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Objective

Objective Approach Status

• Effects of realistic imperfections on 

  quantum computer operability and accuracy

• Decoherence and quantum chaos 

   induced by inter-qubit couplings 

• New efficient algorithms for simulation of

   quantum and classical physical systems

• Numerical codes with up to 30 qubits

• Development and test of error-correcting

   codes for quantum chaos and noisy gates 

• Analytical methods developed for many-body

systems (nuclei, atoms, quantum dots)

• Random matrix theory and quantum chaos

• Large-scale numerical simulations of many

   qubits on modern supercomputers

• Stability of algorithms to quantum errors

• The Great Wave of Quantum Chaos 

  (by Katsushika Hokusai)

•RMT for quantum computations, universal 

law for fidelity decay induced by imperfections

• New quantum algorithms and imperfection 

effects for chaos maps, Grover algorithm; 

numerics with 7-28 qubits; Cory experiment
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Elementary quantum gates
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Talk Overview

* Quantum computer hardware:

static properties, imperfections effects

* Quantum algorithms of simple classi-

cal/quantum maps: tent map, Arnold cat

map, sawtooth map, Chirikov standard map

(polynomial number of gates)

* Effects of imperfections and errors,

fidelity decay: tent map, sawtooth map,

Grover, Shor algorithms

* Experiment of Cory group at MIT: dynamical

localization in the quantum sawtooth map Arnold cat map on QC with 20 qubits (128 × 128),
time inversion after 10 and 200 iterations.

http://www.quantware.ups-tlse.fr EC IST-FET project EuroSQIP
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Quantum Hardware Melting Induced by Quantum Chaos

The quantum computer hardware is modeled as a (one)two-dimensional lattice of
qubits (spin halves) with static fluctuations/imperfections in the individual qubit
energies and residual short-range inter-qubit couplings. The model is described
by the many-body Hamiltonian (B.Georgeot, DS, PRE 62, 3504 (2000)):

Hs =
∑

i(∆0 + δi)σ
z
i +

∑
i<j Jijσ

x
i σx

j ,

where the σi are the Pauli matrices for the qubit i, and ∆0 is the average level
spacing for one qubit. The second sum runs over nearest-neighbor qubit pairs,
and δi, Jij are randomly and uniformly distributed in the intervals [−δ/2, δ/2]
and [−J, J ], respectively. Quantum chaos border for quantum hardware:

J > Jc ≈ ∆c ≈ 3δ/nq À ∆n ∼ δ2−nq

Emergency rate of quantum chaos: Γ ∼ J2/∆c.

(Yamamoto QC with mag field gradient: J.Lages, DS, PRE 74, 026208 (2006))

http://www.quantware.ups-tlse.fr EC IST-FET project EuroSQIP
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Quantum computer melting induced by inter-

qubit couplings. Color represents the level of

quantum eigenstate entropy Sq (red for max-

imum Sq ≈ 11, blue for minimum Sq = 0).

Horizontal axis is the energy of the computer

eigenstates counted from the ground state to

the maximal energy (≈ 2nq∆0). Vertical

axis gives the value of J/∆0 (from 0 to 0.5).

Here nq = 12, Jc/∆0 = 0.273, and one

random realization of couplings is chosen.

What are effects of quantum many-body chaos

on the accuracy of quantum computations?

Static imperfections vs. random errors

in quantum gates of a quantum algorithm.

http://www.quantware.ups-tlse.fr EC IST-FET project EuroSQIP
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Fidelity decay due to errors

Accuracy measure of quantum computation is fidelity: f(t) = |<ψ(t)|ψε(t)>|2 .

Quantum algorithm: |ψ(t)> = U
t |ψ(0)> , U = UNg · . . . · U1� �� �

elementary gates

.

Errors: Uj → Uj e
iδH

, δH ∼ ε .

(i) Decoherence due to residual couplings of quantum computer to external bath:

δH random and different at each j and t,

e.g.: random phase fluctuations: δφ ∈ [−ε, ε] in phase-shift gates.

(ii) Static imperfections in the quantum computer itself:

δH (random but) constant at each j and t,

e.g.: δH =

nq−1

j=0

δj σ
(z)
j + 2

nq−2

j=0

Jj σ
(x)
j σ

(x)
j+1 , Jj, δj ∈ [−ε, ε] .

(iii) Non-unitary errors in quantum computation:

eiδH is non-unitary (δH 6= δH†, density matrix and quantum trajectories approach,

J.W.Lee, DS, PRE 71, 056202 (2005) )

http://www.quantware.ups-tlse.fr EC IST-FET project EuroSQIP



Quantum chaos and random matrix theory for fidelity decay,

Eur. Phys. J. D 29, 139 (2004) QMC, Osaka City Univ., 19 - 21 September, 2006

Example: model of quantum tent map

H(t) =
T p2

2
+ V (θ)

∞∑

n=−∞
δ(t − n)

PSfrag replacements
2π2π

θ θ

V (θ)V
′(θ)

Classical map :

pn+1 = pn − V ′(θn)

θn+1 = θn + T pn+1

Quantum map : p = −i∂/∂θ

|ψ(t + 1)>= U |ψ(t)>

U = e−iTp2/2 e−iV (θ)

V (θ) =

�

−k
2θ(θ − π)

k
2(θ − π)(θ − 2π)

, V
′
(θ) =

�

k(π
2 − θ) if 0 ≤ θ ≤ π

k(−3π
2 + θ) if π ≤ θ ≤ 2π

http://www.quantware.ups-tlse.fr K.M.Frahm, R.Fleckinger, D.L.Shepelyansky



Quantum chaos and random matrix theory for fidelity decay,
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Quantum algorithm for tent (and sawtooth) map

Quantum register identification: |p> ≡ |α0>0 |α1>1 . . . |αnq−1>nq−1 .

p =

nq−1

j=0

αj 2
j ∈ {0, . . . , N − 1}

N = 2nq = dimension of Hilbert space; nq = number of qubits; αj ∈ {0, 1}.

Quantum Fourier transform: p ↔ θ and e
−iTp2/2 |p> =

j<k

e
i(···)αjαk� �� �

B
(2)
jk

(···) j

e
i(···)αj� � � �

B
(1)
j

(···)

|p> .

with simple and controlled phase-shift:

B
(1)
j (φ) =

�

1 0

0 eiφ

�

, B
(2)
jk (φ) =

�
�

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 eiφ

�
	 .

Double controlled phase-shift: B
(3)
jkl(φ) = B

(2)
jl




φ
2

�

B
(2)
jk




φ
2

�

C
(N)
kl B

(2)
jk




−φ
2

�

C
(N)
kl .

Number of elementary gates: ng ≈ 9 n2
q/2

http://www.quantware.ups-tlse.fr K.M.Frahm, R.Fleckinger, D.L.Shepelyansky



Quantum chaos and random matrix theory for fidelity decay,
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Poincaré section (K = kT = 1.7)

Fidelity decay with errors
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Husimi function

t = 5 16 qubits t = 15

t = 5625, ε = 0 ε = 7 · 10−7

h̄eff = T = 2π/N, N = 2nq
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Random matrix theory for fidelity decay

Fidelity with average initial state: f(t) =

��
��
��
�

1

N
tr

�

U
−t

�

U e
iδHeff

� t
� ��
��
��
�

2

Regime (1 − f) ¿ 1 : f(t) ≈ 1 − t

tc

− 2

tc

t−1

τ=1

(t − τ) C(τ)

with:
1

tc

=
1

N
tr

�

δHeff
2

�

, C(τ) =
tc

N
tr

�

U
−τ

δHeff U
τ

� �� 	

δHeff(τ)

δHeff

�

U ∈ COE (CUE) ⇒ Scaling law:

−〈ln f(t)〉U ≈ N

tc

χ

�

t

N

�

, χ(s) = s +
2

β
s

2 − 2
s

0

dτ̃ (s − τ̃) b2(τ̃) .

with the “two-level form factor”: b2(τ̃).

http://www.quantware.ups-tlse.fr K.M.Frahm, R.Fleckinger, D.L.Shepelyansky



Quantum chaos and random matrix theory for fidelity decay,
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Scaling analysis for chaotic dynamics
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Eigenstates of operating quantum computer:

hypersensitivity to static imperfections

0.000 0.001 0.002ε

1.3

1.4

E

Variation of quasienergy (red curve) and corre-

sponding eigenstate (shown by Husimi function)

of unitary evolution operator of quantum saw-

tooth map with static imperfections strength ε:

ψ = e
−iT n̂2/4

e
ik(θ̂−π)2/2

e
−iT n̂2/4

ψ = e
−iE

ψ

Here ε = 0, 4 × 10−4, 10−3 (right top,

left/right bottom); and K = kT =
√

2, T =

2π/N, N = 2nq, J = 0, nq = 9. Mixing of

levels takes place at critical interaction strength:

εχ ∼ 1/
√

N ∼ 2
−nq/2

http://www.quantware.ups-tlse.fr G.Benenti, G.Casati, S.Montangero and D.L.Shepelyansky



Phase diagram for the Grover algorithm with static imperfections,

Eur. Phys. J. D 31, 131 (2005) QMC, Osaka City Univ., 19 - 21 September, 2006

Phase diagram for the Grover algorithm

with static imperfections

An unstructured database is presented by N = 2nq states of quantum register with nq

qubits: {|x〉}, x = 0, . . . , N − 1. The searched state |τ〉 can be identified by oracle function

g(x), defined as g(x) = 1 if x = τ and g(x) = 0 otherwise. The Grover iteration operator Ĝ

is a product of two operators: Ĝ = D̂Ô. Here the oracle operator Ô = (−1)g(x̂) is specific to

the searched state |τ〉, while the diffusion operator D̂ is independent of |τ〉: Dii = −1 + 2
N

and Dij = 2
N (i 6= j). For the initial state |ψ0〉 =

� N−1
x=0 |x〉/

√
N , t applications of the

Grover operator Ĝ give:

|ψ(t)〉 = Ĝt|ψ0〉 = sin ((t + 1)ωG)|τ〉 + cos ((t + 1)ωG)|η〉

where the Grover frequency ωG = 2 arcsin(

�

1/N) ≈ 2/
√

N and |η〉 =

� (0≤x<N)
x 6=τ |x〉/

√
N − 1. Hence, the ideal algorithm gives a rotation in the 2D plane (|τ〉, |η〉).

http://www.quantware.ups-tlse.fr A. A. Pomeransky, O. V. Zhirov and D. L. Shepelyansky



Phase diagram for the Grover algorithm with static imperfections,

Eur. Phys. J. D 31, 131 (2005) QMC, Osaka City Univ., 19 - 21 September, 2006

The implementation of the operator D through the elementary gates requires an ancilla qubit.

As a result the Hilbert space becomes a sum of two subspaces {|x〉} and {|x+N〉}, which differ

only by a value of (nq + 1)-th qubit. These subspaces are invariant with respect to operators

O and D: O = 1 − 2|τ〉〈τ | − 2|τ + N〉〈τ + N |, D = 1 − 2|ψ0〉〈ψ0| − 2|ψ1〉〈ψ1|,
where |ψ1〉 =

� N−1
x=0 |x + N〉/

√
N and |ψ0,1〉 correspond to up/down ancilla states. Then

D can be represented as D = WRW (Grover (1997)), where the transformation W =

Wnq . . . Wk . . . W1 is composed from nq one-qubit Hadamard gates Wk, and R is the

nq-controlled phase shift defined as Rij = 0 if i 6= j, R00 = 1 and Rii = −1 if i 6= 0

(i, j = 0, . . . , N −1). In turn, this operator can be represented as R = Wnqσ
x
nq−1 . . . σx

1 ∧nq

σx
nq−1 . . . σx

1Wnq , where ∧nq is generalized nq-qubit Toffolli gate, which inverts the nq-th qubit

if the first nq − 1 qubits are in the state |1〉. The construction of ∧nq from 3-qubit Toffolli gates

with the help of only one auxillary qubit is described by A.Barenco et al. (1995). As a result

the Grover operator G is implemented through ng = 12ntot − 42 elementary gates including

one-qubit rotations, control-NOT and Toffolli gates. Here ntot = nq + 1 is the total number of

qubits.

http://www.quantware.ups-tlse.fr A. A. Pomeransky, O. V. Zhirov and D. L. Shepelyansky
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Oscillations of the Grover search probability

Probability of searched state wG(t) (top) and

fidelity f(t) (bottom) as a function of the

iteration step t in the Grover algorithm for

ntot = 12 qubits. Dotted curves show re-

sults for the ideal algorithm (ε = 0), dashed

and solid curves correspond to imperfection

strength ε = 4 ·10−4 and 10−3, respectively.

A typical example of imperfection effects on the accuracy of the Grover algorithm for a fixed

disorder realization of HS on 3 × 4 qubit lattice.

http://www.quantware.ups-tlse.fr A. A. Pomeransky, O. V. Zhirov and D. L. Shepelyansky
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Husimi function in the Grover algorithm

Evolution of the Husimi function in the Grover

algorithm at times t = 0, 17, and 34 (from

left to right), and for ε = 0, 0.001, and

0.008 (from top to bottom). The qubit lat-

tice and disorder realization are the same as in

previous Fig. The vertical axis shows the com-

putational basis x = 0, . . . , 2N − 1, while

the horizontal axis represents the conjugated

momentum basis. Density is proportional to

color changing from maximum (red) to zero

(blue).
the probability is mainly distributed over four states corresponding to four straight lines in phase

space: |τ0〉 = |τ〉 ; |τ1〉 = |τ + N〉 ; |η0〉 = |η〉 ; |η1〉 =

� (0≤x<N)
x 6=τ |x + N〉/

√
N − 1

http://www.quantware.ups-tlse.fr A. A. Pomeransky, O. V. Zhirov and D. L. Shepelyansky
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Phase diagram for spectral density

Phase diagram for the spectral density S(ω)

as a function of imperfection strength ε,

ntot = 12, same disorder realization as in

previous Fig. Color is proportional to density

S(ω) (yellow for maximum and blue for zero).

The transition rate induced by imperfections after one Grover iteration is given by the Fermi

golden rule: Γ ∼ ε2n2
gntot, where ntot appears due to random contribution of qubit couplings ε

while n2
g factor takes into account coherent accumulation of perturbation on ng gates used in one

iteration. In the Grover algorithm the four states are separated from all other states by energy

gap ∆E ∼ 1 (sign change introduced by operators O and D). Thus these four states become

mixed with all others for ε > εc ≈ 1.7/(ng
√

ntot), when Γ > ∆E.

Strong change of the period of Grover oscillations for ε > ωG/(ng
√

nq) ∝ 2−nq/2.

http://www.quantware.ups-tlse.fr A. A. Pomeransky, O. V. Zhirov and D. L. Shepelyansky
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Quantum chaos in the Shor factorization algorithm
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The nearest neighbor spacing distribution of

eigenangles from an ensemble consisting of

5115 level spacings for the case when the first

register has 10 qubits and the number to be

factored is 29. The smooth curve shows the

CUE distribution of random matrix theory.

* The Shor algorithm requires exponential accuracy in spectral frequency (cf. Grover’s algorithm)

* However, in the Shor algorithm only O(n3
q) gates are used for exponentially large times

* Similar case for the Arnold cat map (B.Georgeot, PRA 69, 032301 (2004))

* Theory of imperfections effects for the Shor algorithm?

http://www.quantware.ups-tlse.fr K.Maity and A.Lakshminarayan



Study of localization in the quantum sawtooth map emulated on a quantum

information processor, quant-ph/0512204v2 QMC, Osaka City Univ., 19 - 21 September, 2006

Cory group NMR QIP Simulations of the Quantum Sawtooth Map
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4 The second moment of the probability distribution determined

from numerical simulations of the experiment including the error

models discussed in the paper, compared to the ideal data and the

experimental data. This plot demonstrates the relative importance

of the individual noise mechanisms as they contribute to the

experimentally observed delocalization process. As more errors

are included in numerical simulations, the system shows stronger

delocalization and more closely emulates the experimental data.

* 3 qubit QIP based on liquid state NMR

* Map parameters are k = 0.27, K = kT = 1.5, (T = 5.55),

diffusion rate D = π2k2/3 = 0.24: regime of perturbative localization.

http://www.quantware.ups-tlse.fr M.K.Henry, J.Emerson, R.Martinez, D.G.Cory
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More about Quantum Computing

* Quantware publications and

Quantware Library of Quantum Numerical Recipes

are available at www.quantware.ups-tlse.fr

* Video Lectures on

“Quantum Information, Computation and Complexity”

at the Institut Henri Poincaré, Paris (2006):

www.lpt.irsamc.ups-tlse.fr/∼dima

(click on “video” at IHP Programme QICC)

http://www.quantware.ups-tlse.fr EC IST-FET project EuroSQIP


