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Plan of the talk

@ Spatial processes on random networks.

e From empirical complex networks...
e ... to random graph models...
@ ... and processes.
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Plan of the talk

@ Spatial processes on random networks.
e From empirical complex networks...
e ... to random graph models...
@ ... and processes.

© Two examples:

e Ferromagnetic Ising model on power law random graphs,
Dommers, G., van der Hofstad,
JSP 141, 638-660 (2010) + work in progress on crit. exp.

e Antiferromagnetic Potts model on Erdds-Rényi random graphs,
Contucci, Dommers, G., Starr,
arXiv:1106.4714
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Spatial structures

Empirical networks

Two emerging properties (among others)

@ Scale free

@ Small-world
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Spatial structures

Empirical networks

Two emerging properties (among others)

@ Scale free

Number of vertices with degree k is proportional to k¢

@ Small-world

distance between most pairs of vertices are small
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Spatial structures

Empirical networks

network type n m z 0 a
film actors undirected 449913 25516482 113.43 3.48 2.3
company directors undirected 7673 55392 14.44 4.60
math coauthorship | undirected 253339 196 489 392 | 757 -
physics coauthorship undirected 52909 245300 9.27 6.19 -
= | biology coauthorship | undirected 1520251 11803064 | 1553 | 4.92
$ | telephone call graph | undirected | 47000000 80000000 |  3.16 21
email messages directed 59912 86 300 1.44 4.95 1.5/2.0
email address books | directed 16881 57029 338 | 522
student relationships undirected 573 477 1.66 16.01 -
sexual contacts undirected 2810 3.2
~ | WWW nd.edu directed 269504 1497135 555 | 1127 | 2.1/24
% WWW Altavista directed 203 549 046 2130000000 10.46 16.18 2.1/2.7
£ | citation network directed 783339 6716198 | 857 3.0/
£ | Roget’s Thesaurus | directed 1022 5103 | 499 | 487 -
- word co-occurrence undirected 460902 17000 000 70.13 2.7
Internet undirected 10697 31992 598 | 3.1 25
= | power grid undirected 4941 6594 2,67 | 18.99 -
% | train routes undirected 587 19603 | 66.79 | 2.16
S | software packages directed 1439 1723 120 | 242 | 1.6/14
"g software classes directed 1377 2213 1.61 1.51 -
= electronic circuits undirected 24097 53248 4.34 11.05 3.0
peer-to-peer network | undirected 880 1296 147 | 428 21
metabolic network undirected 765 3686 9.64 2.56 2.2
E protein interactions undirected 2115 2240 2.12 6.80 24
Eﬂ marine food web directed 135 598 4.43 2.05 —
£ | freshwater food web | directed 92 997 | 1084 | 1.90
neural network directed 307 2359 768 | 3.97 -

M.E.J. Newman, The structure and function of complex networks (2003)




Spatial structures

Random Graph models for empirical networks

@ Inhomogeneous random graph

@ Configuration model

@ Preferential attachment model
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Spatial structures 0Ccesses erromagnetic models

Random Graph models for empirical networks

@ Inhomogeneous random graph
Static random graph, independent edges with inhomogeneous
edge occupation probability

@ Configuration model
Static random graph, with prescribed degree sequence

@ Preferential attachment model
Dynamic random graph, attachment proportional to degree plus
constant

Cristian Giardina (UniMoRe)



Spatial structures 0 S Ferromagnetic models Antiferromagnetic

Networks functions

@ Social networks (friendship, sexual, collaboration,..)

@ Information networks (WWW, citation, ..)

@ Technological networks (internet, airlines, roads, power grids,..)

@ Biological networks (protein, neural, ...)
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Networks functions

@ Social networks (friendship, sexual, collaboration,..)
spread of disease, opinion formation,..

@ Information networks (WWW, citation, ..)
email, routing, reputation,..

@ Technological networks (internet, airlines, roads, power grids,..)
communication, robustness to attack,..

@ Biological networks (protein, neural, ...)
metabolic pathways, reactions,..
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Spatial structures Processes Ferromagnetic models

Statistical Mechanics
Configurations o € Q= {-1,+1}"

Hamiltonian  H(o) : Q, — R, depending on a few parameters (tem-
perature, external field,..)

Boltzmann-Gibbs measure  in(0) = 3-e~ ()
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Statistical Mechanics
Configurations o€ Q,={-1,+1}"

Hamiltonian  H(o) : Q, — R, depending on a few parameters (tem-
perature, external field,..)

Boltzmann-Gibbs measure  in(0) = 3-e~ ()

Aim
Study the means (o), correlations (o) .,,..-

It is useful to compute the pressure

_1
" n

1 —H(o
" InZn:BInZe (@)

g€Qp
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Statistical Mechanics
Configurations o€ Q,={-1,+1}"

Hamiltonian  H(o) : Q, — R, depending on a few parameters (tem-
perature, external field,..)

Boltzmann-Gibbs measure  in(0) = 3-e~ ()

Aim
Study the means (o), correlations (o) .,,..-

It is useful to compute the pressure

1

1 —H(o
n:BInZn:BInZe (@)

g€Qp

(2

Outcome
In the thermodynamic limit n — oo, phase transitions may occur.
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Antiferromagnetic models

Spatial structures Processes Ferromagnetic models

Statistical Mechanics on Random Graphs
(At least) Two level of randomness

H(o)=-p Z Jijoio; — B Z oj

(i.j)€En i€ Vp

@ Randomness of the graph G, = (Vp, Ep)
@ Randomness of the couplings {J;;}

e Ferromagnets, J;; > 0: easy physics, interesting mathematics.

o Antiferromagnets, J;; < 0: frustration appears.

e Spin glasses, J;; i.i.d. random variables with symmetric
distribution: order parameter is not self-averaging!

Quenched state E((-),,) is studied.
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Spatial structures S Ferromagnetic models Antiferromagnetic

Basic questions
@ How does ferromagnetic Ising model behave on random graphs
with arbitrary degree distribution?
@ What is the effect of scale-free random graphs on the
ferromagnetic phase transition? In particular for exponent
2<a<a.
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Spatial structures Ferromagnetic models Antiferromagnetic models

Basic questions
@ How does ferromagnetic Ising model behave on random graphs
with arbitrary degree distribution?
@ What is the effect of scale-free random graphs on the
ferromagnetic phase transition? In particular for exponent
2<a<a.

Previous answers
@ Physics: Leone et al (2002), Dorogotsev et al (2002),...

@ Mathematics: Dembo & Montanari (2010), restricted to degree
distributions with finite variance.
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Spatial structures Ferromagnetic models Antiferromagnetic models

Basic questions
@ How does ferromagnetic Ising model behave on random graphs
with arbitrary degree distribution?
@ What is the effect of scale-free random graphs on the
ferromagnetic phase transition? In particular for exponent
2<a<a.

Previous answers
@ Physics: Leone et al (2002), Dorogotsev et al (2002),...

@ Mathematics: Dembo & Montanari (2010), restricted to degree
distributions with finite variance.

Our results
@ Rigorous analysis for degree distribution with finite mean degree
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Spatial structures Ferromagnetic models Antiferromagnetic models

Local convergence to homogeneous trees

{Gn}n>1 is locally tree-like with asymptotic degree distribution P if
nli_)mooPn[B,-(t) ~T]|=P[T(P,p,t) =T
Bj(t) = ball in G, centered at a uniformly chosen vertex i € V

T(P,p,t) = rooted random tree with t generations (offspring distribu-
tion P in the first generation, size-biased law p in the further genera-

tion)
= (K +1)Prst

Cristian Giardina (UniMoRe)



Spatial structures Processes Ferromagnetic models Antiferromagnetic

Example: the configuration model

@ Fix the degree distribution P. Assign D; half-edges to each
vertex i € V,, where D; are i.i.d. with distribution P
(E(Dj) < oo, also make sure ) ; D; is even).

@ Choose pairs of stubs at random and connect them together.
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Spatial structures Processes Ferromagnetic models Antiferromagnetic models

Example: the configuration model

@ Fix the degree distribution P. Assign D; half-edges to each
vertex i € V,, where D; are i.i.d. with distribution P
(E(Dj) < oo, also make sure ) ; D; is even).

@ Choose pairs of stubs at random and connect them together.

Local Structure

@ The degree distribution of a random vertex is P.

@ The probability that the neighbor of a random vertex has degree
k + 1 equals the probability that a random stub is attached to a
vertex with k + 1 stubs:

(k+ 1) Yievalip=weny |, (K+ 1)Pigr _
Ziev,7 D; E(D)

Cristian Giardina (UniMoRe)



Spatial structures S Ferromagnetic models Antiferromagnetic

Strongly finite mean degree distribution
There exist constants a > 2 and ¢ > 0 such that

[e.e]
> P < ek
i=k

Remark: Empirical networks with infinite variance degree distribution
are included.

Cristian Giardina (UniMoRe)



Spatial structures Processes Ferromagnetic models Antiferromagnetic

Strongly finite mean degree distribution
There exist constants a > 2 and ¢ > 0 such that

[e.e]
> P < ek
i=k

Remark: Empirical networks with infinite variance degree distribution
are included.

Uniform sparsity

. |Enl E(D)
Jim = anwmez\;;kﬂ{D =5 <o
1€Vn

Cristian Giardina (UniMoRe)
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Theorem

Assume {Gp}n>1 is uniformly sparse and locally tree-like with asymp-
totic degree distribution P, where P has strongly finite mean. Let
D~ Pand K ~ p. Then:

Cristian Giardina (UniMoRe)
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Theorem

Assume {Gp}n>1 is uniformly sparse and locally tree-like with asymp-
totic degree distribution P, where P has strongly finite mean. Let
D~ Pand K ~ p. Then:

lim ¢p = ¢

n—oo
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Theorem

Assume {Gp}n>1 is uniformly sparse and locally tree-like with asymp-
totic degree distribution P, where P has strongly finite mean. Let
D~ Pand K ~ p. Then:

Jim o =0
o(B8,B) = IE(D) log cosh(B) — IE:(D)IE[Iog(1+tanh( B) tanh(hy) tanh(h2))]

i=1 i=1

+ E {Iog ( BH{1 + tanh(8) tanh(h;)} + e*BH{1 tanh(3 )tanh(h,)})}
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Theorem

Assume {Gp}n>1 is uniformly sparse and locally tree-like with asymp-
totic degree distribution P, where P has strongly finite mean. Let
D~ Pand K ~ p. Then:

Jim o =0
o(B8,B) = IE(D) log cosh(B) — IE:(D)IE[Iog(1+tanh( B) tanh(hy) tanh(h2))]

i=1 i=1

+ E {Iog ( BH{1 + tanh(8) tanh(h;)} + e*BH{1 tanh(3 )tanh(h,)})}

K
h £ B+ ) arctanh(tanh(g) tanh(h)) :== B+ > _ ¢(hy)

=1 i=1

Cristian Giardina (UniMoRe)



Ferromagnetic models

Proof |: Recursion on the random tree
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Ferromagnetic models

Proof |: Recursion on the random tree

p (o) =P(Sy =0)  marginal at the root § of T(P, p, )
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Ferromagnetic models

Proof |: Recursion on the random tree

p (o) =P(Sy =0)  marginal at the root § of T(P, p, )

pEN(@) = C 3 pO(oy) - pl(o)ePolortan)tBo

015,00k
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Ferromagnetic models

Proof |: Recursion on the random tree

K

p(0) = =———  h""") =B+ arctanh(tanh(3) tanh(h}))
Doo—i1€” -

Cristian Giardina (UniMoRe)



Ferromagnetic models

Proof |: Recursion on the random tree

p (o) =P(Sy =0)  marginal at the root § of T(P, p, )

PEN(G) = C 3 pO(ay)- - pl0(ag)e? o) Be
01,---,0k
eah([) K
p(0) = =———  h""") =B+ arctanh(tanh(3) tanh(h}))
Doo—i1€” —

Unique fixed point when t — oo

Cristian Giardina (UniMoRe)



Ferromagnetic models

Proof II: Internal energy

Pn
9B
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Ferromagnetic models

Proof II: Internal energy
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Ferromagnetic models

Proof II: Internal energy

0 1 E > i n<0.0.> ]
a%n ~n Z (0i0)) un = | n”| (IJ)€|EE | 9/ p
(h)€En n
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Ferromagnetic models

Proof II: Internal energy

OPn _ 1 B XijeEtoioi)un  E(D)
o8 _n(i%e:E i = I = 5 E{oi9j),)
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Ferromagnetic models

Proof II: Internal energy

03 n

0 1 E  j Ti0j) pn

Vo _ > (0i0j)un = Eol 2ipetrliiin ]E(D)E(<Ui0j>u)
R n |En| 2

(i,))€En

E(D 0
- (2) ({oioj)tree) = 8(;
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Antiferromagnetic models
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Antiferromagnetic models

Antiferromagnetic models

@ The long loops of locally tree-like random graphs do matter .
@ They induce frustration.

@ Rather than compare to the tree, better to compare to the
spin-glass.

Cristian Giardina (UniMoRe)



Antiferromagnetic models

Model: Potts Antiferromagnet on Erd6s-Rényi random graphs

Hp(o) = Z Jijo(oi, o)

ij=1

@ J;;ji.i.d. Poisson(c/2n), c>1 and o;€{1,2,...,q}
@ At 5 = o it gives the coloring problem.

Cristian Giardina (UniMoRe)
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Model: Potts Antiferromagnet on Erdés-Rényi random graphs

Hp(o) = Z Jijo(oi, o)

i,j=1

@ J;ji.i.d. Poisson(c/2n), c>1 and o;€{1,2,...,q9}
@ At 8 = o it gives the coloring problem.

Previous results

@ Physics: Krzakala-Zdeborova (2007) conjectured the critical
point for the ER Potts AF = ER Potts SG.

@ Mathematics: Achlioptas and Naor (2005) found a formula for
gan(c) such that g*(c) € {gan, gan + 1}

Cristian Giardina (UniMoRe)
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Model: Potts Antiferromagnet on Erdés-Rényi random graphs

Hp(o) = Z Jijo(oi, o)

i,j=1

@ J;ji.i.d. Poisson(c/2n), c>1 and o;€{1,2,...,q9}
@ At 8 = o it gives the coloring problem.

Previous results

@ Physics: Krzakala-Zdeborova (2007) conjectured the critical
point for the ER Potts AF = ER Potts SG.

@ Mathematics: Achlioptas and Naor (2005) found a formula for
gan(c) such that g*(c) € {gan, gan + 1}

Our results

@ We rigorously prove the existence of a phase transition and
confirm KZ conjecture for g = 2.

Cristian Giardina (UniMoRe)
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Theorem

Given g € N and ¢ > min {(q — 1), m}, the AF model on the

ER random graph has a critical temperature 5..#(c, q) with

Bona(C, q) < Berit(C, q) < min{Bgs(c, q), Bent(C, q)}
where

. q
1++C

Brs = —In(1 ) Benr = inf{3 : (8. ¢, q) < 0}

2

9 Jic))znd = /_BHS if q= 2

q .
- = —In(1- f
i ”< q1+\/c/(2qlnq)>' 9

Cristian Giardina (UniMoRe)
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Theorem

Given g € N and ¢ > min {(q — 1), W}, the AF model on the

ER random graph has a critical temperature 5..#(c, q) with

Bona(C, q) < Berit(C, q) < min{Bgs(c, q), Bent(C, q)}
where

prs = —m (1= 52, fom = ini(5:S(5,0,6) < 0)

2, “32,7[1 = BHS if q= 2

q .
n = —| 1— f
e "< q1+\/c/(2qlnq)>' 9=

A phase transition is a non-analyticity in S:

—P(B,¢):=Ing+ S (1 - 1*3“*) if 8 < Bona,

P(B,c
( : { <P(B,c) if > min{SRs, Bent}-




Antiferromagnetic models

Proof ingredients

@ |Interpolation method from spin glasses:
existence of TD-limit, Extended Variational Principle, pressure

upper-bounds

@ (Conditioned) second moment method:
control of high temperature region.

Cristian Giardina (UniMoRe)



Antiferromagnetic models

Interpolation

If X ~ Poisson(\) then

d
GhEF(X)] = E[f(X +1) - £(X)]
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Antiferromagnetic models

Interpolation

If X ~ Poisson(\) then

d
GhEF(X)] = E[f(X +1) - £(X)]

Consider ¢ — ct for t € [0, 1]. Then

O] = .z*Cn;E [0 = Ul
e
T2 2”21]4 (Zi’(”JH)]

= o 2 Z]E [In —B5(oi U’)>t}

Cristian Giardina (UniMoRe)



Antiferromagnetic models

Interpolation

d
IElin(t] = o 3 B [inte- )

7] 1

S E[n (1 )

ij=1

Cristian Giardina (UniMoRe)



Antiferromagnetic models

Interpolation

d
ZEA(0] = 5 QZE['n &= P3lea)]

111

S E[n (1 )

ij=1

Assuming  (3(0j,0))) = ¢ then

Eln(3.)] = Eln(5.0) / ot & Efn(1)
— Inq+§ln (1 1 —qe B) = P(B,¢)

Cristian Giardina (UniMoRe)




Antiferromagnetic models

Interpolation: consequences
@ The sequence (E[¢n(8)])nen is superadditive: let ny +no = n

n no
B[] > T Bl + ZE[yn]
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Antiferromagnetic models

Interpolation: consequences
@ The sequence (E[¢n(8)])nen is superadditive: let ny +no = n

n no
E[¢n] > ?E[wm] + FE[wnz]

@ Extended variational principle

E[¢n] < min [6)(8,c.9.£) - 623, c.q.£)]

1 ~
(1) — — —BH(o,7a)
G E[nln% ga%e ]
1 K
(2) — — —52 = 5(7—04,2/(71’7_(1,21()
G E [n In % o € k=1 ]

{¢x} random, {74} = {Tu1,Ta2,-- -} € [q]" ~ £ (exchangeable)

Cristian Giardina (UniMoRe)



Antiferromagnetic models

Interpolation: upper bounds

By choosing {¢.} as Derrida-Ruelle probability cascades

(2
1,1
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Antiferromagnetic models

Interpolation: upper bounds

By choosing {¢.} as Derrida-Ruelle probability cascades

()
1,1

@ If £ is product with uniform marginals
E[¢n] < P(5,c) = Trivial RS-solution
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Interpolation: upper bounds

By choosing {¢.} as Derrida-Ruelle probability cascades

(2
1,1

@ If £ is product with uniform marginals
E[¢n] < P(5,c) = Trivial RS-solution

@ If £ is product with non-uniform marginals
E[vn] < RS-solution
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Interpolation: upper bounds

By choosing {¢.} as Derrida-Ruelle probability cascades

(2
1,1

@ If £ is product with uniform marginals
E[¢n] < P(5,c) = Trivial RS-solution

@ If £ is product with non-uniform marginals
E[vn] < RS-solution

@ If £ is hierarchical
E[¢n] < RSB-solution

Cristian Giardina (UniMoRe)



Antiferromagnetic models

2nd moment method

To conclude existence of a phase transition we need to show that the
region {5 : E[¢n] = P(5, c)} is non empty.
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2nd moment method

To conclude existence of a phase transition we need to show that the
region {5 : E[¢n] = P(5, c)} is non empty.

Let B = {f of bonds = ¥

im LInE[Z, | B] = (5, c)

n—oo N
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Antiferromagnetic models

279 moment method
To conclude existence of a phase transition we need to show that the
region {5 : E[¢n] = P(5, c)} is non empty.
Let B = {f of bonds = ¥

im LInE[Z, | B] = (5, c)

n—oo N

If B < ,and

nleoo%|nE [z,? | B} (E[Z, | B])®

= lim —1In
n—oo N
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2nd moment method

To conclude existence of a phase transition we need to show that the
region {5 : E[¢n] = P(5, c)} is non empty.

Let B = {f of bonds = ¥

lim 1InIE[Zn | Bl = P(8,¢)

n—oo N
If B < ,and
1 A
Jim ~InE [z,? | B} = lim —in(E[Z, | B])?
Therefore
%E[InZn] _ ( )1 IE[InZn\B]JrIP’(BC) £in 2,|8°

%

E In[E[Z5|B]] — P(8, ¢)

Cristian Giardina (UniMoRe)
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THANK YOU!

Cristian Giardina iMoRe)



Antiferromagnetic models

ER Potts AF - Replica Symmetric solution

s=1 k=1

q K
E[¢n] < Eln |:ZH(1(1eB)pk(s)):|

q
_gEln [1 —(1-e )3 py (S)Pz(s)}

s=1

Cristian Giardina (UniMoRe)
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ER Potts AF - Replica Symmetric solution

q K
E[¢n] < Eln |:ZH(1(1eB)pk(s)):|

s=1 k=1

q
—gEIn [1 —(1-e )3 py (S)Pz(s)}

s=1

(p1(s))%< [Tia (1 = (1 = e7)pu(s)) ) s=1..q

T (1= (1 — e 9)pi(s))

q
> pk(s)=1 K~ Poisson(c)
s=1

Cristian Giardina (UniMoRe)
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