (k_ + k_)
1 2
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& is the nindicator vector (£, = 1 if node u is in Cy and —1, otherwise)

Further analysis for the NCut using matrix form

1 1 1 1
Neut(C) = 2|8C] (k—1+k—2) = Z —AEE (k_1+k_2)

Iv]7§l£.~/<0
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& is the nindicator vector (£, = 1 if node u is in Cy and —1, otherwise)

Further analysis for the NCut using matrix form

1 1 1 1
Neut(C) = 2|8C] (k—1+k—2) = Z —AEE (k_1+k_2)

Iv]7§l£.~/<0

Neut(C) = [(1+§)—b(1—i)]’g?t—o/:\)[(1+?;)—b(1—§)],

It gives
g with b =

1
T—k
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& is the nindicator vector (£, = 1 if node u is in Cy and —1, otherwise)

Further analysis for the NCut using matrix form

1 1 1 1
Neut(C) =2{oc] (k1 M kz) i,j,é,'z&.,"<0 A5i5 <k1 * kz)
t
tgves Nout(C) = [0 A0 03]
with b = ﬁ
By setting Y = (1+&) — b(1 —&), we have YD1 =0 and
p1'D1=YTDy. )
miny —,-—Y (YDBC)Y
ming Neut(§) o st Y'™D1=0
st:§e{-1,1}" and Yu={—b,1} Yu € V, depend-
ingonu e Cy,oruc Co.
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What it means. ..

> the expression above is the Rayleigh quotient.
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What it means. ..

» the expression above is the Rayleigh quotient.

> by a relaxation, we consider Y can take real values in [—b, 1], the
solution for minimizing the Rayleigh quotient is given by solving
the generalized eigenvalue system
(D—A)Y = ADY subject to YT D1 =0.
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What it means. ..

» the expression above is the Rayleigh quotient.

> by a relaxation, we consider Y can take real values in [—b, 1], the
solution for minimizing the Rayleigh quotient is given by solving
the generalized eigenvalue system
(D— A)Y = ADY subject to YT D1 =0.

» the solution is the eigenvector corresponding to the second
smallest eigenvalue.
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What about modularity ?

Denote X =! YY and suppose Y is a 1 x n vector defined as follows
(note that since X, , = 1, we have y2 = 1) :

yu=1 ifue G
yw=-1 ifueG
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What about modularity ?

Denote X =! YY and suppose Y is a 1 x n vector defined as follows
(note that since X, , = 1, we have y2 = 1) :

yu=1 ifue G
yw=-1 ifueG

]
(A— ﬁDJD) - X = —4[3C| + 8|E| ki ko
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both spectral relaxations put together

Let J the square matrix filled with 1’s.
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both spectral relaxations put together

Let J the square matrix filled with 1’s.

st. X-(D"2JD"2) =0

X-1=|V|
X=0

NCut Modularity
max(D~"?AD""? —1)- X | max(A— 5z DJD) - X

st. X,y =1VveV

X=0

Jéréme Galtier and Mikaila Toko-Worou

Spectral Decomposition and Community Detection
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cutting with eigenvalues : numerical results for Q

karate | Arxiv
CNM 0.38 | 0.772
PL 0.42 | 0.757
WT 0.42 | 0.767
Louvain 0.42 | 0.813
SpecMod 0.42 | 0.772
SpecMod with refinement | 0.42 | 0.801
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tools when eigenvalues are not available

A matrix X is semidefinite positive if and only if there exists a matrix Y

such that

X=tyy.
Let Y, v € V, be the set of columns of Y. Each of them is a vector of
IR".
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A matrix X is semidefinite positive if and only if there exists a matrix Y
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such that
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tools when eigenvalues are not available

A matrix X is semidefinite positive if and only if there exists a matrix Y

such that

X=tyy.
Let Y, v € V, be the set of columns of Y. Each of them is a vector of
IR".

We have the following properties
»Yvev X, =1&Y =1,
» VLeR" X-('LLy=0&VveV Y,-L=0,
>
YW e R™" X-W= Z YUYVWU,W

u,veV
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tools when eigenvalues are not available

A matrix X is semidefinite positive if and only if there exists a matrix Y

such that

X=tyy.
Let Y, v € V, be the set of columns of Y. Each of them is a vector of
IR".

We have the following properties
»Yvev X, =1&Y =1,
» VLeR" X-('LLy=0&VveV Y,-L=0,

>
YWeR™  X-W= ) Y,Y,W,,
u,veV
| 2
X-1=Y |y,

veVv
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using KKT conditions !

we associate to each vertex u a point Y, in IR? with d smaller than n.
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using KKT conditions !

we associate to each vertex u a point Y, in IR? with d smaller than n.

problem :| maximize ) W, Y, V..
{uvieE
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the algorithm proposed

the algorithm used is incremental.
we update each vertex u as follows :

> compute the value Z,:= Y W, Y.,
veV—{u}
» if Z, # 0 and we have to keep |Y,| constant, we perform the
operation Y, := —Z,|Y,|/|Z|,
» if Z, =0, choose Y, at random.
— we necessarily increase the value X - W.
In practice, for d = 3, 3 min are required to update 97.10° nodes.
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compared methods

Ncut (using Lagrange relaxation) Modularity

— following Goemans Williamson for Max-Cut, we cut with a random
hyperplane begin
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thinking further in terms of graphs

eigenvalues are simply great to split graphs !

however social networks present often strongly connected
components in terms of link density that should be detected to
understand communities

how to detect them ?

the answer comes from matroid theory : let us analyse the sirength of
these graphs
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orange ™

what is the strength of a graph ?

Given a graph G = (V, E), we compute

6(G)= min —|SC‘ ,
C partition p — 1

and the dual equivalent (the densest subgraph is terms of edges)

[E(H)|
G) = Sy
v(C) HCV, |HI#1 [H] =17
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G contains k edge-disjoint spanning trees < 6(G) > k.
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G contains k edge-disjoint spanning trees < 6(G) > k.

and for the dual :
H C V that achieves y(G) contains |Y(G) | spanning trees.

Therefore A1y > Y(G)1y

andso |\ > Y(G)|.
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a word on the bibliography

Strength of graph is linked to graph partitionning and serves as the
underground algorithm to approximate the minimum cut of a graph in

almost linear time (Karger 2000).
Many algorithms use the maximum flow, which runs with best complexity
MF(n,m) = O(min(/m, i?/3)mlog(n? /m+2)) (Goldberg & Rao, 1998).

1984  Cunningham
1988 Gabow &

Westermann

1991  Gusfield
1991  Plotkin et ali
1993 Trubin

2008 Galtier

2011  Toko-Worou & Galtier

Jéréme Galtier and Mikaila Toko-Worou

nm MF(n, n?))

vV Z(m+ nlogn)log 7)
nmlog Ly

o
(
(
(n°m)
(m?
(
(
o(

o(G)log(n)?/n/€?)
n MF(n,m))
miog(n)’ /&%)
mylog(n)?/€?)

OOOOOO

Spectral Decomposition and Community Detection
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Exact
Integer
Integer
Exact

Within 1 4+-¢
Exact

Within 1 4-¢
Y within 1 4-¢
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A word on the linear ag) roximation
The algorithm as basis takes a pushing flow scheme.

(0) Each edge e € E receives a very small weight
w(e)=9= O(n*"'/e),
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orange
computational linearity of the approximation

The algorithm is almost linear with the number of links between
documents. Here compared with popular heuristics and datasets :
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Number of edges (logscale)
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Back to bilateral exchanges
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Back to bilateral exchanges
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Diagram of the web
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Conlusions

strength and modularity give nice analysis of graph communities

» first eigenvector of A is a relaxation of y(G)

» second eigenvector of A is related (also with relaxations) to
separation (Cut, NCut and Q)

and we have discussed of easy algorithms to compute them. ..

Questions

» what about directivity ?
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Thanks for four attention!!!

(and may the strength be with us)
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Brute analysis of the complexity

Each edge cannot be updated more that 220 — o( mi@),

log(1+¢€)
Each step updates n— 1 edges and runs in O(mlog(n)),
2
— the computation takes less than O(%).
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order on forests

A forest F; is more connecting than a forest F» (F1 = F») if the
endpoints of any path of F, are connected in F;.
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augment and connecting order

Let e € E. We say that e is independent of forest F if there is no path
in F between endpoints of e. Otherwise it is dependent.
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in F between endpoints of e. Otherwise it is dependent.

Augmenting F by an independent edge eto F : F := FU{e}.
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augment and connecting order

Let e € E. We say that e is independent of forest F if there is no path
in F between endpoints of e. Otherwise it is dependent.

Augmenting F by an independent edge eto F : F := FU{e}.

Remark : Suppose F; = F» and e is independent of Fy, then eis
independent of Fo.
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edge addition on ordered forests

idea : order the forests to add edges
Fi=For - x=F

take e € E.

augment the first F; such that e is independent to F;.
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