
Introduction Models Numerics RM Approach Conclusions

Fakultät für Physik

Credits and the Instability

of the Financial System:

a Physicist’s Point of View

Thomas Guhr

Spectral Properties of Complex Networks

ECT* Trento, July 2012

16. Juli 2012

Trento, July 2012



Introduction Models Numerics RM Approach Conclusions

Outline

I Introduction — econophysics, credit risk

I Structural model and loss distribution

I Numerical simulations and random matrix approach

I Conclusions — general, present credit crisis
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Some History: Connection Physics–Economics
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Growing Jobmarket for Physicists

“Every tenth academic hired by Deutsche Bank is a natural scientist.”

Trento, July 2012
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A New Interdisciplinary Direction in Basic Research

Theoretical physics: construction and analysis of
mathematical models based on experiments or
empirical information

physics −→ economics:

much better economic data now, growing interest in
complex systems

Study economy as complex system in its own right

economics −→ physics:

risk managment, expertise in model building based on
empirical data

Trento, July 2012
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Economics — a Broad Range of Different Aspects

Psychology

Ethics

Business
Administration

Laws and 
Regulations

Politics

ECONOMICS

Quantitative 
Problems
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Example: Return Distributions

R∆t(t) =
S(t + ∆t)− S(t)

S(t)

non–Gaussian, heavy tails! (Mantegna, Stanley, ..., 90’s)

Trento, July 2012
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Introduction — Credit Risk
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Credits and Stability of the Economy

I credit crisis shakes economy −→ dramatic instability

I claim: risk reduction by diversification
I questioned with qualitative reasoning by several economists
I I now present our quantitative study and answer

Trento, July 2012
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Defaults and Losses

I default occurs if obligor fails to repay → loss

I possible losses have to be priced into credit contract

I correlations are important to evaluate risk of credit portfolio

I statistical model to estimate loss distribution

Trento, July 2012
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Zero–Coupon Bond

Creditor Obligort = 0 Principal

Creditor Obligort = T Face value

I principal: borrowed amount

I face value F :
borrowed amount + interest + risk compensation

I credit contract with simplest cash-flow

I credit portfolio comprises many such contracts

Trento, July 2012
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Modeling Credit Risk
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Structural Models of Merton Type

t

Vk(t)

F

Vk(0)

T

I microscopic approach for K companies

I economic state: risk elements Vk(t), k = 1, . . . ,K

I default occurs if Vk(T ) falls below face value Fk

I then the (normalized) loss is Lk =
Fk − Vk(T )

Fk

Trento, July 2012
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Geometric Brownian Motion with Jumps

K companies, risk elements Vk(t), k = 1, . . . ,K represent
economic states, closely related to stock prices

dVk(t)

Vk(t)
= µk dt + σkεk(t)

√
dt + dJk(t)

we include jumps !

I drift term (deterministic) µk dt

I diffusion term (stochastic) σkεk(t)
√

dt

I jump term (stochastic) dJk(t)

parameters can be tuned to describe the empirical distributions

Trento, July 2012
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Jump Process and Price or Return Distributions

t

Vk(t)

jump
Vk(0)

with jumps
without jumps

jumps reproduce empirically found heavy tails
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Financial Correlations

asset values Vk(t ′), k = 1, . . . ,K
measured at t ′ = 1, . . . ,T ′

returns Rk(t ′) =
dVk(t ′)

Vk(t ′)
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normalization Mk(t ′) =
Rk(t ′)− 〈Rk(t ′)〉√
〈R2

k (t ′)〉 − 〈Rk(t ′)〉2

correlation Ckl = 〈Mk(t ′)Ml(t ′)〉 , 〈u(t ′)〉 =
1

T ′

T ′∑
t′=1

u(t ′)

K × T ′ data matrix M such that C =
1

T ′
MM†
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Inclusion of Correlations in Risk Elements

I εi (t), i = 1, . . . , I set of random variables

I K × I structure matrix A

I correlated diffusion, uncorrelated drift, uncorrelated jumps

dVk(t)

Vk(t)
= µk dt + σk

I∑
i=1

Akiεi (t)
√

dt + dJk(t)

for T →∞ correlation matrix is C = AA†

covariance matrix is Σ = σCσ with σ = diag (σ1, . . . , σK )

Trento, July 2012
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Loss Distribution
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Individual Losses

t

Vk(t)

F

Vk(0)

T

normalized loss at maturity
t = T

Lk =
Fk − Vk(T )

Fk
Θ(Fk −Vk(T ))

if default occurs

Trento, July 2012
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Portfolio Loss Distribution

I homogeneous portfolio

I portfolio loss L =
1

K

K∑
k=1

Lk

I stock prices at maturity V = (V1(T ), . . . ,VK (T ))

I distribution p(mv)(V ,Σ) with Σ = σCσ

want to calculate

p(L) =

∫
d [V ]p(mv)(V ,Σ) δ

(
L− 1

K

K∑
k=1

Lk

)

Trento, July 2012
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Large Portfolios

Real portfolios comprise several hundred or more
individual contracts −→ K is large.

Central Limit Theorem: For very large K , portfolio
loss distribution p(L) must become Gaussian.

Question: how large is “very large” ?

Trento, July 2012
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Typical Portfolio Loss Distributions

Unexpected loss

Expected loss

Economic capital

α-quantile Loss in %

of exposure

Frequency

I highly asymetric, heavy tails, rare but drastic events

I mean of loss distribution is called expected loss (EL)

I standard deviation is called unexpected loss (UL)

Trento, July 2012
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Simplified Model — No Jumps, No Correlations

I analytical, good
approximations

I slow convergence to
Gaussian for large portfolio

I kurtosis excess of
uncorrelated portfolios
scales as 1/K

I diversification works slowly,
but it works!
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Numerical Simulations
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Numerical Simulations: Influence of Correlations, No Jumps

fixed correlation Ckl = c , k 6= l , and Ckk = 1

c = 0.2 c = 0.5

Trento, July 2012



Introduction Models Numerics RM Approach Conclusions

Kurtosis Excess versus Fixed Correlation

γ2 =
µ4

µ2
2

− 3

limiting tail behavior quickly reached

−→ diversification does not work

Trento, July 2012
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Value at Risk versus Fixed Correlation
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p(L)dL = α

here α = 0.99

K = 10, 100, 1000

99% quantile, portfolio losses are with probability 0.99 smaller than
VaR, and with probability 0.01 larger than VaR

diversification does not work, it does not reduce risk !

Trento, July 2012
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Numerical Simulations: Correlations and Jumps

I correlated jump–diffusion

I fixed correlation c = 0.5

I jumps change picture only
slightly

I tail behavior stays similar
with increasing K

I diversification does not work

Trento, July 2012
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Random Matrix Approach

Trento, July 2012
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Quantum Chaos

result in statistical nuclear physics (Bohigas, Haq, Pandey, 80’s)

resonances

“regular”

“chaotic”

spacing distribution

universal in a huge variety of systems: nuclei, atoms, molecules,
disordered systems, lattice gauge quantum chromodynamics,
elasticity, electrodynamics

−→ quantum chaos −→ random matrix theory

Trento, July 2012
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Search for Generic Features of Loss Distribution

I large portfolio → large K

I correlation matrix C is K × K

I “second ergodicity”: spectral average = ensemble average

I set C = WW † and choose W as random matrix

I additional motivation: correlations vary over time

Trento, July 2012
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Price Distribution at Maturity

Brownian motion, V = (V1(T ), . . . ,VK (T )), price distribution

p(mv)(V ,Σ) =
1

√
2πT

K

1√
det Σ

exp

(
− 1

2T
(V − µT )†Σ−1(V − µT )

)
C = WW † with W rectangular real K × N,
N free parameter, such that Σ = σWW †σ

assume Gaussian distribution for W with variance 1/N

p(corr)(W ) =

√
N

2π

KN

exp

(
−N

2
tr W †W

)
average correlation is zero, that is 〈WW †〉 = 1K
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Average Price Distribution

〈p(mv)(ρ)〉 =

∫
d [W ]p(corr)(W )p(mv)(V , σWW †σ)

=

√
N

2πT

K
21−N

2

Γ(N/2)
ρ

N+K−1
2

√
N

T

N−K
2

KN−K
2

(
ρ

√
N

T

)

with hyperradius ρ =

√√√√ K∑
k=1

V 2
k (T )

σ2
k

similar to statistics of extreme events

easily transferred to geometric Brownian motion
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Heavy Tailed Average Return Distribution

about K = 400 stocks with complete time series from S&P500
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N = 5, 10, 20, 30 (theory) N = 14 (fit to data)

N smaller −→ stronger correlated −→ heavier tails
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Average Loss Distribution

〈p(L)〉 =

∫
d [V ]〈p(mv)(ρ)〉 δ

(
L− 1

K

K∑
k=1

Lk

)
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〈Ckl〉 = 0 , k 6= l

N = 5 → std (Ckl) = 0.45

K = 10, 100, 1000, 10000

best case scenario, but heavy tails remain

−→ little diversification benefit

Trento, July 2012
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General Conclusions

I uncorrelated portfolios: diversification works (slowly)

I unexpectedly strong impact of correlations due to peculiar
shape of loss distribution

I correlations lead to extremely fat–tailed distribution

I fixed correlations: diversification does not work

I ensemble average reveals generic features of loss distributions

I average correlation zero (best case scenario), but still: heavy
tails remain, little diversification benefit

I non–zero average correlation: work in progress

Trento, July 2012
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Conclusions in View of the Present Credit Crisis

I contracts with high default probability

I rating agencies rated way too high

I credit institutes resold the risk of credit portfolios,
grouped by credit rating

I lower ratings → higher risk and higher potential return

I effect of correlations underestimated

I benefit of diversification vastly overestimated

Trento, July 2012
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