Quantum chaos applications:
from simple models to
quantum computers and
Google matrix

L1: Simple models of classical and quantum chaos

L2: Anderson localization in presence of nonlinearity and interactions
L3: Quantum chaos in many-body systems and quantum computers
L4: Google matrix and directed networks
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L1: Simple models of

classical and quantum chaos

Poincaré (1890) - Einstein (1917)
Chirikov standard map: classical and quantum
@ Classical map (Chirikov 1969, 1979):
p=p+Ksinx, X=x+p
o Quantum map (kicked rotator) (1979)
7/} — @ ip /Zﬁe |K/f7cosx1/} =@ iTn? /2@ —ik cosx Wb
p = —ino/ox, (T = h ~ period, k = K/h, K = KT)
@ Hamiltonian classical/quantum chaos:
H(p. %) = /2 + K cos & 3, d(t — m); [p,X] = —
periodic conditions i (x + 2m) = (x) => rotator
free space => cold atoms in kicked optical lattice
@ Chaos border: K < K, = Kg = 0.97163540631...
Kolmogorov-Arnold-Moser (KAM) invariant curves with irrational rotation
numbers v =< (X(t) — x(0)) > /(2nt);
most robust golden curve v = (/5 — 1)/2 (golden mean curve)
Global diffusion K > K. with the diffusion rate D =< (p(t) — p(0))? > /t
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Poincaré section: KAM curves and chaos
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K =0.5; K = Kg = 0.97163540631...; K=5
@ K < Kg exponentially narrow chaotic layers around separatrix of width
dws ~ A exp(—mA/2), A = 27 /V/K (adiabatic parameter)
@ K = Kg => universal self-similar structure on small scales
Greene (1979), MacKay (1983)
@ Chaos: exponential divergence of nearby trajectories: Ax(t) ~ e™Ax(0);
Kolmogorov-Sinai entropy h ~ In(K /2) for (K > 4) (Lyapunov exponent)
@ K > Kg diffusion: D ~ (K — Kg)3/3 for Kg < K < 4.5;
D ~ K2[1 — 2J5(K) 4 2J2(K)]/2 ~ K?[1 — (8/7K )2 cos(K — 51/4)]/2
forK > 4.5
@ Statistical description by the Fokker-Planck equation
ow(p,t)/ot =D/2 9?w(p,t)/0°p
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Chirikov criterion (1959)

two resonances; K = 0.96;
@ resonance overlap (separatrix of unperturbed resonances):

K ~25S8?>1;S = Aw /Qq
here the sum of two unperturbed resonance half-width is Aw;; the
frequency distance between resonance frequencies is AQq

@ example of the standard map: H =12/ + K )" cos(f — 2zrmt)
(action-angle variables p — |, x — 6)

@ pendulum Hamiltonian H = 12/2 + K cos ¢, separatrix at energy
H(l,0) = E = K, separatrix half width in frequency Al = 2v/K, hence
Aw, = 2Al = 4V/K, the frequency distance is AQqy = 27

® S =Aw/Qq =2VK/7 > 1givesK > n?/4 ~ 2.5.

@ Counter-example: integrable nonlinear systems, €.g. Toda-lattice
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Quantum chaos models
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Conservative systems: discrete spectrum — no local exponential
instability, regular time evolution of ¢)—function

Manifestations of classical chaos in quantum systems

Ergodicity of eigenfunctions: Shnirelman theorem (1974)
fqp;A;Z;ndx = fu Ad . (for chaotic billiards, e.g. Sinai billiard)
Bohigas-Giannoni-Schmit conjecture (1984)

for chaotic billiards the level spacing statistics is like for

the Random Matrix Theory,

Wigner-Dyson distribution Py (s) = (7s/2) exp(—ns?/4)

(Wigner surmise, time reversible systems)

Integrable billiards — Poisson distribution: Pp(s) = exp(—s)
random independent levels (Berry, Tabor (1977))

Ehrenfest time scale:

exponentially rapid spreading of minimal coherent wave packet
te ~ [INN]|/h ~ In(1/he) /D

(Berman-Zaslavsky (1978); Chirikov, Izrailev, DS (1981), (1988))
Exponentially many terms in a semicalssical expansion of wave function
p(x,t) = >osexp(—iSs/h)/VD + O(h)

Gutzwiller quantization via unstable periodic orbits
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Quantum standard map (kicked rotator) (1979)
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E=<n?/2>K=5k=20;K =5k =10,x =2n/ls, fx =< wn > 2ls/(1 + x)
@ Time evolution: ¢, = e~ T/23"  Jn_n(k)(—i)"Myn
@ Numerical simulations: via Bessel functions or fast Fourier transform
106 kicks in 1 CPU min for vector size 1024
@ quantum suppression of classical chaotic diffusion
(Casati, Chirikov, Ford, Izrailev (1979));
@ estimate of number of excited states / ~ An ~ D/h?
(Chirikov, Izrailev, DS (1981); Chirikov, DS (1986));
@ analogy with Anderson localization (Fishman, Grempel, Prange- (1982))
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Chirikov localization (dynamical localization)
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diffusion and localization: k = 30, Kq = 2k smT/Z theory ¢ = D/2 (DS (1987))
@ Estimate of localization Iength An ~ (Dt)¢ /2 all corresponding

frequencies are homogeneously distributed in the interval (0, 27),
frequency spacing Aw ~ 1/An; discrete frequencies start to be resolved
whent >ty ~ 1/Aw ~ An ~ (Dtp)4/?2 ~ D ~ ¢ (for d = 1);
here D ~ k?/2 is diffusion rate measured in number of levels squared per
time period; exponential localization of quasi-energy eigistates;

@ d = 2 s critical dimension; d = 3 delocalization for D> 1
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Anderson localization (1956)

@ Anderson model:

Entn +V (¢¥n+1 +¥n—1) = E¢n
—W /2 < E, < W /2 random on site energies;

@ d = 1, 2 exponentially localized eigenstates, no spreading; localization
length ¢ ~ 96(V /W )2 (d = 1 center of energy band); In¢ ~ C(V /W )?
with a constant C ~ 1;

@ physical origin: enhanced scattering due to quantum interference of
forward and back paths in time

@ d = 3 delocalized eigenstates for W < W, = 16.5V
@ numerics: direct diagonalization, transfer matrix technique

@ critical exponents in a vicinity of transition s = (d — 2)v;
(D~ W — WS, £~ 1/|W —W,|"; 19 ~ tat W = W)
(see more details e.g. Evers, Mirlin Rev. Mod. Phys. (2008))
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Chirikov localization: various cases
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frequency modulated kicked rotator (DS (1983), ... Borgonovi, DS (1996))

@ Quantum resonance: T = 4xm/q periodic quantum rotational phases

e~T(+)*/2 (kicked rotator/particle)

ballistic propagation like is perfect crystal
@ Frequency modulated kicked rotator:

H = Ho(n) + K(t)V(0) X, 6(t — m); Ho(n) = n?/2 or random;

V(60) = cosf, K(t) = K[1+ e >0~ cos(wmt)], het
@ Lloyd model V = —2tan—1[2k(cos @ + cos(wst) + cos(wyt)]

(effective 3d Lloyd model)
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Cold atoms experiments for quantum chaos

the atomic state as y,(x,1)|g)+y.(x,1)e ~1ue) with
equations of motion

oy, P h? az'l’g hQ

ih e W B 2 coslk, (x —ALsinw?) 1y, ,
oy, h? ’y,
' - +hoLve
Ih a‘ M axz hé‘uy
hQ

~=5 coslk, (x — AL sinwt )]y, .

(see e.g. Graham, Schlautman, Zoller (1992))
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Cold atoms experiments for quantum chaos

Here we neglect spontaneous emission from the upper
atomic level, which is justified for sufficiently high detun-
ing 8, =wo—w;; N/2=d6¢/h is the Rabi frequency.
Adiabatic elimination of the excited-state amplitude with
the assumption that the detuning &, is large compared to
the Rabi frequency 0 and the excited-state kinetic energy
term leads to

Oy, _ _ A’ 3’y
ot 2M 9x?
_ hﬂcﬂ'

4

ih

cos’lk; (x — AL sinwt)] Ve

where Q5= Q?/8, is the effective Rabi frequency. (Note
(see e.g. Graham, Schlautman, Zoller (1992))
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Experimental realization of kicked rotator

by Raizen group (1995)
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K =11.6 =KT, het =T =2 => 1.5us, { = D/2 = k?/4 ~ 8.3 (Raizen et al. (1995))
@ Cold sodium atoms in a kicked optical lattice: 10° atoms (Ax ~ 0.17mm,
Ap =~ 4.67k_ at lattice recoil k. (589nm), fier = 8w T, wy = hkLZ/ZM)
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Anderson transition with frequency modulated
kicked rotator by Garreau group (2008-2011)
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hett = T = 2,89, T = 27.7us, w12/2w = V5,13 (Garreau et al. (2008))

@ Cold sodium atoms in a kicked optical lattice: 107 atoms, Teoo = 3.2uK;
Mo ~ 1/Ap is probability at zero momentum
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Anderson transition with frequency modulated

kicked rotator by Garreau group (2008-2011)

8| 600,
g (a) ? (b)
24 e 5400 ' FIG. 3 (color online).  Finite-size scaling applied to the results
S 2 200 4' of numerical simulations (top) and to the experimental results
0 4 (bottom). Graphs (a) and (c) emphasize that all data points
0 o Ny corresponding to the quantity A(k, 1) = 1, 2(K, )¢ %/ obtained
R K7 g for various values of K and r can actually be described by a

scaling function f(X) depending only on the variable X =
&(K)1 '3 The finite-size technique makes it possible to deter-
mine both f(X), shown in (a) and (c), and the scaling parameter
£(K), shown in (b) and (d). Close to K., the behavior of £(K) is
well fitted by Eq. (2) (dashed lines), giving K. = 6.6 £ 0.1
(simulation) and K, = 6.4 = (.2 (experiment). The critical ex-
0 05 1 15 2 25 4 5 6 7 8 9 ponent is » = 1.60 £ 0.05 (simulation) and » = 1.4 % 0.3 (ex-
(™) g periment).

scaling and critical exponent of Anderson transition (Garreau et al. (2008))

@ Anderson transition for atomic matter waves

(Quantware group, CNRS, Toulouse) XXVII Heidelberg GPDays, Oct 4, 2011 14/48



Boltzmann - Loschmidt dispute

on time reversibility (1876)

* irreversible kinetic theory from reversible equations

| REPU PIII\UHI} RRE T( H

Sitzungsberichte der Akademie der Wissebschaften, Wien,
11 73, 128 (1876); 75, 67 (1877)
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Time reversal for the Chirikov standard map
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BESM-6 computation, rescaled energy or squared momentum vs. time t:
K =5, i =0 (left), s = 1/4 (right)
(DS (1983))
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* Experimental realization of time reversal:

spin echo (E.L.Hahn (1950)); acoustic waves (M.Fink (1995));
electromagnetic waves (M.Fink (2004))

* Loschmidt cooling by time reversal of atomic matter waves

1 — —
1 = i
08 F - B
0.5 0.5 <
0.6 |
) 0 PR TN 0 wlillall o
E -30 =15 0 15 30 =30 =15 0 15 30
0.4 P p 1
0.2
/\\ 4 ey //\
[ 4 \ \
o N\ X . AN
—0.015 —0.01 —0.005 0 0.005 0.01 0.015
B

proposal of time reversal in kicked optical lattices:
k = K/h, h = 41 + € (forward), i = 47 — ¢ (back) and k — —k;

Fig: k = 4.5, = 2,t, = 10, kg To/Er = 2 x 10~* (red), ks To/E: = 2 x 10~° (blue);

momentum S and energy E; are give in recoil units
(Martin, Georgeot, DS (2008))
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* Time reversal of Bose-Einstein condensates
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The Gross-Pitaevskii equation with kicks:
5 2 2
ihg = (—f—m% —g|v[? + kcosx 5T(t)) ¥
Left: same as in previous Fig. for g = 0,5, 10(insets), 15, 20 (top to bottom), (t = 0);

Right: cooling ratio T /T for g = 0 (blue curve), g = 10 (red)
(Martin, Georgeot, DS (2008))
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* Loschmidt paradox for Bose-Einstein condensates

(Ind)

Soliton initial condition (Zakharov, Shabat (1971)):

feXP('Do(X Xo—Pot/2)+ig%t/8)
b(x,1) = cosh(§ (x—xo—pot))

Left: time resersal of solitonatg = 10,k =1, T = h =2,K = KkT = 2,t. = 40 inside
chaotic (left inset) and regular (right inset) domains; line shows divergence given by
the Kolmogorov-Sinai entropy h = 0.45. Right: Poincaré section at K = 2

But the real BEC is quantum and should return back since the Ehrenfest time
te ~ | Infigri|/h ~ INN/2h ~ 13 for BEC with N = 10° atoms
(Martin, Georgeot, DS (2008))
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Time reversal of atomic matter waves

by Hoogerland group (2011)

Momentum (recoils)
atoms (arb.units)

q 210 0 10 °
Kick number p(hk)
k =2 —3, T = 4r +£ ¢ (Ullah, Hoogerlan (2011))
@ Ultracold 6’Rb atoms BEC: 10* atoms, Tl = 50nK,
A =27 /k. = 760nm, € = 1; 5 + 5 kicks; right panel shows zoom near
initial distribution shown by red dotted curve (initial/final width is
0.43/0.21 recaoils; full/dashed curve for experiment/numerics).
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Frenkel-Kontorova model (1938)

Schematic presentation of the Frenkel-Kontorova model: A chain of particles with their
mean separation ag interacting via harmonic forces is subjected to the action of an
external periodic potential with period as and amplitude K

2
H= Z (‘;—T) o 06 = Xi_zl ~20)° + K cos(x)

Upot

The ratio v = ap/as defines the rotation number.

see details in O.M.Braun abd Yu.S.Kivshar, The Frenkel-Kontorova model: concepts,
methods, adn applications, Spriner, Berlin (2004)
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FK model: Aubry sliding-pinning transition

Static minimal energy equilibrium configurations are given by conditions

CIUpot
dXi

=0, i=-00,...,0,...,00 (2)

This conditions can be written in the form of the Chirikov standard map
pi1 = pi+Ksin(x)
Xiv1 = Xi + Pit1,

[S.Aubry (1978-1983), I.C.Persival (1979)].

For irrational winding number v the chain can freely slide if K < K¢, and is pinned for
K > K¢, that corresponds for the standard map to the regimes of regular and chaotic
dynamics.

This critical behavior is known as Breaking of analitycity or Aubry transition.

For v = (/5 — 1)/2 (the golden mean) the critical point is at K = Kg = 0.971635. ..
Phonon spectrum of oscillations v = ck at K < K¢,
gaped optical phonons v? = A? + (ck)? at K > K,
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FK model: dynamical spin glass
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Left: Integrated number of equilibrium configuration states N¢s as a function of the
energy difference AU between the energy of configuration U and the ground state
energy Ug, counted per one particle. Here the number of particles is s = 89 and the
number of wells r = 55 for K =5 > K¢ and for K = 2 > K¢. bands. All equilibrium
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configurations are counted. Right: devil’s staircase hull function at K = 2 (Zhirov,

Casati, DS (2002))
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ntum Frenkel-Kontorova model

Quantum effects:

@ Quantum instanton tunneling between degenerate classical configurations,
forming the true quantum ground state, the vacuum state.

@ The energy spectrum is given by quantum excitations of this vacuum state.
@ The kinetic energy of particles is nonzero even in the ground state.

Zero temperature Quantum Phase Transition:
melting of pinned state at /1 = hc

@ Rearrangement of spectrum
of elementary quantum excitations.

@ Vanishing phonon gap.

@ Melting of pinned phase and
emergence of sliding regime.

v(k) and k are the frequency and
the wave number of elementary excitations.

(Zhirov, Casati, DS (2003))
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Wigner crystal in a periodic potential: ions

Experiments with cold 2*M™* ions in a quadrupole storage ring:
G.Bikl, S.Kassner and H.Walther, Nature 357, 310 (1992))

Observed structures include the one-dimensional Wigner crystal,
zig-zag and helical structures in three dimensions with up to thousands of ions.
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Cold ions for quantum computing

The artist's view

Proposal Cirac-Zoller (1995); Experiments of the Blatt group at Innsbruck
(J.Eschner lecture at Varenna school 2005)

lons in a global oscillator potential, at to 8 qubits has been realized.
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Wigner crystal in a periodic potential

The dimensionless Hamiltonian has the form:
N, P2 1

H= L _Kcosxi)+ Y ——— 2
where P;, x; are ion momentum and position, K gives the strength of optical lattice
potential and all N ions are placed in a harmonic potential with frequency w. To make a
transfer from (2) to dimensional physical units one should note that the lattice constant
d in K cos(x;/d) is taken to be unity, the energy E = H is measured in units of ion
charge energy e?/d. In the quantum case P; = —ikd/dx with dimensionless #
measured in units 7 — //(ev/md), m is charge mass.

Related map:
Pit1=Pi +KI(Xi), Xiy1 =X +1/v/Pit1, (3)

where the effective momentum conjugated to x; is pi = 1/(x; — x;_1)? and the
kick function is Kg(x) = —K sinx.

For the Frenkel-Kontorova model the equilibrium positions are described by

the Chirikov standard map (1969-1979): pi.1 = p; + K sinX;, Xi11 = X + Pi+1
with K. = 0.971635... for the golden mean density v = (/5 — 1)/2.

Garcia-Mata, Zhirov, D.S. (2007
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Fig. 1. (Color online) Functions related to the dynamical
map (2) obtained from the ground state equilibrium positions
2, of N = 50 ions for w = 0.014 at K = 0.03 (open circles,
left column) and K = 0.2 (full circles, right column). Pan-
els show: the kick g(x) function (top); the phase space (p,x)

of the map (2) with g(x) = —sinz (green/gray points) and
actual fon positions (red,/bla s) (middle); the hull func-
tion h(z) (bottom). The ion positions are shown as ¢ = z,

(mod 27) for the central 1/3 part of the chain.
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Quantum melting of Wigner crystal

20 FF&) | (@ Formfactor of charge density
* g F (k) =< | 52, exp(ikg (1) >
|

,A_. (a) The classical incommensurate phase

10 |-

0 [l bdanp i L 2 at K = 0.03, = 0, arrows mark the peaks
| F(k (b) at integer multiples of golden mean density
20 vg. (b) The pinned phase case at K = 0.2

for 1 = O (bottom black curve), 7 = 0.1
(red curve shifted 10 units upward), h = 2
(green curve shifted 20 units upward, for
10 “LLNJ V/\J L“AN“VWN\W clarity F (k) is multiplied by factor 5);
temperature is T = 2/400 < K. The

quantum phase transition takes place at
0 AIJLA- AN A oy h hc%l

— SLIDING at 1 < v, PINNING at v < ve1
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Wigner crystal in snaked nanochannels

Left: R.Little (1964) organic conductors/superconductors;
Right: Zhirov, DS (2011) Wigner snake sliding
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Wigner snake sliding

We take a finite number of electrons N for L periods of a channel of finite
length. In numerical simulations we put the channel on a cylindrical surface in
3D with electron coordinates being x; = Lsin(s;j/L), yi = L cos(sj/L),

z = asin(s;) where s; is coordinate along channel for electron i. Thus the
channel, filled by N electrons, wiggles in the z—direction making L periodic
oscillations along cylinder of radius L with periodic boundary conditions. The
Coulomb energy of the system is

E=> 1/R(s;s) (4)
1>1

where R(s;, sj) is the distance between two electrons. We find from geometry
R2(si,sj) = 4L sin’[(si — s;)/2L] + a?(sins; — sins;)2. Here we choose
dimensionless units for charge e and length, so that the channel period length
is ¢ = 27 and dimensionless amplitude of channel oscillations is a. The
equilibrium static configurations are defined by the condition 9E /9s; = 0 with
a minimal ground state energy configuration determined numerically.

The total energy E is invariant for a homogeneous shift of all electrons by
0s when the distance between nearby electrons is sj;; — S; = 2mm that
corresponds to electron density v = N /L with resonant values vy, ==1/m:
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Wigner snake sliding
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Hull function s = h(x) (a,b) and phonon spectrum w(k /N) (c,d) for incommensurate
electron densities v = N /L = 239/233 (a,c) and v = N/L = 244/233 (b,d). Here
a = 1.2 and x gives the positions s; of electrons at a = 0.
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Phonon gap: density dependence

) @ [ ®)

. )

10—k
1 10 10 1 10

N/L N/L
Dependence of the dimensionless phonon gap A/ec on the electron density v = N/L
fora = 0.7(a), 1(b), 1.2(c), 1.5(d). Here L = 89 (black), 233 (red). The straight line
shows empirical dependence A /e; o< (N/L)Y2 for (c,d), where e, = 2me®v/l = v is
the Coulomb energy.
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Phonon gap: deformation dependence
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%.6 08 10 12 14
a

Dependence of rescaled phonon gap A/e:. on channel deformation amplitude a at

various values of electron density v with the number of electrons N = 241 (black),

269(blue), 337 (magenta), 377 (red), 307 (green) at L = 233.
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Dynamical map description

An approximate dynamical map determines recursively the electron positions
along the channel. The recursion is given by equilibrium conditions

OE /0s; = 0. Assuming that a < 1 we can expand R in a that, after keeping
only nearest electron interactions, gives recursive relations between
Si_1,Si,Si+1. They can be presented in a form of dynamical map

V = v42a?(l—cosV)sin2¢,
b = ¢+V+a?sinvcos2s, %)

where v = s; — Sj_1, ¢ = Sj are conjugated action-phase variables, bar marks
their values after iteration. The map is implicit but symplectic. To check its
validity we use the values s; obtained for the groundstate configuration and
extract from them the kick function g4 = sin 2¢ from the values

V — v = 2a%g,(v)g,(¢) with gy(v) = 1 — cosv. Such a check shows that the
map indeed gives a good description of actual electron positions s; up to
moderate values of a.

Kolmogorov-Arnold-Moser (KAM) invariant curves — sliding phase
Aubry (cantori) phase — pinned phase
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Dynamical map desciption
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Map kick functions g, (¢) (a) and gv(v) (b) obtained from the groundstate electron
positions s; in nanochannel (points), full red curve in (a) shows the theoretical
dependence from the map. Here N=377, L=233, a = 0.5.
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Poincaré section and Aubry transition

0 0.5
¢/2m (mod 1)

Poincare section for the dynamical map at a = 0.25 (left panel), 0.5 (right panel).

1

.0 0.0 0.5
¢/2m (mod 1)

10

Dynamics is approximately described by the Chirikov standard map with the chaos
parameter K ~ 4a*(1 — cosVv); the KAM curves are destroyed at K > 1. At small
charge density v the parameter K is small K ~ 2a?,? < 1 that corresponds to the
KAM regime and a conducting phase of Wigner crystal.
— SLIDING at v < vcp, PINNING at v > vep

(Quantware group, CNRS, Toulouse)
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Discussion:

Kolmogorov-Arnold-Moser concept of
superconductivity in organic conductors

11 Ferroelectricity and Charge Ordering 3

(TMTTF)AsFg  (TMTTF),Br

(TMTSF,CI0,
(TMTSF),PF, 00|\

(TMTTELPF, Underdoped
| ¥ -
. . \
200 \ E
B 5 ‘e,
g ] \ N
§ 5
2@ M\ -
k| 100 \ Pseudogap e
SC \ N
L 1Se S \ > ‘o Hrar
Pressure 5 ioa | Swa0
Fig. 11.1. Schematic phase diagram of the (TMTCF);X family. SC - supercondic- Y acp 27
tivity; AFM - antiferromagnet - i.c., commensurate SDW; SP - spin-Peierls; CO o i/ ®,
charge ordering, loc ~ charge localization (CO pretransitional effect); 1D, 2D, 3D — 0 o1 02

dimensional regimes. After Dressel, Dumm et al

KAM CONCEPT: KAM curves and free sliding
correspond to a superconducting phase

induced by Coulomb repulsion in molecular wires,
this phase appears at filling factors

Vo1 <V < V2.

Hole doping (per Cu atom)
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Microwave ionization of hydrogen atoms

Experiment Bayfield, Koch (1974), Koch et al. (1988)
Hamiltonian: H(p,r) = p?/2 — 1/r + er cos wt
(atomic units, Ny ~ 66, w ~ 0.43/n3(10GHz), €o = eng ~ 0.13)

i Kepler map (E = wN)

in f
8 N=N-+ksing, _
¢ = ¢ + 2mw(—2wN)~¥2;
al k = 2.6¢/w®3, o > 1/(50wp’®)

4
7

T 0 5 T 15 7y < e

1 = M A i SE P it B

L 7 V7%
FIG. 1. The probability distribution, averaged from 80 to 120 h icl l . i

periods vs the number of photons N,=N;—1/(2n%w). Here p otonic localization:

no =100, & =end =0.04, wo=wngd =3. For each integer value of [(25 — 27T(€[Lp)2 — 3.362/w10/3
N,, open circles indicate the probability in the interval N,— 5, DS. Chiri
, Chirikov et al. (1983-91)
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Theory vs. microwave ionization experiments

Koch et al. (1988): 36GHz, ng = 45 — 80, points
0.10

. a

0.08

0.06

n&e (10%)

TN T O O U G B
— 1.0 15 20 25

theory Casati, Guarneri, DS (1988-90): quantum Kepler map (open circles);
Pn = exp(—iH)o exp(—ik cos )y, Ho = 27[—2w(Ng + Ng)] %2,

N, = —i0/0¢; delocalization border: £, = Ny = ng/(2wo) => end = w'/8uwy/8;
dashed/dotted quantum/classical curves of analytical theory
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Halley comet map

map description of comet dynamics

035 | HALLEY MAP

o.20

035

HALLEY MAP

Fig. 3a and b. Phase trajectory of map (3) in the STA (6). Initial
conditions (crosses) w, =0.29164; x, =0 (in 1986, see Table 1) a Jupiter’s
perturbation only, N = 1.5 10° iterations; b perturbation by both Jupiter

Halley map (w = —2E)

W =w + F(x),

Chirikov, Vecheslavov (1988-89): 46 appearances from history/numerics

x = t/T; Jupiter phase at perihelion,

I:max ~ 5MJ/MS

0.0¢
1
Flz) -
. .
" x
o 10
1
00/ JUPITER

Fig. 1. The full perturbation of comet Halley vs. Jupiter’s phase

diffusive life time: 107 years

and Saturn. N =4000
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Capture of dark matter by the Solar system

capture => inverse process to ionization
Let us now estimate the capture cross-section o assuming that for all DMPs the
dynamics is described by the Kepler map with fixed 3 ~ 1. Then only DMPs with
energies |w| = v?r,/kmyM = v?/v2 < Bmy, /M are captured under the condition
that g < rp (here v, is the velocity of the planet). The value of ¢ can be expressed
via the DMP parameters at infinity, where its velocity is v and its impact parameter
is r4, and hence ¢ = (’Urd)2 /2kM 13 Since ¢ ~ r, we obtain the cross-section

5  2mkMr, . (2)2 N QWTTQJM ()

o~ T~ ;
: v2 BN w Bmy

where the last relation is taken for those typical velocities, v ~ ﬂq_rgmp /M, at which
the capture of DMPs takes place (for ¢ = 1.4r, we have 8 = 5). Then Eqgs. (4) and
(9) give the captured mass Am,, of (7) with an additional numerical factor § ~ 1.

According to the above estimates, DMPs captured by Jupiter have typical veloc-
ities at infinity v ~ (8m,/M)"?v, ~ 1km/s for typical 3 ~ 5 and m, /M ~ 103,
v, /= 13km/s. This value of v is in good agreement with the numerical simulations
of Ref. 5, which give typical captured DMP velocities for Jupiter of 1km/s.

Khriplovich, DS (2009)
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