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Introduction
social graph

online social connections:
explicit (articulated)
e.g. friendship connections
implicit (behavioural)
e.g. interactions
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Motivation
social graph: nodes and edges

social graph: nodes and edges
connections could be more informative than nodes
different types of social connections
different ways to characterize social connections

Yana Volkovich (Barcelona Media) Trento, 2012 4 / 40



Motivation
social connections

different ways to characterize social connections
interaction strength
spatial distance
structural position in a social graph
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Tuenti dataset
Tuenti dataset

Dataset
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Tuenti
Tuenti website

Tuenti is the “Spanish Facebook”
a Spain-based, invitation-only social networking website
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Tuenti
Tuenti website
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Tuenti
Dataset

Tuenti dataset:

by Dec. 11, 2010;
9.88 million registered users (anonymous profiles);
more than 1 174 million friendship links;
500 million messages exchanged during 3 months;
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Tuenti
Demographics: age pyramid

age pyramid
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Tuenti
Demographics: age pyramid

by gender

50.6% female;

49.4% male.

by age (average)

female: 22 years;

male: 28 years.

Tuenti users are very young
45% of users are between 14 and 20 years;
37.5% of users are between 21 and 30 years.
1.35 more teenagers than official population (due to Tuenti signing
requirements).

Yana Volkovich (Barcelona Media) Trento, 2012 11 / 40



Social connections
implicit vs. explicit connections

implicit vs. explicit social connections
Dunbar’s number: an alleged theoretical cognitive limit to the
number of people with whom one can maintain stable social
relationship
average fraction of friends and the average absolute number of
friends a user interacts with as a function of the number of friends
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Social connections
Social connections

Characteristics for social connections
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Social connections
spatial distance, related work

social ties and spatial distances:
individuals try to minimize the efforts to maintain a friendship by
interacting more with their spatial neighbors
probability of a social interaction quickly decays as an inverse
power of the relative geographic distance (Stewart [1941])
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Social connections
spatial distance, related work

online tools and long-distance travel might result in the ‘death of
distance’
probability of social connection between two individuals on online
social networking services still decreases with their geographic
distance (Backstrom et al. [2010], Liben-Nowell et al. [2005]).
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Social connections
spatial distance

spatial distance
di ,j is the geographic distance between the cities of residence of
user i and user j ;
di ,j = 0 if users report the same city of residence
average geographic distances between users < D > is about one
order of magnitude larger than the average geographic distance
between friends < l >

average geographic distance between nodes, km 531.2
average link length, km 79.9
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Social connections
spatial distance

spatially closer users are much more likely to engage in a social
connection (e.g. become friends)
about 50% of social links between users at a distance of 10 km or
less
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Social connections
interaction strength

interaction strength
close friends or just acquaintances
quantitative estimation of a how much an online connection binds
two users together
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Social connections
Interaction strength

interaction strength
wi ,j is the number of messages user i posted on the wall of user j ;
wi ,j = 0 if user i has never left a message on user j ’s wall;

balanced interaction weight:
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Social connections
Interaction strength (log-log)

since non-reciprocated interactions may indicate spam:
the minimum of the interaction weights to emphasize reciprocated
interactions;
for the non-reciprocated interactions we only add 1/2 no matter
the difference in the numbers of messages exchanged.
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Social connections
structural properties

weak ties are more likely to connect together otherwise separated
portions of a network, playing an important role in information
diffusion and resilience to network damage (Granovetter [1973])
some social ties closing “structural holes” can be more powerful or
more innovative (Burt [1992])

Bakshy [2012]
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Social connections
Structural properties:social overlap

structural properties:
local position: social overlap;
social overlap of an edge ei ,j as oi ,j = |Γi ∩Γj |, where Γi is the set
of users connected to user i

Yana Volkovich (Barcelona Media) Trento, 2012 22 / 40



Social connections
Structural properties:k-index of a node

structural properties:
global position: k-index;
k -core is the maximal subgraph in which each node is connected
to at least k other nodes of the subgraph
k -index of a node is v if it belongs to the v -core but not to the
(v + 1)-core
k -index has been found to be an indicator of influential nodes
within a social network (Kitsak et al. [2010])

k=1

k=3

k=2

central core/ smaller core in between/ periphery
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Social connections
Structural properties:k-index of an edge

k-index kij of an edge is the minimum of the k -indexes of two
endpoints
we distinguish if an edge connects nodes inside a network core or
links to a node in the periphery

0 20 40 60 80 100 120 140 160 180
75

85

95

105

115

125

135

145

155

165

175
180

average max k−index vs edge k−index

edge k−index

av
er

ag
e 

m
ax

 k
−

in
de

x

Yana Volkovich (Barcelona Media) Trento, 2012 24 / 40



Combined analysis
Combined analysis

Combined analysis of social connections
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Combined analysis
Combined analysis of social connections

social connections
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Combined analysis
Social overlap vs. k-index

social overlap and k -index allow network scenarios where links may
have high k -index and low overlap, or the other way round
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Combined analysis
Social overlap vs. k-index

social overlap ↑ ⇒ k -index grows quickly
k -index ↑ ⇒ the average social overlap grows slowly
there are inner cores where users are tightly connected to each
other
other parts of the network include more isolated users that tend to
not belong to any community
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Combined analysis
Distance vs. social overlap

the geographic distance between two connected users decreases
as they share more and more friends
social connections which span less than 60-80 km exhibit higher
values of social overlap
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Combined analysis
Distance vs. k -index

the average spatial length of social links decreases as their
k -index increases
social links inside the core tend to be shorter than the ones
reaching the periphery of the social network
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Combined analysis
Distance vs. k -index

kmax -core
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Combined analysis
Distance vs. k -index

kmax -core
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Combined analysis
Distance vs. interaction weight

the amount of interaction is uncorrelated to spatial distance
note that the likelihood that two individuals are connected is
heavily dependent on distance
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Combined analysis
Social overlap vs. interaction

the impact of social overlap remains fairly constant
the interaction weight only slowly increases the social overlap
grows
the extremely high levels of interaction mainly take place between
users with several shared friends, which are likely to be in the
network core
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Combined analysis
k -index vs. interaction weight

ties in the inner cores have the highest levels of interaction
interaction weights are almost equally high for social ties with low
k -index
social ties with intermediate k -index, likely to bridge together
different portions of the network, experience the lowest interaction
levels
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Conclusions
Conclusions

Conclusions
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Conclusions

social connections between users inside the core tend to have
shorter geographic spans than connections stretching outside the
core
social ties outside the core tend to be much longer than the other
links: the length of these bridge ties is thus creating not only
network shortcuts, but also spatial shortcuts
the amount of interactions appears independent of spatial
distance
interaction levels appear higher inside well-connected cores and
on links connecting to the fringe of the network
edges could be more informative than nodes
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Questions
Questions
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