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Nonlinearity and Anderson localization: estimates

i~ ∂ψn
∂t = Enψn + β| ψn |2ψn + V (ψn+1 + ψn−1) ; [−W/2 < En < W/2]

localization length l ≈ 96(V/W )2 (1D); ln l ∼ (V/W )2 (2D) Amplitudes C in the linear eigenbasis are described by the equation

i ∂Cm
∂t = ǫmCm + β

P

m1m2m3
Umm1m2m3 Cm1 C∗

m2
Cm3

the transition matrix elements are Umm1m2m3 =
P

n Q−1
nm Qnm1 Q∗

nm2
Qnm3 ∼ 1/l3d/2. There are about l3d random terms in the sum with

U ∼ l−3d/2 so that we have idC/dt ∼ βC3. We assume that the probability is distributed over ∆n > ld states of the lattice basis. Then from the

normalization condition we have Cm ∼ 1/(∆n)1/2 and the transition rate to new non-populated states in the basis m is Γ ∼ β2|C|6 ∼ β2/(∆n)3.

Due to localization these transitions take place on a size l and hence the diffusion rate in the distance ∆R ∼ (∆n)1/d of d− dimensional m− space is

d(∆R)2/dt ∼ l2Γ ∼ β2 l2/(∆n)3 ∼ β2 l2/(∆R)3d . At large time scales ∆R ∼ R and we obtain

∆n ∼ Rd ∼ (βl)2d/(3d+2)td/(3d+2); (∆n)2 ∝ tα; α = 2/(3d + 2)

Chaos criterion:

S = δω/∆ω ∼ β > βc ∼ 1

there δω ∼ β|ψn|2 ∼ β/∆n is nonlinear frequency shift
and ∆ω ∼ 1/∆n is spacing between exites eigenmodes
DLS PRL 70, 1787 (1993) (d = 1); I.García-Mata, DLS arXiv:0805.0539 (2008) (d ≥ 1)
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Nonlinearity and Anderson localization (1D)
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W/V = 2, 4, β = 0, 1; σ = (∆n)2 ∝ tα ;

α = 2/5 (theory) 0.34, 0.31 numerics
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W/V = 4, β = 1, t = 108, β = 0

i~ ∂ψn
∂t = Enψn + β| ψn |2ψn + V (ψn+1 + ψn−1) ; [−W/2 < En < W/2]

A.S.Pikovsky, DLS PRL 100, 094101 (2008)
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Nonlinearity and Anderson localization (2D)
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W/V = 10, 15, β = 0, 1; α2 = 0.236, 0.229 ± 0.003 (theory 0.25)
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ν = 0.282, 0.247 ± 0.005 (theory 0.25); ξ is participation ratio

i~ ∂ψn
∂t = Enψn + β| ψn |2ψn + V (ψn+1 + ψn−1)

I.García-Mata, DLS arXiv:0805.0539 (2008)
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Nonlinearity and Anderson localization (2D)

W = 10;β = 0(left), 1(right);
t = 104 (bottom), 106 (middle),

projecton on x−axis (top);
256 × 256 lattice

[also: kicked nonlinear rotator model (1d)]

I.García-Mata, DLS arXiv:0805.0539 (2008)
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Delocalization on disordered Stark ladder
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Static field f along Stark ladder (W = 4): statistical entanglement
Left: f = 0, 0.25, 0.5, α = 0.30, 0.26, 0.24, β = 1; 0 top to bottom; inset IPR at f = 0.5;
Right: probabability distribution at f = 0.5, t = 102, 104, 106, 108, β = 0; 1 (top/bottom)
I.García-Mata, DLS arXiv:0903.2103 (2009)
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Dynamical thermalization in DANSE (1D)

starting from Fermi-Pasta-Ulam problem (1955):
regular lattice, delocalized linear modes → disorder localized modes
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Lyapunov exponent
N = 32, W = 4, β = 1, t = 107 + 106, initial state: linear eigenmode

Gibbs distribution with temperature T for localized linear modes, ρm = |Cm|2:
entropy S = −P

m ρm ln ρm, ρm = Z−1 exp(−ǫm/T ), Z =
P

m exp(−ǫm/T ),
E = T 2∂ ln Z/∂T , S = E/T + ln Z . 〈ln Z 〉 ≈ ln N + ln sinh(∆/T ) − ln(∆/T ), ∆ ≈ 3

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)
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Dynamical thermalization in DANSE (1D)

N = 32, W = 4, β = 1, t = 106, initial state: linear eigenmode m′ , averaged over 8 disoder realisations

Gibbs distribution: time, disorder averaged ρm in mode m (y - axis) for initial
eigenmode m′ (x -axis); left: numerics, right: Gibbs theory

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)
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Dynamical thermalization in DANSE (1D)
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Fraction of thermalized states: N = 16 (circles), 32 (curve), 64(+) ; W = 4, t = 106,
(diamonds N = 32, t = 107)

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)
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Possible experimental tests & applications

BEC in disordered potential (Aspect, Inguscio)

kicked rotator with BEC (Phillips)

nonlinear wave propagation in disordered media (Segev, Silberberg)

lasing in random media (Cao)

energy propagation in complex molecular chains
(proteins, Fermi-Pasta-Ulam problem)

NONLINEAR SPIN-GLASS ?

OTHER GROUPS:
S.Aubry et al. PRL 100, 084103 (2008)
A.Dhar et al. PRL 100, 134301 (2008)
S.Fishman et al. J. Stat. Phys. bf 131, 843 (2008)
S.Flach et al. arXiv:0805.4693[cond-mat] (2008)
W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008)
see also the participant list of the NLSE Workshop
at the Lewiner Institute, Technion, June 2008
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Quntum systems:
Two Interacting Particles (TIP) effect

Anderson model in d-space + onsite Hubbard interaction U, V ∼ EF is one-particle
hopping; exited states ψn ∼ exp(−|n − m|/l)/

√
l ; l ≫ 1.

Equation in the basis of noninteracting eigenstates χm1m2 :

i∂χm1m2/∂t = ǫm1m2χm1m2 +
P

m′
1m′

2
Um1m2m′

1m′
2
χm′

1m′
2

Sum runs over M ∼ ld coupled states; interaction induced matrix elements
Us ∼ Um1m2m′

1m′
2
∼ (U/(l2d ) ×

√
M, density of coupled states is ρ2 ∼ l2d/V , TIP

transition rate Γs ∼ Us
2ρ2 ∼ U2/(ld V ). Enhancement factor

κ = Γsρ2 ∼ (U/V )2ld > 1

TIP localization:
l2/l ∼ (U/V )2l (1d);
ln(l2/l) ∼ (U/V )2l2 (2d);
delocalization for κ ∼ (U/V )2l3 > 1 (3d)

DLS PRL 73, 2607 (1994); Y.Imry EPL 30, 405 (1995)
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Many electrons near the Fermi level
(Coulomb interaction, no spin)

Level-spacing statistics P(s):
η = 1 Poisson distribution,
η = 0 Wigner-Dyson distribution
ǫη - exitation energy per particle
at a given η = const (B = 4V )
rs = U/(2V

√
πν), ν = Np/L2 ≈ 1/32

usually U = 2V , rs ≈ 3.2,
2 ≤ Np ≤ 20, 8 ≤ L ≤ 25

Result: chaotic, ergodic states at
temperature going to zero

Problems: transport properties ?

DLS PRB 61, 4588 (2000); P.H.Song, DLS PRB 61, 15546 (2000)
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Dyn-thermalization in many-body Q-systems

Åberg criterion J > Jc ≈ ∆c : two-body matrix element J should be larger than
energy spacing between directly coupled states ∆c

Example: Quantum computer with nq = 16 qubits. One quantum eigenstate: Occupation numbers ni vs. rescaled exitation energies ǫi = δi . Left:

J/Jc ≈ 0.15, T = 0.15δ, δE = 0.97δ, S = 0.49. Right: J/Jc ≈ 1.5, T = 0.20δ, δE = 1.19δ, S = 8.41. Full curves: Fermi-Dirac thermal

distribution with given temperature T . G.Benenti et al. EPJD 17, 265 (2001)

QC Hamiltonian: H =
P

i Γiσ
z
i +

P

i<j Jijσ
x
i σ

x
j ;

Γi = ∆0 + δi , −δ < 2δi < δ, −J < Jij < J; → Jc ≈ 4δ/nq

S.Åberg PRL 64, 3119 (1990); DLS, O.Sushkov EPL 37, 121 (1997);
P.Jacquod, DLS PRL 79, 1837 (1997); B.Georgeot, DLS PRE 62, 3504 (2000)
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Quantware posters from Toulouse
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the Chirikov typical map”
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“Delocalization transition in Google Matrix”
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