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Geometry & Dynamics

E�ects of Topology on Networks

Can we have some general ideas on how Topology a�ects the

Dynamics of the networks?

To this purpose we considered two di�erent simple dynamical
processes

Epidemics

Di�usion

Final Goal

Spotting systemic risks with few informations, very important for
Critical Infrastructures
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Assortativity

We focus on the role of assortativity on the dynamics.

Assortative Coe�cient

r is the degree-degree Pearson correlation coe�cient of two vertices
connected by an edge

r (G ) =
〈kq〉e − 〈(k + q) /2〉2e

〈(k2 + q2) /2〉e − 〈(k + q) /2〉2e

where k ,q are the degrees of the nodes at the vertices of the same
edge and 〈•〉e is the average over edges

Antonio Scala | Spectra and dynamics for assortative and disassortative networks 3/33



Monte Carlo

Monte Carlo sampling

Gibbs measure µ [G ] ∝ exp (−HJ [G ]) with coupling J

HJ [G ] = −J
∑
ij

Aijkikj

Assortativityis an increasing function of the coupling

Compare HJ [G ] with the assortativity dependent term of the
assortativity coe�cient r

〈kq〉e =
1

Ne

∑
ij

Aijkikj
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Link Swapping

Such swapping moves
leave the degree
distribution invariant

P
(
G → G ′

)
= min [1, exp (−∆HJ)]
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Adjacency Matrix & Branching
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SIS epidemics

SIS Model

Infected nodes can either infect their neighbors or recover. The
epidemic threshold tells us if an epidemics spreads system-wide.

Adjacency Matrix

The epidemic threshold in networks scales as the inverse Λ−11 of the
biggest eigenvalue of the adjacency matrix.

SIS can capture also failure propagation
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SIS treshold

MF equations

∂t Ii = −Ii + (1− Ii ) τ
∑
j

Aij Ij

for τ < τC stable solution ~I = 0

Small perturbation

~I ∼ ε

∂t~I = τA~I +O (ε)

~I = 0 solution is stable if

‖A‖ τ < 1

i.e.

τC = 1/Λ1
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Branching Processes

Branching processes are useful to describe percolation-like processes
on trees (random networks are trees with few loops)

z branching number, p branching
probability

zp average number of
descendants
(zp)n at the nth generation
zpc = 1 critical probability

Percolation on a network
zi =

∑
j

Aij branching number∑
j

pAij descendants∑
j

pn (An)ij at the nth

generation
pc ‖A‖ ∼ 1 critical probability
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Numerical Results

Data averaged on 102

networks of 104 nodes.

Result

Assortative networks are more prone to epidemic spreading.
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Scaling

Data averaged on 102

networks for each size.

Result

Assortative networks have bigger scaling amplitudes.
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Exponents

Result

Scaling deviations at �small� sizes (THEORY is exact for N →∞)
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Power Law vs Poisson
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Laplacian Matrix & Di�usion

Antonio Scala | Spectra and dynamics for assortative and disassortative networks 14/33



Laplacian

A adjacency matrix

sparse matrix with Aij = 1 i� nodes i and j are linked

K degree matrix

diagonal matrix with Kii =
∑
j

Aij degree ki of node i

L Laplacian matrix

L = K − A
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Laplacian and Di�usion

Di�usion in the network is dictated by the Laplacian matrix

∂tρ = −Lρ

The eigenvalues of L are λ1 = 0 ≤ λ2 ≤ . . . ≤ λN
The �rst non-zero eigenvalue λ2 is the inverse timescale of slowest
mode of di�usion (the most extended mode). In general, we can
think of λ−12 as the timescale after which a perturbation (like the
infection of a site) that spreads di�usively will settle a new state
(like an epidemics) in the whole network.
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Numerical Results

Data are averaged
on 102 networks of
104 nodes.

No relevant size
depenence

Result

Assortative networks allow for a longer intervention time.
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Laplacian again

Network vibrations are dictated by the Laplacian matrix

∂2t ρ = −Lρ

Synchronizability is linked to the spectrum of L
Controllability is linked to the spectrum of L
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Minimal Cut

A partition of the nodes into two sets can be represented by a
vector ~x with xi ∈ {−1, 1}

Ω+ sites with xi > 0

Σ+ links between nodes in Ω+

∂Ω sites at the border of the partitions

∂Σ links among Ω+ and Ω−

Min-Cut

�nd minH [~x ] s.t. xi ∈ {−1, 1}

H [~x ] =
n.n.∑
ij

(
xi − xj

2

)2

=
~xL~x
4
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Min-Cut & Laplacian

Relax the min − cut conditions and let ~x ∈ RN s.t ‖~x‖ = 1. ; then
I can look at the eigenvectors ~uα of L
by expressing ~x =

∑
α

aα~uα we get the relation

~xL~x =
∑
α

a2αλi ≥ λ2 ‖~x‖
2 = λ2

therefore the minimal solution is ~u2
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Eigenvectors & Partitions

Partitions can be identi�ed by a sequence (1,−1, . . .)
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Scaling of the Min-Cut
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Scaling of the Min-Cut Boundaries
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Sandpiles & Finance
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Sandpile Models

Sandpile model has been the prototype of Self-Organised Criticality

De�ned on a
lattice

Sand accumulates
on vertices

Until threshold

Then topples

Until reaches
lattice boundaries

Antonio Scala | Spectra and dynamics for assortative and disassortative networks 25/33



Network Sandpiles

Substitute sand with distress/energy/stress/...

De�ned on a
Network

Threshold is the
degree

Boundaries ?
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Sandpiles & Economics

Avalanches can be seen as propagation of distress

K.-M. Lee, J.-S. Yang, G. Kim, J. Lee, K.-I. Goh, I-M. Kim, PLOS1 6, e18443 (2011)
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Pinning of Sandpiles

A bank �too big to fail� is a site that does not topple.
Pinning Bailing out in the language of sandpile corresponds to
pinning. I.e. stopping topples on sites.

You can pin randomly (standard sandpile)

You can pin the hubs (too connected to fail)

The pinned sites are the boundary ∂G of the sandpile
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Results of Pinning

On assortative networks domino-e�ect have a larger cut-o�.
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Sandpiles & Laplacian

The toppling of a site is described by

si (t + 1) = si (t) + Tij

Toppling Matrix

Tij =


ki if i = j

−1 if i n.n. j
0 otherwise

Toppling & Laplacian

Tij =

{
0 if i ∈ ∂G ∨ j ∈ ∂G
−Lij otherwhise
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Conclusions

Spectra

Adjacency Matrix dictates irreversible propagation
Laplacian Matrix dictates di�usive propagation
Toppling dynamics are linked to Di�usive dynamics

Eigenvectors

Min-Cut
Community Finding

To Do

Signed Graphs
Directed Graphs
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Open problems

Assortativity vs Size: do non-neutral con�gurations disappear
or is assortativity ill de�ned?

MC Sampling with a non-extensive Hamiltonian

Fixed Assortativity simulations introduce bias in the
assortativity structure
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Advertising

FOC (with the European Central Bank)

Forecast of systemic crisis and mitigation policies
www.focproject.net

CRISIS LAB

IMT Lucca & CNR-ISC - Italian government funded

Networks of Networks

6 June Chicago, NetSci 2012 sites.google.com/site/netonets2012

Complex Interacting Networks

8 Sept Bruxelles, ECCS 2012 sites.google.com/site/coinets2012
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