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How Google works

PageRank Algorithm
Ranking pages {1, . . . , N} according to their importance.
Method:

The importance of a page i depends on the importance of the pages j
pointing on it

If a page has many outgoing links the importance it transmits is
proportional to the number of pages it points to.

The Google Matrix:

G = αS + (1 − α)E/N

here E is such a matrix that Eij = 1.
With a certain (stochastic) matrix S

p = Sp

.
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How Google works

Directed networks
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For a directed network with N nodes the adjacency matrix A is defined as
Aij = 1 if there is a link from node j to node i and Aij = 0 otherwise. The
weighted adjacency matrix is

Sij = Aij/
∑

k

Akj

In addition the elements of columns with only zeros elements are replaced by
1/N.
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How Google works

Computation of PageRank
p = Sp ⇒ p= stationary vector of S:
can be computed by iteration of S.

To remove convergence problems:

Replace columns of 0 (dangling nodes) by 1
N :

In our example, S =


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.

To remove degeneracies of the eigenvalue 1, replace S by

G = αS + (1 − α) E
N ; Gp = λp => Perron-Frobenius operator

α models a random surfer with a random jump after approximately 6
clicks (usually α = 0.85); PageRank vector => p at λ = 1 (

∑

j pj = 1).
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Models of real networks

Real networks are characterized by:

small world property: average distance between 2 nodes ∼ log N

scale-free property: distribution of the number of outgoing or incoming
links P(k) ∼ k−γ

Can be explained by a twofold mechanism:

Constant growth: new nodes appear regularly and are attached to the
network

Preferential attachment: nodes are preferentially linked to already highly
connected vertices.

PageRank vector for large WWW:

pj ∼ 1/jβ , wher j is the ordered index

number of nodes Nn with PageRank p scales as Nn ∼ 1/pν with
numerical values ν = 1 + 1/β ≈ 2.1 and β ≈ 0.9.
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Albert-Barabasi (AB) model

Weight of a link chosen to be

Πi =
ki + 1

∑

j(kj + 1)
,

with ki being number of incoming+outgoing links.

Procedure from m nodes:

• starting from m nodes, at each step m links are added to the existing
network with probability p (preferential attachment, start nodes are
chosen randomly)

• or m links are rewired with probability q

• or a new node with m links is added with probability 1 − p − q

End vertex i always chosen with probability Πi .
We fix m = 5, p = 0.2, q = 0.1 (scale-free) and q = 0.7 (exponential regimes).
R. Albert and A.-L. Barabási, Phys. Rev. Lett. 85, 5234 (2000).
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Eigenvalues of Google Matrix for AB model

Distribution of eigenvalues λi of Google
matrices in the complex plane. Color is
proportional to the PAR ξ of the associated
eigenvector ψi . Top panel: AB model with
q = 0.1 for N = 214 for Nr = 5 random
realizations (see text), ξ varies from ξ = 32
(blue) to ξ = 1656 (red); middle panel: same
with q = 0.7, ξ varies from ξ = 1169 (red) to
ξ = 3584 (purple); bottom panel: data for a
university network (Liverpool J. Moores Univ.
- LJMU) with N = 13578, here in order to get
statistically significant data the WWW
network was randomized and data
correspond to Nr = 5 random realizations, ξ
varies from ξ = 7 (blue) to ξ = 1177 (red)
(participation ratio PAR =>
ξ = (

P

j |ψi(j)|2)2/
P

j |ψi(j)|4; Gψi = λiψi ).
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Density of states and participation ratio
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Normalized density of states W (top panel)
and PAR (bottom panel) as a function of γ.
Data for AB model with q = 0.1 are shown
by full curves with from bottom to top
N = 210(Nr = 100) (black), 211(Nr = 50)
(red), 212(Nr = 20) (green), 213(Nr = 10)
(blue), 214(Nr = 5) (violet). Symbols give the
PageRank value of ξ in the same order:
circle, square, diamond, triangle down and
triangle up. All curves coincide on the top
panel. Dashed curves show the data from
the WWW (LJMU network, parameters of
previous Fig.). Here |λ| = exp(−γ/2).

Same for AB model at q = 0.7.
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Dependence on matrix size N
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log N
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Dependence of ξ on matrix size N
for AB model at q = 0.1 (triangles),
q = 0.7 (circles), and for WWW
data without randomization
(squares). Full symbols are for
PageRank ξ values, empty symbols
are for eigenvectors with 3 < γ < 4
(AB model) or for the 10
eigenvectors with highest ξ and
γ < 10 (WWW data). For AB model
Nr is as before and Nr = 5 for
N > 214 (statistical error bars are
smaller than symbol size). Dotted
blue lines give linear fits of WWW
data, with slopes respectively 0.01
and 0.53. Upper dashed line
indicates the slope 1. Logarithms
are decimal.
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Shapes of eigenvectors
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Dependence of eigenvectors ψi(j) of AB
model on index j ordered in decreasing
PageRank values pj (with normalisation
P

j |ψi(j)|2 = 1 and
P

j pj = 1). Full
smooth curves are PageRank vectors for
N = 214, dashed smooth curves for
N = 219. Non-smooth curves are
eigenvectors (N = 214) within 3 < γ < 4
with |Ψi(j)|2 averaged in this interval.
States are averaged over Nr = 5 random
networks. Black is for q = 0.1, red/grey
for q = 0.7. Inset: cumulative distribution
Pc(pj) normalized by Pc(0) = N for AB
model (N = 218 and Nr = 5) at q = 0.1
(full black) and q = 0.7 (dashed
red/grey), and for LJMU non-randomized
data (full red/grey). Dashed straight line
indicates slope 1 − ν = −1. Logarithms
are decimal.
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Ulam networks

Ulam conjecture (method) for discrete approximant of
Perron-Frobenius operator of dynamical systems

S.M.Ulam, A Collection of mathematical problems,
Interscience, 8, 73 N.Y. (1960)

A rigorous prove for hyperbolic maps:
T.-Y.Li J.Approx. Theory 17, 177 (1976)

Related works:
Z. Kovacs and T. Tel, Phys. Rev. A 40, 4641 (1989)
M.Blank, G.Keller, and C.Liverani, Nonlinearity 15, 1905 (2002)
D.Terhesiu and G.Froyland, Nonlinearity 21, 1953 (2008)

Links to Markov chains: ∞∞∞∞∞∞∞∞∞∞

Contre-example:
Hamiltonian systems with invariant curves, e.g. the Chirikov standard map:
noise, induced by coarse-graining, destroys the KAM curves
and gives homogeneous ergodic eigenvector at λ = 1

thanks to Arkady Pikovsky for a remark about the Ulam method
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Google matrix of dynamical attractors

Weak point of AB model => large gap, no sensitivity to α

PageRank pj for the Google matrix
generated by the Chirikov typical map
at T = 10, k = 0.22, η = 0.99 (set
T10, top row) and T = 20, k = 0.3,
η = 0.97 (set T20, bottom row) with
α = 1, 0.95, 0.85 (left to right). The
phase space region
0 ≤ x < 2π;−π ≤ p < π is divided on
N = 3.6 · 105 cells.

Chirikov typical map (1969) with dissipation
p̄ = ηp + k sin(x + θt) , x̄ = x + p̄
θt = θt+T are random phases periodically repeated after T iterations,
chaos border kc ≈ 2.5/T 3/2, Kolmogorov-Sinai entropy h ≈ 0.29k2/3;
grid of N = Nx × Np cells with Nc ∼ 104 trajectories which generates links (transition
probabilities) from one cell to another; effective noise of cell size;
maximum N = 22500; 1.44 · 106
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Bifurcation diagram

<= Bifurcation diagram showing
values of p vs. map parameter k for
the set T10. The values of p,
obtained from 10 trajectories with
initial random positions in the phase
space region, are shown for integer
moments of time 100 < t/T ≤ 110
(left) and 104 < t/T ≤ 104 + 100
(right).

<= Same for set T20.
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Distribution of links

3

4

5

6

0 1 2

.

.
..................................................................

.
.
............................................................

0 1 2

.

.
.................................................................................................................................

.
..
...............................................................................................................................................................

lo
g
P

in
,o

u
t

log κ log κ

Differential distribution of number of nodes with ingoing Pin(κ) and outgoing Pout(κ)

links κ for sets T10 (left) and T20 (right). The straight dashed lines give the algebraic
fit P(κ) ∼ κ−µ with the exponent µ = 1.86, 1.11 (T10,T20) for ingoing and
µ = 1.91, 1.46 (T10,T20) outgoing links. Here N = 1.44 · 106 and P(κ) gives a
number of nodes at a given integer number of links κ for this matrix size. Blue point at
κ = 0 shows that in the whole matrix there is a significant number of nodes with zero
ingoing links. Typical number of nodes κ ∼ exp(hT ).
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PageRank distribution
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Differential distribution of number of nodes with PageRank distribution pj for N = 104,
9 · 104, 3.6 · 105 and 1.44 · 106 curves, the dashed straight lines show fits pj ∼ 1/jβ

with β: 0.48 (b), 0.88 (e), 0.60 (f). Dashed lines in panels (a),(d) show an exponential
Boltzmann decay (see text, lines are shifted in j for clarity). In panels (a),(d) the curves
at large N become superimposed. Panel order as in color Fig. above.
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Properties of eigenvalues and eigenvectors
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(d)

lo
g(

1
−
|λ
|)

(N/104)

ξ

γ
(a) Dependence of gap 1 − |λ| on Google matrix size N for few eigenstates with |λ|

most close to 1, set T10, α = 1; (b) dependence of PAR ξ on γ = −2 ln |λ| for N=2500,
5625, 8100, 104, 14400 for set T10, α = 1; (c) plane of eigenvalues λ for set T10 with
their PAR ξ values shown by grayness (black/blue for minimal ξ ≈ 4, gray/light magenta
for maximal ξ ≈ 300; here α = 1, N = 1.44 · 104); (d) same as (c) but for set T20.
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Fractal Weyl law

invented for open quantum systems:
the number of Gamow eigenstates Nγ , that have escape rates γ in a finite
bandwidth 0 ≤ γ ≤ γb, scales as

Nγ ∝ ~
−(d−1)

where d is a fractal dimension of
a strange repeller formed by obits non-escaping in future

References:
J.Sjostrand, Duke Math. J. 60, 1 (1990)
M.Zworski, Not. Am. Math. Soc. 46, 319 (1999)
W.T.Lu, S.Sridhar and M.Zworski, Phys. Rev. Lett. 91, 154101 (2003)
S.Nonnenmacher and M.Zworski, Commun. Math. Phys. 269, 311 (2007)

Quantum Chirikov standard map with absorption
F.Borgonovi, I.Guarneri, DLS, Phys. Rev. A 43, 4517 (1991)
DLS, Phys. Rev. E 77, 015202(R) (2008)

Perron-Frobenius operators?
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Fractal Weyl law for the Chirikov standard map
Leonardo Ermann (CNRS, Toulouse) => poster
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N=100 x 100, k=7, a=2

λ = γc = 0.26..., K = 7
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Fractal Weyl law and distribution over γ
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g
N

γ

log N

fractal Weyl: Nγ ∼ Nν ;
ν = d − 1 = 1 − γc/(Th),
γc = −T ln η
theory: ν = 0.88; 0.72
numerics: ν = 0.85; 0.61
almost all states have λ = 0

Probability distribution dW (γ)/dγ for set T10, α = 1 at N = 2.5 · 103(×), 104(+),
1.44 · 104 (dots); W (γ) is normalized by the number of states Nγ = 0.55N0.85 with
γ < 6. Inset: dependence of number of states Nγ with γ < γb on N for sets T10
(circles, γb = 6) and T20 (triangles, γb = 3); dashed lines show the fit Nγ = ANν with
A = 0.55, ν = 0.85 and A = 0.97, ν = 0.61 respectively.
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Delocalization transition in α and k
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delocalization of PageRank
with α and k
=> destruction of
Google search efficiency
αc ≈ 0.95; 0.85 for T10; T20;
αc ≈ 1 − 0.3γc

Dependence of PageRank ξ on α for set T10 at N = 5625 (dotted magenta), 1.44 · 104

(dotted red), 9 · 104 (dashed red), 6.4 · 105 (full red) and for T20 at N = 1.44 · 104

(dotted blue), 9 · 104 (dashed blue), 6.4 · 105 (full blue). Inset shows dependence of ξ
on k for set T10 at α = 0.99 with N = 1.44 · 104 (dotted red), 9 · 104 (dashed red),
3.6 · 105 (full red).
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Summary

T10: α = 0.99, N = 3.6 · 105

k = 0.22 (localized, left)
k = 0.6 (delocalized, right)

∗ popular web sites are like attractors

∗ delocalization => transition to strange attractor

∗ links between directed networks and dynamical systems

∗ delocalization transition can put in danger Google search

∗ interesting new physics of Google Matrix
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