Delocalization by nonlinearity and
interactions in systems with disorder
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@ Anderson localization 1958 - 2008:
Introduction, 50 years after

@ Discrete Anderson nonlinear
Schrédinger equation (DANSE) (d = 1, 2)

@ Dynamical thermalization of
nonlinear disordered lattices: anti-FPU

@ Two interacting particles effect

@ Aberg criterion for dynamical thermalization

in many-body quantum systems
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Anderson localization: introduction & perspectives

from the talk of PW.Anderson at Newton Institute, July 21, 2008
see http://www.newton.ac.uk/programmes/MPA/seminars/072117001.html

“Well, In my country,” said alice, still panting a little, “you would
generally get to somehere else, if you ran very fast for a long time,
as we've been doing”. “A slow sort of country!”, said the queen.
“Now here, it takes all the running you can do, to stay in the same
place.”

i

i

Perspectives: a)localization in new type of systems; b)effects of interactions
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3d-Dynamical de-localization of atomic waves

quantum chaos in kicked rotator => Chirikov localization in momentum space

=> dynamical analog of 3d Anderson transition
H = p®/2 + K cosX[1 + e cos(wat) cos(wst)] 3, 6(t —m), hex = 2.89

J.C.Garreau et al. PRL 101, 255702 (2008); theory prediction at.PRL 62, 345 (1989)
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Nonlinearity and Anderson localization: estimates

s O
ih<gt

ot Entin + 8] ¢n |2¢ﬂ + V(1 +¥n-1) ; [-W/2 < En < W /2]

localization length | ~ 96(V /W)2 (AD); Inl ~ (V /W)2 (2D) Amplitudes C in the linear eigenbasis are described by the equation
2 — ,Cr + 830 U Cm,Ci,C
ot o= mymomg — MMMaMzmy =m, mg

o A —1 3d/2 3d i i
the transition matrix elements are Umm1m2m3 =>n Qnm Qnm1 QrTmz Qnm3 ~ 1/l / . There are about I°* random terms in the sum with
U ~ 173d/2 50 that we have idC /dt ~ BCS. We assume that the probability is distributed over An > 19 states of the lattice basis. Then from the
normalization condition we have Cyy ~ 1/(An)1/2 and the transition rate to new non-populated states in the basis m is ' ~ [32 \Cl6 ~ 52 /(An)3.
Due to localization these transitions take place on a size | and hence the diffusion rate in the distance AR ~ (An)l/d of d — dimensional m — space is

d(AR)2 /dt ~ 12T ~ 8212 /(an)3 ~ 5212 /(AR)30. At large time scales AR ~ R and we obtain
An ~ RY ~ (B1)20/Gd+2)4d/442). (An)?  t*; o = 2/(3d + 2)
Chaos criterion:
S=0w/Aw~F>[F ~1

there dw ~ Blyn|*> ~ B/An is nonlinear frequency shift
and Aw ~ 1/An is spacing between exites eigenmodes
DLS PRL 70, 1787 (1993) (d = 1); l.Garcia-Mata, DLS arXiv:0805.0539 (2008) (d > 1)

(Quantware group, CNRS, Toulouse) DPG SYAL Dresden 23/03/2009 4/15



Nonlinearity and Anderson localization (
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A.S.Pikovsky, DLS PRL 100, 094101 (2008)
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Nonlinearity and Anderson localization (2D)
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|.Garcia-Mata, DLS arXiv:0805.0539 (2008)
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Nonlinearity and Anderson localization (2D)

W = 10; 8 = 0(left), 1(right);
t = 10* (bottom), 10° (middle),
projecton on x —axis (top);
256 x 256 lattice

[also: kicked nonlinear rotator model (1d)]

|.Garcia-Mata, DLS arXiv:0805.0539 (2008)
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Dynamical thermalization in DANSE (1D)

starting from Fermi-Pasta-Ulam problem (1955):
regular lattice, delocalized linear modes — disorder localized modes
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Energy E Lyapunov exponent

N=32,W=4,8=1,t= 107 + 106, initial state: one linear eigenmode

Gibbs distribution with temperature T for localized linear modes, pm = |Cm|%:

entropy S = — > pm N pm, pm = Z texp(—em/T), Z =3, exp(—em/T),
E=T20InZ/dT, S=E/T+InZ. (InZ) ~InN +Insinh(A/T) —In(A/T), A = 3

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)
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Dynamical thermalization in DANSE (1D)

weaker and stronger nonlinearity 3
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N =64, W =4, 8 = 0.5(left), 2(right), t = 105, initial state: one linear eigenmode

Gibbs distribution with temperature T for localized linear modes, pm = |Cm
entropy S = — > pmINpm, pm =Z texp(—em/T), Z =3, exp(—em/T),
E=T20InZ/dT, S=E/T +InZ. (InZ) =InN +Insinh(A/T) —In(A/T), A~ 3

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

(Quantware group, CNRS, Toulouse)

DPG SYAL Dresden 23/03/2009




Dynamical thermalization in DANSE (1D)
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Fraction of thermalized states: N = 16 (circles), 32 (curve), 64(+) ; W = 4,t = 10°,
(diamonds N = 32,t = 107)

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)
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Possible experimental test applications

@ BEC in disordered potential (Aspect, Inguscio)
@ kicked rotator with BEC (Phillips)
@ nonlinear wave propagation in disordered media (Segev, Silberberg)
@ lasing in random media (Cao)
@ energy propagation in complex molecular chains
(proteins, Fermi-Pasta-Ulam problem)
@ NONLINEAR SPIN-GLASS ?

@ OTHER GROUPS:
S.Aubry et al. PRL 100, 084103 (2008)
A.Dhar et al. PRL 100, 134301 (2008)
S.Fishman et al. J. Stat. Phys. bf 131, 843 (2008)
S.Flach et al. arXiv:0805.4693[cond-mat] (2008)
W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008)
see also the participant list of the NLSE Workshop
at the Lewiner Institute, Technion, June 2008
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Quntum systems:

Two Interacting Particles (TIP) effect

Anderson model in d-space + onsite Hubbard interaction U, V ~ Eg is one-particle
hopping; exited states vn ~ exp(—|n —m|/1)/V1; 1 > 1.
Equation in the basis of noninteracting eigenstates xm,m,:

10Xmym, /Ot = €mym, Xmym, + Zm/lmfz UmlmzmimQXmimé

Sum runs over M ~ |4 coupled states; interaction induced matrix elements
Us ~ Umymomimg ~ (U/(1%) x v/M, density of coupled states is p, ~ 124/V, TIP
transition rate I's ~ Us2p, ~ U2/(19V). Enhancement factor

k=Tspa ~ (U/NV)Y>1

TIP localization:

2/l ~ (U/V)?I (1d);

In(l2/1) ~ (U/V)*1? (2d);

delocalization for x ~ (U/V)?I® > 1 (3d)

DLS PRL 73, 2607 (1994); Y.Imry EPL 30, 405 (1995)
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Slow Metal (2D)
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FIG. 2 (color online). Resistivity as a function of inverse
temperature 1/7 at B=0T (symbols). At all densities, the
strongly insulating T dependence at higher temperatures is
lollowed by a decrease in resistance at low T. Device dimensions
are WXL =8 um X 05 gm, spacer § =40 nm. Electron
densities are indicated by arrows in the inset to (a). Solid lines
represent a fit of Eq. (1) to the data. Inset to (a): Resistivity as a
function of electron density at 7 = 60 mK. 500 mK. 4 K. Inset
to (d): p as function of 1 /7 at the same density as (d) but at
B, =15T

TIP diffusion

D ~Tsl?2~U?/Vat(Ul/V)?>1
vs. usual diffusion Dg ~ Vg ¢ ~ V
Thus it is possible to have diffusion
with conductance g and resistivity
per square po (in natural units):

g ~1/po~D/Dy ~ (U/V)? < 1
With up to (Ul/V)? ~ 1 and
g~1/P<1

Problems: finite particle density,
small density of states near the
ground state

Experiment suggestion: to measure
a charge of quasi-particles from
noise fluctuations

M.Baenninger, A.Ghosh, M.Pepper, H.E.Beere, |.Farrer, D.A.Ritchie ’
PRL 100, 016805 (2008) vs. S.Kravchenko et al. RMP 73,251 (2001)
DPG SYAL Dresden 23/03/2009 13/15
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Dyn-thermalization in many-body Q-systems

Aberg criterion J > J. =~ A > A exp(—n): two-body matrix element J
should be larger than energy spacing between directly coupled states A
EXAMPLES
@ Weakly interacting fermions:
one-particle level spacing A,
two-body interaction matrix elementJ = U ~ A/g withg > 1
(two-body random interaction model - TBRIM).
Quantum chaos border for dynamical thermalization:
OE ~ Thegt ~ T2/A > g?3A > A > Ay ~ A/ exp(Ner)
@ Quantum computer with static imperfections:
QC Hamiltonian:
H= Zi ri(TiZ —+ Zi<j JijO'iXGjX;
Fi = Ao+ i, =6 < 26 < 6, middle band with S, =3 0, =0 -J < Jj <J;
Quantum chaos border for dynamical thermalization:
— Je ~46/ng > An ~ §/2M
@ Above the border: Gibbs description of quantum ergodicity;
Wigner-Dyson level spacing statistics
S.Aberg PRL 64, 3119 (1990); DLS, O.Sushkov EPL 37, 121 (1997);
P.Jacquod, DLS PRL 79, 1837 (1997); B.Georgeot, DLS PRE 62, 3504 (2000)
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Dyn-thermalization in m body Q-systems

Example of dynamically thermalized eigenstate of quantum computer
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Example: Quantum computer with ng = 24 qubits. One quantum eigenstate: Occupation numbers n; vs. rescaled exitation energies €; = &;. Left:

J/Jc &~ 0.3, T =0.125, 6E = 0.6465,S = 1.84. Right: J /Jc ~ 2.4, T = 0.195, 6E = 1.166, S = 12.5. Full curves: Fermi-Dirac thermal

distribution with given temperature T. G.Benenti et al. EPJD 17, 265 (2001)

QC Hamiltonian: H = 37, Tiof + 3=, _; Jjoi of;
M =A0+6i, —0<26 <9, -3<Jj<I; — Je~4d/nq

B.Georgeot, DLS PRE 62, 3504 (2000), DLS Physica Scripta T90, 112 (2001)
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