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Power laws

I degree of the node = # links, [fraction nodes degree k] = pk ,

I Power law: pk ≈ const · k−α, α > 1.
I Power laws: Internet, WWW, social networks, biological

networks, etc...
I Model for high variability, scale-free graph
I signature log-log plot: log pk = log(const) − α log k
I Faloutsos, Faloutsos, Faloutsos (1999): power laws in Internet
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But Power Law is not everything!

Example: Robustness of the Internet.
I Albert, Jeong and Barabasi (2000): Achille’s heel of Internet:

Internet is sensitive to targeted attack

I Doyle et al. (2005): Robust yet fragile nature of Internet:
Internet is not a random graph, it is designed to be robust
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But Power Law is not everything! (cont.)

Example: Spread of infections
I Classical epidemiology, e.g. Adnerson and May (1991):

epidemic only if infection rate exceeds a critical value

I Vespignani et al. (2001): power law networks have a zero
critical infection rate!

I Eguiluz et al. (2002): a specially wired highly clustered
network is resistant up to a certain critical infection rate.

Example: Technological versus economical networks
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Degree-degree correlations

I It is clearly important how the network is wired

I To start with: do hubs connect to each other?
YES for banks, NO for Internet

I Assortative networks: nodes with similar degree connect to
each other.

I Disassortative networks: nodes with large degrees tend to
connect to nodes with small degrees.
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Assortativity coefficient

I G = (V , E ) undirected graph of n nodes
I di degree of node i = 1, 2, . . . , n

I We are interested in correlations between degrees of
neighboring nodes

I Newman (2002): assortativity measure ρn

ρn =

1
|E |

∑
ij∈E didj −

(
1
|E |

∑
ij∈E

1
2(di + dj)

)2
1
|E |

∑
ij∈E

1
2(d

2
i + d2

j ) −
(

1
|E |

∑
ij∈E

1
2(di + dj)

)2
I Statistical estimation of the correlation coefficient between

degrees on two ends of a random edge
I Very popular measure of assortativity!
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Is there something wrong with ρn?

I Preferential Attachment graph appears to be assortatively
neutral (Newman 2003, Dorogovtsev et al. 2010)

I Recent criticism: ρn depends on the size of the networks
(Raschke et al. 2010; Dorogovtsev et al. 2010)
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What IS assortativity measure?

I ρn is a statistical estimation for the coefficient of variation

ρ =
E (XY ) − [E (X )]2

Var(X )
,

I X and Y are the degrees of the nodes on the two ends of a
randomly chosen edge

I Problems? YES!!!
I X and Y are power law r.v.’s, exponent α− 1

P(X = k) = kpk/E (degree).

I In real networks (WWW) we often have 2 < α < 3, so

E (X ) =
∑
k

k
kpk

E (degree)
= ∞

I ρ is not defined in the power law model! Then: what are we
measuring?
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Assortative and disassortative graphs

I Newman(2003)

I Technological and biological networks are disassortative,
ρn < 0

I Social networks are assortative, ρn > 0
I Note: large networks are never strongly disassortative...
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ρn in terms of moments of the degrees

I Write∑
ij∈E

1
2(di + dj) =

∑
i∈V

d2
i ,

∑
ij∈E

1
2(d

2
i + d2

j ) =
∑
i∈V

d3
i

I Then
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∑
ij∈E didj −

1
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)2
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Extreme value theory

Theorem (Extreme value theory)

D1, D2, . . . , Dn are i.i.d. with 1 − F (x) = P(D > x) = Cx−α+1.
Then

lim
n→∞ P

(
max{D1, D2, . . . , Dn}− bn

an
6 x

)
= exp(−(1 + δx)−1/δ),

with δ = 1/(α− 1), an = δCδnδ, bn = Cδnδ.
(Therefore, the maximum is ‘of the order’ n1/(α−1))
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CLT for heavy tails

Theorem (CLT for heavy tails)

D1, D2, . . . , Dn are i.i.d. with 1 − F (x) = P(D > x) = Cx−α+1.
If p > α− 1 then

1

an

n∑
i=1

X p
i

d→ Z ,

where an = [1 − F ]−1(1/np) = C 1/(α−1)np/(α−1) and Z has a
stable distribution with parameter (α− 1)/p.
(Therefore, the sum is ‘of the order’ np/(α−1))
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In the empirical setting

I P(d1 > x) ≈ Cx−α+1

I max{d1, d2, . . . , dn} = O(n1/(α−1))
I Alternative interpretation for the maximum:

P(d > x) = 1/n⇒ x = O(n1/(α−1))
I P(di = k) = pk = const · k−α, usually α ∈ (2, 4)
I If p > α− 1 then E(Dp) = ∞
I CLT: for p > α− 1 holds

1

n

∑
i∈V

dp
i ∼ cpnp/(α−1)−1,

I But we get the same result just by adding up kppk from
k = 1 to k = n1/(α−1).

[ N. Litvak, SOR group ] 13/30



In the empirical setting

I P(d1 > x) ≈ Cx−α+1

I max{d1, d2, . . . , dn} = O(n1/(α−1))
I Alternative interpretation for the maximum:

P(d > x) = 1/n⇒ x = O(n1/(α−1))

I P(di = k) = pk = const · k−α, usually α ∈ (2, 4)
I If p > α− 1 then E(Dp) = ∞
I CLT: for p > α− 1 holds

1

n

∑
i∈V

dp
i ∼ cpnp/(α−1)−1,

I But we get the same result just by adding up kppk from
k = 1 to k = n1/(α−1).

[ N. Litvak, SOR group ] 13/30



In the empirical setting

I P(d1 > x) ≈ Cx−α+1

I max{d1, d2, . . . , dn} = O(n1/(α−1))
I Alternative interpretation for the maximum:

P(d > x) = 1/n⇒ x = O(n1/(α−1))
I P(di = k) = pk = const · k−α, usually α ∈ (2, 4)

I If p > α− 1 then E(Dp) = ∞
I CLT: for p > α− 1 holds

1

n

∑
i∈V

dp
i ∼ cpnp/(α−1)−1,

I But we get the same result just by adding up kppk from
k = 1 to k = n1/(α−1).

[ N. Litvak, SOR group ] 13/30



In the empirical setting

I P(d1 > x) ≈ Cx−α+1

I max{d1, d2, . . . , dn} = O(n1/(α−1))
I Alternative interpretation for the maximum:

P(d > x) = 1/n⇒ x = O(n1/(α−1))
I P(di = k) = pk = const · k−α, usually α ∈ (2, 4)
I If p > α− 1 then E(Dp) = ∞

I CLT: for p > α− 1 holds

1

n

∑
i∈V

dp
i ∼ cpnp/(α−1)−1,

I But we get the same result just by adding up kppk from
k = 1 to k = n1/(α−1).

[ N. Litvak, SOR group ] 13/30



In the empirical setting

I P(d1 > x) ≈ Cx−α+1

I max{d1, d2, . . . , dn} = O(n1/(α−1))
I Alternative interpretation for the maximum:

P(d > x) = 1/n⇒ x = O(n1/(α−1))
I P(di = k) = pk = const · k−α, usually α ∈ (2, 4)
I If p > α− 1 then E(Dp) = ∞
I CLT: for p > α− 1 holds

1

n

∑
i∈V

dp
i ∼ cpnp/(α−1)−1,

I But we get the same result just by adding up kppk from
k = 1 to k = n1/(α−1).

[ N. Litvak, SOR group ] 13/30



Assumptions

cn 6 |E | 6 Cn, (SLLN)

cn1/(α−1) 6 max
i∈[n]

di 6 Cn1/(α−1),

cnmax{p/(α−1),1} 6
∑
i∈[n]

dp
i 6 Cnmax{p/(α−1),1}, p = 2, 3,

where C , c > 0.

Very natural and non-restrictive assumptions for power law graphs.
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Back to ρn

ρn =
crossproducts − expectation2

variance
> −

expectation2

variance
= ρ−n

ρ−n = −

1
|E |

(∑
i∈V d2

i

)2
∑

i∈V d3
i − 1

|E |

(∑
i∈V d2

i

)2 .

I We have
∑

i∈V d3
i > cn3/(α−1)

I But also
1

|E |

(∑
i∈V

d2
i

)2
6 (C 2/c)nmax{4/(α−1)−1,1}.

I When α ∈ (2, 4) we have max{4/(α− 1) − 1, 1} < 3/(α− 1),
so that the denominator of ρ−n outweighs its numerator.
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No disassortative scale-free random graphs

ρn > ρ−n = −

1
|E |

(∑
i∈V d2

i

)2
∑

i∈V d3
i − 1

|E |

(∑
i∈V d2

i

)2 .

I Take e.g. α = 2.5

I 4/(α− 1) − 3/(α− 1) = −1/3

I ρ−n = O(n−1/3)

I ρ−n converges to zero as n→∞ in ANY power law graph

I Large scale-free graphs are never disassortative!

I Reason: high variability in values ⇒ dependence on n
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Alternative: rank correlations

I ((Xi , Yi ))
n
i=1 random variables

I rXi and rYi the rank of Xi and Yi , respectively

I Spearman’s rho:

ρrankn =

∑n
i=1(r

X
i − (n + 1)/2)(rYi − (n + 1)/2)√∑n

i=1(r
X
i − (n + 1)/2)2

∑n
i (r

Y
i − (n + 1)/2)2

I Correlation coefficient for rXi and rYi
I rXi and rYi are from uniform distribution: n · Uniform(0, 1)

I Factor n cancels, no influence of high dispersion
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Classical approach!

H. Hotelling and M.R. Pabst (1936):
‘Certainly where there is complete absence of knowledge of the
form of the bivariate distribution, and especially if it is believed not
to be normal, the rank correlation coefficient is to be strongly
recommended as a means of testing the existence of relationship.’

[ N. Litvak, SOR group ] 18/30



Configuration model (CM)

I Nodes with i.i.d. power law distributed number of half-edges
are created

I The half-edges connected to each other in a random fashion.
Self-loops and double edges are removed.

I ρn (blue), ρrankn (red), and mean ρ−n (black) in 20 simulations
for different n
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Configuration model with intermediate edge (CMIE)

I Nodes are connected randomly. Then each edge broken in two
by adding one intermediate node. Strong negative correlation:
all original nodes are connected to nodes of degree 2

I Clearly strongly disassortative graph
I di ’s are original degrees in the CM, `n =

∑
i di . In CMIE we

obtain:

ρn =
2
∑

i∈V 2di −
1
2`n

(∑
i∈V d2

i +2`n

)2
∑

i∈V d3
i + 4`n −

1
2`n

(∑
i∈V d2

i +2`n

)2 .

I One can see that ρ−n → 0
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Configuration model with intermediate edge: results

I Nodes are connected randomly. Then each edge broken in two
by adding one intermediate node. Strong negative correlation:
all original nodes are connected to nodes of degree 2.

I ρn (blue), ρrankn (red), and mean ρ−n (black) in 20 simulations
for different n
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Preferential Attachment (PA) graph

I Albert and Barabási (1999), simplest version with one
outgoing edge per node.

I Nodes arrive one at a time. A new node connects to a node i
with probability proportional to current degree of i .

I ρn → 0 (Newman, 2003; Dorogovtsev et al. 2010).
Assortatively neutral?
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Assortative networks

ρn =

∑
ij∈E didj −

1
|E |

(∑
i∈V d2

i

)2
∑

i∈V d3
i − 1

|E |

(∑
i∈V d2

i

)2 .

Two possible scenarios:

I Denominator outweighs numerator, ρn → 0

I Denominator and numerator are of the same order of
magnitude. Limit?

[ N. Litvak, SOR group ] 23/30



Collection of bipartite graphs

I ((Xi , Yi ))
n
i=1 i.i.d.

X = bU1 + bU2, Y = bU1 + aU2, b > 0, a > 1

U1, U2 i.i.d. random variables with power law tail, exponent α.
I For i = 1, . . . , n, we create a complete bipartite graph of Xi

and Yi vertices, respectively.
I These n complete bipartite graphs are not connected to one

another.
I Extreme scenario of a network consisting of highly connected

clusters of different size. Such networks can serve as models
for physical human contacts and are used in epidemic
modelling (Eubank et al. 2004).

I Disassortative for n = 1 but positive dependence between X
and Y prevails for larger n.
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Collection of bipartite graphs: analysis

I |V | =
∑n

i=1(Xi + Yi ), |E | = 2
∑n

i=1 XiYi ,

∑
i∈V

dp
i =

n∑
i=1

(X p
i Yi + Y p

i Xi )
∑
ij∈E

didj = 2
n∑

i=1

(XiYi )
2.

I Take P(Uj > x) = c0x−α+1, where c0 > 0, x > x0, and
α ∈ (4, 5), so that E [U3] <∞, but E [U4] = ∞.

I Then |E |/n
p→ 2E [XY ] <∞ and

1
n

∑
i∈V d2

i
p→ E [XY (X + Y )] <∞.
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Collection of bipartite graphs: analysis

Theorem (L& van der Hofstad, 2012)

n−4/(α−1)b−4
n∑

i=1

(X 3
i Yi + Y 3

i Xi )
d→ (a3 + a)Z1 + 2Z2,

n−4/(α−1)b−4
N∑
i=1

(XiYi )
2 d→ a2Z1 + Z2,

where Z1 and Z2 and two independent stable distributions with
parameter (α− 1)/4.

Result:

ρn
d→ 2a2Z1 + 2Z2

(a + a3)Z1 + 2Z2
, as n→∞,

which is a random variable taking values in (2a/(1 + a2), 1), a > 1.
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Collection of bipartite graphs: results

ρn (blue), ρrankn (red), and mean ρ−n (black) in 20 simulations for
different n
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Web and social networks

Dataset Description # nodes max d ρn ρrankn ρ−n
stanford-cs web domain 9,914 340 -0.1656 -0.1627 -0.4648
eu-2005 .eu web crawl 862,664 68,963 -0.0562 -0.2525 -0.0670
uk@100,000 .uk web crawl 100,000 55,252 -0.6536 -0.5676 -1.117
uk@1,000,000 .uk web crawl 1,000,000 403,441 -0.0831 -0.5620 -0.0854
enron e-mailing 69,244 1,634 -0.1599 -0.6827 -0.1932
dblp-2010 co-authorship 326,186 238 0.3018 0.2604 -0.7736
dblp-2011 co-authorship 986,324 979 0.0842 0.1351 -0.2963
hollywood-2009 co-starring 1,139,905 11,468 0.3446 0.4689 -0.6737

I Data from the Laboratory of Web Algorithms (LAW) at the
Università degli studi di Milano

I All graphs are made undirected

I Spearman’s rho is able to reveal strong negative correlations
in large networks

I ‘Infinite variance’ is not a formality, it affects the results
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Conclusions and discussion

I The assortativity coefficient ρn is not suitable for measuring
dependencies in power law data with α < 4.

I ρn depends on n
I For disassortative networks, ρn goes to zero as n grows
I For assortative networks, ρn converges either to zero or to a

random variable.
I Assortativity can be used in the network analysis ONLY if
α > 4.

I Spearman’s rho is a good alternative.
I Resolving ties (Mesfioui, M. and Tajar 2005; Nevslehova 2007)
I Consistency: proved for i.i.d. continuous (Xi , Yi ), variance

O(1/n) (Borkowf 2002).
I In a graph the degrees on the ends of random edges are in

general dependent. Can we analyse Spearman’s rho? Work in
progress.
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Thank you!
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