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Plan of the talk

1 Spatial processes on random networks.
From empirical complex networks...
... to random graph models...
... and processes.

2 Two examples:

Ferromagnetic Ising model on power law random graphs,
Dommers, G., van der Hofstad,
JSP 141, 638-660 (2010) + work in progress on crit. exp.

Antiferromagnetic Potts model on Erdös-Rényi random graphs,
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Spatial structures Processes Ferromagnetic models Antiferromagnetic models

Plan of the talk

1 Spatial processes on random networks.
From empirical complex networks...
... to random graph models...
... and processes.

2 Two examples:

Ferromagnetic Ising model on power law random graphs,
Dommers, G., van der Hofstad,
JSP 141, 638-660 (2010) + work in progress on crit. exp.

Antiferromagnetic Potts model on Erdös-Rényi random graphs,
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Empirical networks

Two emerging properties (among others)

Scale free

Number of vertices with degree k is proportional to k−α

Small-world

distance between most pairs of vertices are small
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Empirical networks
network type n m z ℓ α

so
ci
a
l

film actors undirected 449 913 25 516 482 113.43 3.48 2.3

company directors undirected 7 673 55 392 14.44 4.60 –

math coauthorship undirected 253 339 496 489 3.92 7.57 –

physics coauthorship undirected 52 909 245 300 9.27 6.19 –

biology coauthorship undirected 1 520 251 11 803 064 15.53 4.92 –

telephone call graph undirected 47 000 000 80 000 000 3.16 2.1

email messages directed 59 912 86 300 1.44 4.95 1.5/2.0

email address books directed 16 881 57 029 3.38 5.22 –

student relationships undirected 573 477 1.66 16.01 –

sexual contacts undirected 2 810 3.2
in
fo
rm

a
ti
o
n WWW nd.edu directed 269 504 1 497 135 5.55 11.27 2.1/2.4

WWW Altavista directed 203 549 046 2 130 000 000 10.46 16.18 2.1/2.7

citation network directed 783 339 6 716 198 8.57 3.0/–

Roget’s Thesaurus directed 1 022 5 103 4.99 4.87 –

word co-occurrence undirected 460 902 17 000 000 70.13 2.7

te
ch
n
o
lo
g
ic
a
l

Internet undirected 10 697 31 992 5.98 3.31 2.5

power grid undirected 4 941 6 594 2.67 18.99 –

train routes undirected 587 19 603 66.79 2.16 –

software packages directed 1 439 1 723 1.20 2.42 1.6/1.4

software classes directed 1 377 2 213 1.61 1.51 –

electronic circuits undirected 24 097 53 248 4.34 11.05 3.0

peer-to-peer network undirected 880 1 296 1.47 4.28 2.1

b
io
lo
g
ic
a
l

metabolic network undirected 765 3 686 9.64 2.56 2.2

protein interactions undirected 2 115 2 240 2.12 6.80 2.4

marine food web directed 135 598 4.43 2.05 –

freshwater food web directed 92 997 10.84 1.90 –

neural network directed 307 2 359 7.68 3.97 –

M.E.J. Newman, The structure and function of complex networks (2003)
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Random Graph models for empirical networks

Inhomogeneous random graph

Static random graph, independent edges with inhomogeneous
edge occupation probability

Configuration model

Static random graph, with prescribed degree sequence

Preferential attachment model

Dynamic random graph, attachment proportional to degree plus
constant
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Networks functions

Social networks (friendship, sexual, collaboration,..)

spread of disease, opinion formation,..

Information networks (WWW, citation, ..)

email, routing, reputation,..

Technological networks (internet, airlines, roads, power grids,..)

communication, robustness to attack,..

Biological networks (protein, neural, ...)

metabolic pathways, reactions,..
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Statistical Mechanics
Configurations σ ∈ Ωn = {−1,+1}n

Hamiltonian H(σ) : Ωn → R, depending on a few parameters (tem-
perature, external field,..)

Boltzmann-Gibbs measure µn(σ) = 1
Zn

e−H(σ)

Aim
Study the means 〈σi〉µn , correlations 〈σiσj〉µn ,...

It is useful to compute the pressure

ψn =
1
n

ln Zn =
1
n

ln
∑
σ∈Ωn

e−H(σ)

Outcome
In the thermodynamic limit n→∞, phase transitions may occur.
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Statistical Mechanics on Random Graphs
(At least) Two level of randomness

H(σ) = −β
∑

(i,j)∈En

Ji,jσiσj − B
∑
i∈Vn

σi

Randomness of the graph Gn = (Vn,En)

Randomness of the couplings {Ji,j}
Ferromagnets, Ji,j > 0: easy physics, interesting mathematics.
Antiferromagnets, Ji,j < 0: frustration appears.
Spin glasses, Ji,j i.i.d. random variables with symmetric
distribution: order parameter is not self-averaging!

Quenched state E(〈·〉µn ) is studied.

Cristian Giardinà (UniMoRe)
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Ferromagnetic models
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Basic questions
How does ferromagnetic Ising model behave on random graphs
with arbitrary degree distribution?
What is the effect of scale-free random graphs on the
ferromagnetic phase transition? In particular for exponent
2 < α < 3.

Previous answers
Physics: Leone et al (2002), Dorogotsev et al (2002),...
Mathematics: Dembo & Montanari (2010), restricted to degree
distributions with finite variance.

Our results
Rigorous analysis for degree distribution with finite mean degree
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Local convergence to homogeneous trees

{Gn}n≥1 is locally tree-like with asymptotic degree distribution P if

lim
n→∞

Pn[Bi(t) ' T ] = P[T (P, ρ, t) ' T ].

Bi(t) = ball in Gn centered at a uniformly chosen vertex i ∈ V

T (P, ρ, t) = rooted random tree with t generations (offspring distribu-
tion P in the first generation, size-biased law ρ in the further genera-
tion)

ρk =
(k + 1)Pk+1∑

k kPk

Cristian Giardinà (UniMoRe)
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Example: the configuration model
Fix the degree distribution P. Assign Di half-edges to each
vertex i ∈ Vn, where Di are i.i.d. with distribution P
(E(Di) <∞, also make sure

∑
i Di is even).

Choose pairs of stubs at random and connect them together.

Local Structure

The degree distribution of a random vertex is P.
The probability that the neighbor of a random vertex has degree
k + 1 equals the probability that a random stub is attached to a
vertex with k + 1 stubs:

(k + 1)
∑

i∈Vn
I{Di =k+1}∑

i∈Vn
Di

−→ (k + 1)Pk+1

E(D)
= ρk

Cristian Giardinà (UniMoRe)
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Strongly finite mean degree distribution
There exist constants α > 2 and c > 0 such that

∞∑
i=k

Pi ≤ ck−(α−1)

Remark: Empirical networks with infinite variance degree distribution
are included.

Uniform sparsity

lim
n→∞

|En|
n

= lim
n→∞

1
2n

∑
i∈Vn

∞∑
k=1

kI{Di =k} =
E(D)

2
<∞.
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Theorem
Assume {Gn}n≥1 is uniformly sparse and locally tree-like with asymp-
totic degree distribution P, where P has strongly finite mean. Let
D ∼ P and K ∼ ρ. Then:

lim
n→∞

ψn = φ

φ(β,B) =
E(D)

2
log cosh(β)−

E(D)

2
E[log(1 + tanh(β) tanh(h1) tanh(h2))]

+ E

log

eB
D∏

i=1

{1 + tanh(β) tanh(hi )}+ e−B
D∏

i=1

{1− tanh(β) tanh(hi )}



h1
d
= B +

K∑
i=1

arctanh(tanh(β) tanh(hi )) := B +
K∑

i=1

ξ(hi )

Cristian Giardinà (UniMoRe)
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Proof I: Recursion on the random tree

p(t)(σ) = P(S∅ = σ) marginal at the root ∅ of T (P, ρ, t)

p(t+1)(σ) = C
∑

σ1,...,σk

p(t)(σ1) · · · p(t)(σk )eβσ(σ1+···σk )+Bσ

p(t)(σ) =
eσh(t)∑

σ=±1 eσh(t) h(t+1) = B +
K∑

i=1

arctanh(tanh(β) tanh(ht
i ))

Unique fixed point when t →∞
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Proof II: Internal energy

∂ψn

∂β

=
1
n

∑
(i,j)∈En

〈σiσj〉µn =
|En|

n

∑
(i,j)∈En

〈σiσj〉µn

|En|
→ E(D)

2
E(〈σiσj〉µ)

→ E(D)

2
E(〈σiσj〉tree) =

∂φ

∂β
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Spatial structures Processes Ferromagnetic models Antiferromagnetic models

Proof II: Internal energy

∂ψn

∂β
=

1
n

∑
(i,j)∈En

〈σiσj〉µn =
|En|

n

∑
(i,j)∈En

〈σiσj〉µn

|En|
→ E(D)

2
E(〈σiσj〉µ)

→ E(D)

2
E(〈σiσj〉tree) =

∂φ

∂β

Cristian Giardinà (UniMoRe)
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Antiferromagnetic models

The long loops of locally tree-like random graphs do matter .
They induce frustration.
Rather than compare to the tree, better to compare to the
spin-glass.
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Model: Potts Antiferromagnet on Erdös-Rényi random graphs

Hn(σ) =
n∑

i,j=1

Ji,jδ(σi , σj)

Ji,j i.i.d. Poisson(c/2n), c > 1 and σi ∈ {1,2, . . . ,q}
At β =∞ it gives the coloring problem.

Previous results
Physics: Krzakala-Zdeborova (2007) conjectured the critical
point for the ER Potts AF = ER Potts SG.
Mathematics: Achlioptas and Naor (2005) found a formula for
qAN(c) such that q∗(c) ∈ {qAN ,qAN + 1}.

Our results
We rigorously prove the existence of a phase transition and
confirm KZ conjecture for q = 2.

Cristian Giardinà (UniMoRe)
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Cristian Giardinà (UniMoRe)
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Theorem

Given q ∈ N and c > min
{

(q − 1)2, 2 ln q
| ln(1−q−1)|

}
, the AF model on the

ER random graph has a critical temperature βcrit (c,q) with

β2nd (c,q) ≤ βcrit (c,q) ≤ min{βRS(c,q), βent (c,q)}

where

βRS = − ln
(

1−
q

1 +
√

c

)
, βentr = inf{β : S(β, c, q) < 0}

β2nd = − ln

(
1−

q

q − 1 +
√

c/(2q ln q)

)
if q > 2, β2nd = βRS if q = 2

A phase transition is a non-analyticity in β:

ψ(β, c)

{
= P(β, c) := ln q + c

2 ln
(

1− 1−e−β

q

)
if β ≤ β2nd ,

< P(β, c) if β ≥ min{βRS, βent}.
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Proof ingredients

1 Interpolation method from spin glasses:
existence of TD-limit, Extended Variational Principle, pressure
upper-bounds

2 (Conditioned) second moment method:
control of high temperature region.

Cristian Giardinà (UniMoRe)
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Interpolation

If X ∼ Poisson(λ) then

d
dλ

E[f (X )] = E[f (X + 1)− f (X )]

Consider c 7→ ct for t ∈ [0,1]. Then

d
dt

E[ψn(t)] =
c

2n

n∑
i,j=1

E
[
ψn(t)|Ji,j→Ji,j +1 − ψn(t)

]

=
c

2n2

n∑
i,j=1

E
[
ln
(Zn(t)|Ji,j→Ji,j +1

Zn(t)

)]

=
c

2n2

n∑
i,j=1

E
[
ln〈e−βδ(σi ,σj )〉t

]
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Interpolation

d
dt

E[ψn(t)] =
c

2n2

n∑
i,j=1

E
[
ln〈e−βδ(σi ,σj )〉

]

=
c

2n2

n∑
i,j=1

E
[
ln
(

1− (1− e−β)〈δ(σi , σj)〉
)]

Assuming 〈δ(σi , σj)〉 = 1
q then

E[ψn(β, c)] = E[ψn(β,0)] +

∫ 1

0
dt

d
dt

E[ψn(t)]

= ln q +
c
2

ln
(

1− 1− e−β

q

)
= P(β, c)
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Interpolation: consequences

The sequence (E[ψn(β)])n∈N is superadditive: let n1 + n2 = n

E[ψn] ≥ n1

n
E[ψn1] +

n2

n
E[ψn2 ]

Extended variational principle

E[ψn] ≤ min
L

[
G(1)(β, c,q,L)−G(2)(β, c,q,L)

]

G(1) = E

[
1
n

ln
∑
α

ξα
∑
σ

e−βH̃(σ,τα)

]

G(2) = E

[
1
n

ln
∑
α

ξα e−β
∑K

k=1 δ(τα,2k−1,τα,2k )

]
{ξα} random, {τα} = {τα,1, τα,2, . . .} ∈ [q]N ∼ L (exchangeable)

Cristian Giardinà (UniMoRe)
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Interpolation: upper bounds

By choosing {ξα} as Derrida-Ruelle probability cascades

If L is product with uniform marginals

E[ψn] ≤ P(β, c) = Trivial RS-solution

If L is product with non-uniform marginals

E[ψn] ≤ RS-solution

If L is hierarchical

E[ψn] ≤ RSB-solution

Cristian Giardinà (UniMoRe)
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2nd moment method

To conclude existence of a phase transition we need to show that the
region {β : E[ψn] = P(β, c)} is non empty.

Let B =
{
] of bonds = nc

2

}
lim

n→∞

1
n

lnE [Zn | B] = P(β, c)

If β < β2nd

lim
n→∞

1
n

lnE
[
Z 2

n | B
]

= lim
n→∞

1
n

ln (E [Zn | B])2

Therefore
1
n
E[ln Zn] = P(B)

1
n
E[ln Zn|B] + P(Bc)

1
n
E[ln Zn|Bc]

≈ 1
n

ln[E[Zn|B]]→ P(β, c)
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THANK YOU!
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ER Potts AF - Replica Symmetric solution

E[ψn] ≤ E ln

 q∑
s=1

K∏
k=1

(1− (1− e−β)pk (s))


−

c
2
E ln

[
1− (1− e−β)

q∑
s=1

p1(s)p2(s)

]

(p1(s))
d
=

( ∏K
k=1(1− (1− e−β)pk (s))∑q

s=1
∏K

k=1(1− (1− e−β)pk (s))

)
s = 1, . . . ,q

q∑
s=1

pk (s) = 1 K ∼ Poisson(c)
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