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Transmon with phase modulation

The Hamiltonian is that of a
periodically driven pendulum [9] and can be written in
the form

H=p?%/2—kcos(¢—rsint) , (1)

where time is rescaled to make © =1, and ¢ is related to
¢ via ¢(t) =¢(1)+Qelo/AC0%)sinQr. The momentum
p=¢=2eV/h Q is connected with the total voltage drop
V, across the junction by V,=V—({U/CQ)cosQtr. The
two parameters k =2el;/ACQ?* and A =2el/hCQ? de-
scribe the classical system. [, is the amplitude of the
Josephson supercurrent /s =1I,sinyg. The quantized sys-
tem contains a third dimensionless constant & =(2¢)?%/
hCQ via the commutator [p,¢] = —ik. In our units #
plays the role of Planck’s constant and corresponds to one
quantum of voltage 2e/C.

Graham, Schlautmann, DS PRL (1991) for Josephson junction;
Graham, Schlautmann, Zoller PRA (1992) for cold atoms in optical lattice
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Reduction to the Chirikov standard map
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FIG. 2. Logarithm of the time-; avcraged occupation proba-
FIG. 1. Mean square of the number of occupied levels of the bility corresponding to Fig. 1. Dashed lines give the border
cosine potential vs the number N of cycles of the external |n| =Ar/k of the classical chaotic domain and the exponential
current for A =85.0, k=15.0, and £ =1.58. falloff with the localization length /p.

fast resonance (d¢/dt = X cos t) crossing regime A\/k > 1or Iy > I, (|p| < \)
p=p—-2y7(k/VN)sing, p=¢+2rp=>p=p+Ksinx,X=x+p

Chaos border k > /w\/40; diffision D = (Ap)?/t ~ k?/X in the range |p| < A
or < V2 >12x /(+/3CQ) o A

Dynamical (Anderson) localization of diffusion: /p = 27D /hes® o< 1/,

het = 4€2/(hCQ) (k-bar); p = hegn, || ~ exp(—|n|/¢p)
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Transmon chaos vs quantum localization
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FIG. 3. Root mean square of the number of occupied levels
versus the normalized amplitude A of the driving current for the
same values of the parameters k& as in Fig. 1. Classical re-
sults, indicated by *'s, are joined by a dashed line. Another

dashed line gives the analytical result for the quantum regime.

Left: theory for JJ Graham et al. PRL (1991); right: Raizen et al. experiment
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FIG. 1. rms momentum spread in units of 2%k, as a function
of A. The parameters for this curve are Q. /27 = 22 MHz
(rms), 8./2m = 5.4 GHz, w,/2m = 1.3 MHz, k = 0.34 (rms),
and ¥ = 0.16. The straight and curved dashed lines denote the
resonant kick boundary and the quantum &-kicked rotor limit,
respectively. The data are given for a duration of 10 us (empty
diamonds) and 20 us (solid diamonds) and show that saturation
has been reached. The solid circles are the result of a classical
simulation and show agreement with the data up to a critical
value of A. Note that there are no adjustable parameters in
this comparison between theory and experiment. The dominant

with cold atoms in modulated optical lattice PRL (1994)
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Chirikov standard map quantized

classical Hamiltonian and map:

H(p,x) = p?/2 + Kcosx >, &(t — m)

p=p+Ksinx, X=x+p

Chaos border: K > 0.9716..., diffusion D = p?/t ~ K?/2;

Kolmogorov -Sinai entropy (Lyapunov exponent) A = In(K/2)
N k&%ﬂ/ - < N 5
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Figure 1: K=0.5 & Figure 2: K=0.971635 &3 Figure 3: K=5 &3

Quantum kicked rotator or kicked transmon:

Chirikov (1969), Chirikov (1979), Chirikov, Izrailev, DS (1981), DS (1987)
Y = exp(—ip?/2h) exp(—iK /icos X)) = Ust)

commutator [p, x] = —ih (k = K/h; T = h; K = KT

dynamical localization: £ ~ D/h? = k?/2; v o« exp(—|n — np|/£)
Experimental observation of localization with cold atoms in kicked optical
lattice: Raizen et al. PRL (1995)
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Quantum chaos detector

H=p?/2+ [K + €coz]cos 0>, 5(t — m) + o
Decay rates of density matrix elements:

2
i ; i log €
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t FIG. 5. Dependence of the relaxation rate I'; on the coupling
strength €, at 6=0.1, K=8, £=4.91X 1072 (plus), 4=1.23 X102
FIG. 4. Population relaxation, that is, evolution in time of py; (triangles), 71=3.07 X 10~ (circles), and #7i=7.67x 10~ (stars). The
(solid curve). Parameter values are as in Fig. 1. The dashed curve initial state of the qubit is |¢4)=(]0)+2|1))/\5. The straight lines
shows the fit pj=3+a sin(br+ P)exp(~I'y1), with a=0.5, b=0.404,  show I';=A€2, with A=0.56 (solid line) and I';=B/€ with B/&
$=0.405, and I} =4.36 X 1072 =2.7 (dashed line).

small coupling e: Ty =~ 'y &~ €2/2, quantum Zeno effect: My ~ 62 /T2 ~ A2/?
(omic dissipation e.g. Makhlin et al. RMP 73, 257 (2001))

similar dependece of I'1 » for qubit coupled to quantum dot or SYK black hole
with quantum chaos: Frahm, DS EPJB (2018)
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Decay rates of density matrix elements:
decay with Lyapunov exponent A ~ In(K/2) = 0.81
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FIG. 7. Time dependence of |p,| for K=4.5, €,.=e2m/2""}
=0.8, and 6=0.01. The initial state of the qubit is [¢)=(]0)
+2\1))/ V5, the initial detector state is a Gaussian wave packet with
area size # centered at p=0, f=. Data are shown for #=4.91
%1072 (plus), £=1.23x 1072 (triangles), £=3.07x 10 (circles),
#=7.67 X 107* (stars), and #=1.92 % 10~ (diamonds). The straight
line represents the exponential decay with rate given by the
Lyapunov exponent A= In(K/2)=0.81 [33].
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Quantum chaos eff detection

Vicinity of bifurcation point at K = 4, Ny = 12

FIG. 8. (Color online) Husimi function in action-angle variables
(p,6) for the detector, with —r=p <7 (vertical axis) and 0=<¢
< 2 (horizontal axis) for the kicked rotator coupled to up spin
(left) and down spin (right), at K=4.5, €.=0.8, §=0.1, =123
X 1072, t=20. The initial states of the kicked rotator and the qubit
are a Gaussian packet centered at the fixed point p=0, #=m and
[h)=(|0p+|1))/ V2. Color represents the density from blue/black
(minimal value) to red/gray (maximal value).

(LPT Quantware group, CNRS, Toulouse) OCTAVES kick-off 11 Feb 2022 8/12



-efficient detection

Chaotic regime K = 8, Ny = 12

(LPT Quantware group, CNRS, Toulouse)

FIG. 10. (Color online) Hypersensitivity of the Husimi function
on the spin value for K=8, €=0.4, 6=0.2, and =123 X 1072, From
top to bottom r=0, 4, 8, 12. The left plots are for up spin, the right

ones for down spin. The initial states of the kicked rotator and of

the qubit are a Gaussian packet centered at the fixed point p=0, &
=qr and [,)=(|0)+[1))/y2. The color code is as in Fig. 8.
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Transmon (pendulum) Separatrix detector and

quantum synchronization of qubits
* Hamiltonian H = p?/2 + (K + €;0;) cos X + do
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close to experiment (standard map K = 0.5 < 1)
Lescanne et al. Phys. Rev. Appl. 11, 014030 (2019)

* Quantum synchronization and entanglement of qubits
coupled to a driven dissipative resonator
Zhirov, DS PRL (2008), PRB (2009); Chepelianskii, DS (in progress)

(LPT Quantware group, CNRS, Toulouse) OCTAVES kick-off 11 Feb 2022 10/12



Quantum strange attractor

quantum dissipative map with quantum trajectories

p=(1—7)p+ Ksinx

» X=X+P;

FIG. 1 (color online). Top: Husimi functions in phase space for
a single quantum trajectory taken after + = 300 kicks, at K = 7,
h=0.012, y =0.5 (left), and y = 0.01 (right). Here x (hori-
zontal axis) and p (vertical axis) vary in the intervals: 0 = x <
2w, —25=p =25 (left), and —100 = p = 50 (right); the
width of the p interval is the same in both cases for comparison
purposes. The initial Gaussian wave packet is located at
((x), (p)) = (57/4,0). The color is proportional to density:
blue for zero and red for maximum. Bottom: quantum
Poincaré section (left), obtained from average quantum x, p
values for the case of top left panel and its classical counterpart
(right); here 0 = x <27 and —15 < p =< 15.

[h=0.012, v =05, K = 7]

Ehrenfest explosion (or collapse) of wave packet tg ~ | In A|/A < 1/~:
Carlo, Benenti, DS PRL 95, 164101 (2005)
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OCTAVES publications of Toulouse node
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