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@® Kolmogorov complexity, classical chaos
(Arnold cat map, Chirikov standard map) _
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® Quantum chaos in one - body systems
(kicked rotator, Rydberg and cofd atoms,
rough billiards, ... )

®) Quantum chaos in many - body systems
(complex nuclei, atoms_ quantum dots,
quantum computers ) :
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to T°A. This is a C-system (after Arnold and Avez, 1968).
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The Chirikov Standard Map

Q.wl =g+ wmw. sin(l7x)
x = xtJ | KICKED ROTATOR _
Ka = 0, 97163540631 _ Classical kicked rotator (Chirikov standard map)
rg - XnzXe o V84 _ 4 44..] 7 = ntksing
8 = 0+Tn

The system dynamics depends only on K = kT

K« 1 KAM S.ﬁmm«mcz?
K > K4~ 0.97 = chaos, classical diffusion of n

Positive Kolmogorov-Sinai entropy
haIn(K/2)>0 (K > 4).

In the chaotic component classical diffusion takes
place for K > K, with the rate D (n? ~ Dt) which
can be approximated by

.&M

D = DY for N.V#.m

(K — Kg)3
3772

for K <K <4.5
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n=n4+ \n.mh\\\ %u quH %Jrl\\..l. o@, S. N\\m\rwu.

Lag sw.c Chirikoy, Ford, Izr aitev
(1 328)

Quantum kicked rotator, with the Hamiltonian

mww

H=—+4kcosd-> 6(t—mT)
2 m

The evolution operator is

~ ~2
0= .mitnnOmm mis.ﬂ.au.

Here o = 1, n = —i d/df@ and the classical limit
corresponds to k> 1, T K 1, K = kT = const.

Quantum interference leads to localization of chaotic w ) &n.\mr,gm\_,

diffusion after diffusive time scale Chirekov standerd map A eanten
K< k> 1 7 v

* ~ D~ k2/2 o 1/H2 -

This scale is much larger than the Ehrenfest time
scale

i+

| te~Ink/h <t

on which the minimal coherent wave packet is spreaded
over classical cell.

33+

The eigenstates are exponentially localized with lo- "
calization length

D/2~ k2[4~ th M s S uanes usta W S
T =20 *.:‘S@ \\lﬁnh.hn.bs
revers:son Rmu\N
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K.Fruhm, D, 8. (1952)

VOLUME 75, NUMBER 25 PHYSICAL REVIEW LETTERS 18 DECEMBER 1995
Atom Optics Realization of the Quantum &-Kicked Rotor \ 1/
F.L. Moore,* J..C. Robinson, C. F. Bharucha, Bala Sundaram, and M. G. Raizen D—HWHHH.—HE chaos in HOQ@W Uuzum.u..nwm
Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081
(Received 21 July 1995)
‘We report the first direct d 1 realization of the q &-kicked rotor. Our system consists
of a dilute sample of ultracold sodium atoms in a periodic standing wave of ncar-resonant light that
is pulsed on periodically in time to approxi a series of delta functions. Momentum spread of the
atoms increases diffusively with every pulse until the “quantum break time™ after which exponentially
localized distributions are observed. Quantum resonances are found for specific values of the pulse
period.
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FIG. 4. Energy {(p/2kk.)*)/2 as a function of time. The . e 4 TATS :
solid dots are the experimental results. The solid line shows - QG@S_HSE localization and Breit éymﬂmﬁ regine.
the calculated linear growth proportional to the classical
diffusion constant «2/2. The .n_mmvnn H.m_._n. is the saturation Agmﬁﬂoamld.m muﬁﬁmﬂmgmﬂw ﬁuvw Stockmann et @H.v
value computed from the theoretical localization length £. The \
inset shows an experimentally measured exponential line shape :

on a logarithmic scale which is consistent with the prediction

£ = Kk?/412 = 83.
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Transition from localisation to
Shnirelman ergodicity

20

10 |

(= N =

50 55 I 60

(a) Main peaks of eigenstate in case (b) (squares for

_Qhwv_ > 0.1) shown on the energy surface H(n,l) = E,;
(b) rescaled part of (a):- diamonds show the integer

(n,1)-lattice, the errorbar size is M_QM.U_.

Energy surface for level number N & 2250, I = 95 and
M = 20; shown are the absolute amplitudes _Q,m.v_ of one
eigenstate: (a) localization for D(I, = 0) = 20; (b) Wigner
ergodicity for D = 80; (c) Shnirelman ergodicity for
D = 1000.




Dr. Dima Shepelyansky, ITP & CNRS Toulouse (I TP 9-4-01) Quantum Chaos. From Simple M odels to Quantum Computers Page 6

Mixing of mealfi-gedsr Lvess
\m. frfer- \R\A.\ Fie Aera cfilon

(74

4, — Q\}Nl\\&\\\ h\»\\nu.ca\
N=29" _ siae of Hiller’ spae
B= »rna4,—~ sx.&\\ml\k\\\ N\\No\\\ Cend

2 average
a4, = == snr — Zally —gade A ved
N %\“&hh,x\&

q - wl%hﬂ%\&&.\ n.\QV\N\nW&«\\\ &Q\&\%
EEwN L
. expectetion

[ ]
ML T T
m:an\.am\& ' = Jovo (&s in Shor %&\.\&:‘C
by vt K => 4, ~ 70 yor
Ido < PRy ), *.u%h..%%.;
A~ 4K (R~200A4, 25304 )
. Kane ¢7998)

== Muf\snwkva:e\b‘Nwﬂ
Reakl NDWN.T.. rN ~ Wbo B E
Geotgeot, D. S (1929

n

Abery & ferion

Lo quan fum chaos
7 7

S w20 12— o\a“%\\ ,m.\h\m&\pn

s?%x@\ (/964 -5%)
,\&ﬁ\r\\w\s S I8 §M\Q

7wo l%onﬁ\ rafure B\
S fer—action (7TBRTM)
Fremeh , x\?\% (49 2o - 7721)

%n &x\&h\ Flores
m.\ﬁvuﬂv fnteraction Eoaet A = &\\N.

Weak (nteraetion \

kb\mm\ (1290 )

Lo~ 4. |

\‘ A w\n.\..n.x\tn Eetween
‘nteraction \3&%\\\ coupled
matrix Lot
elemeny SFares




Dr. Dima Shepelyansky, ITP & CNRS Toulouse (I TP 9-4-01) Quantum Chaos. From Simple M odels to Quantum Computers

Page 7

kv\&\\\ et Ferior
Vv

A \\N Few - (ndlepende wr confirialls PP

° ,w\uk&\ Feeles wi'll, ranolon

Z -\Q&% s Sl raction .

I ! D.S., Sushtov /292
2 — Z 2’

Ao ~d3>> 4,
3 3

(M) ord tals

VOLUME 64, NUMBER 26 PHYSICAL REVIEW LETTERS

25 JUNE 1990

Onset of Chaos in Rapidly Rotating Nuclei

Sven Aberg
Joint Institute for Heavy lon Research, Holifield Heavy lon Research Facility, Oak Ridge, Tennessee 37831

and Department of Mathematical Physics, Lund Institute of Technology, P.0. Box 18, 5-22100 Lund, Sweden w0
(Received 14 August 1989)

Next we add the residual interaction. The significant
part of H = H1+ H 3 is the two-body part,

152 py Hy=1 M Valmyma i)
¢ =0.58 [1=50° Iy g
E gc= 3- 3.5 MeV

T T T T 1 T

t ot
*lag,am )21, =0.0mt 0 m0.

In the present calculations we assume all matrix ele-
ments to have the same absolute value, ¥ = + A, where

a3 12 :.... A is treated as a parameter,. and the sign is chosen ran-
sy 1 domly in order to avoid coherent effects.® The three-

08 P body force is included in order to account for truncation

F i effects. Its strength is, rather arbitrarily, taken to be ¥;

04 - p = £0.001A. The diagonalization is performed including

the lowest 500 states at given spin (thus given signature)
and parity. These states cover the energy region 0-3.6
L and 0-2.3 MeV above the yrast state in the superde-

e TBRIM

m .I..\.M\X. \TLB
K = Afn-it)(m-—n)lm-n-1)
4

4, =

c

m..un.%.m
Cx~ 0 #
C =0 ¢

8
3
U =Ca =C B =
(

41l

- @ \mw.!a“.a?._.
o
A g or
A - %thu\.a.-}.a\m
m\kd...mﬁ
U - Zwo - monMN

martrix
elemeny

£¢ NNHQ:wy

fen®

uﬁn\»\a\\\ D. S rros))
\\\@WW [/922))
(3d Auolerceoecn &A\O\N.\x

FIG. 3. A; statistics for different strengths A of the two-
body force. The calculation has been performed for the super-
deformed "Dy at /*=50% for rotational states in the

excitation-energy interval 3-3.5 McV above yrast (about 250

bands). .

- In conclusion, we have utilized 2 “realistic” nuclear
model to study the onset of chaos in rapidly rotating nu-
clei. GOE distributions (“quantum chaos™) were found

to smoothly set in_as the strength of the two- in-

feraction A increases to a value around the average level
tween 2p-2h neighbors. Large shell effects in
the onset of chaos were found. The dispersion in rota-
tional frequency was found to increase approximately
lincar in ‘angular momentum, arrd to be considerably
smaller for the superdeformed '#Dy than for the
normal-deformed '®#Yb. We have addressed the ques-
tion of how chaotic dynamics is related to a macrescopic
quantum observable: It was found that the standard de-

formed "Dy and the normal-deformed '®*Yb, respec-
tively (for /*=50*).

diagonalization of Eq. (1) mix over an energy region of
unperturbed states T, that is rather well described by
Fermi's “golden rule,” [, 7274 p3p30(Eexe); e, an in-
crease of the coupling length is obtained cither by an in-
crease in A o in Exe. In the Fermi-gas model

xEX27 and an increase of the excitation energy can be
approxil ly simulated by an i in the strength”
of the two-body interaction A in such 2 way that s is kept

constant. The study may then be performed at energy

intervals where the level statistics is good. Although this

procedure presumably does not account for all possible

excitation-energy effects, it is simple and feasible for nu-

merical calculations.

. Prog. Part Nucl Phys., Vol. 28, pp. 11-47, 1992
Printed in Great Britain. All rights reserved.

Quantum Choas and Rotational Damping

s. ABERG

Department of Mathematical Physics, Lund Institute of Technology, Box 118, 5-221 00 Lund, Sweden

0146-6410/92 515.00
® 1992 Pergamon Press Lid
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Figure 9: NND for:the:same cases: as oegum..nﬂn& in fig. 7 but restricted noxwrn excitatic
energy interval 3.0.- 3.5 MeV. The solid curves carrespond. to Poisson and GOE results.
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FIG. 2. Dependence of the rescaled critical interaction
strength U./B, above which P(s) becomes close to the
Wigner-Dyson statistics, on the number of directly oosﬁma | Mo e h\“ﬁv«\\.
states K for 4 < m < 80 and 1/40 < n/m < 1/2. The line
shows the theory (3) with C' = 0.58, after [40].
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FIG. 1. Transition from Poisson to WD statistics in
the model (1) for the states in the middle of the
energy band (+6.25% around the center) for n=12 :
J/Ao = 00277 = 1003 (dashed line histogram});
J/Ao = 0.48,n = 0.049 (full line histogram). Full curves
show Pp(s) and Pw(s); total statistics Ns > 2.5 x 10%, num-
ber of disorder realizations Np =100, &= a,
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FIG. 1. Density of multi-qubit states of (1) as a function of
total system energy E for J = 0. Heren = 16 and 6/Ao = 0.2.
The two extreme bands at F/Aq = 16 contain only one state
and are not seen at this scale.
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- coupling strength J for n = 15 for the states in the middle
3 =1 “ of the energy band. The straight lines show the theoretical
m, = hﬁ = u dependence (5) with I' = 1.3J°n/§ and the strong coupling
W <s ; : regime with I' ~ J; Np = 20. Lower insert: example of

the local density of states pw (3) for J/é = 0.08; the full line
—_ , shows the best fit of the Breit-Wigner form (4) with I' = 0.104.
- %. /3 un VV b n ’ ’ Upper insert: example of the local density of states pw (3) for

J/é = 0.4; the full line shows the best Gaussian fit of width
I' = 0.644.
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FIG. 3. Two quantum noﬂmﬂ, eigenstates of model ; 0.8 0.9 1.0 1.1 | 12 |
(1) in the basis of noninteracting multi-qubit states, i.e. ; - OOA_._V
Wi =< il > _n as a function of noninteracting multi-qubit : FIG. 5. Dependence of log(J./8) (diamonds) and
energy E; for n = 12 with Je/Bo = 0273 (see text): (a) log(Jes/8) (triangles) versus log(n); the variation of the scaled
J/Bo =0.02; (b) J/bo =048; &= 4o i multi-qubit spacing (log(Ar/§)) with log(n) is shown for com-
“ parison (+). Dashed line gives the theoretical formula (7)
i with C, = 3.3; the solid line is Jos = 0.41§/n; the dotted
Bre:t - S\W\Pﬂ.\ \.w\.\.&h\\\ Wt . curve is drawn to guide the eye for (+). After [25].
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FIG. 7. Time-dependence of the quantum entropy S(¢) for
J/6 =04 > J./6 and n = 16 (diamonds), n = 15 (squares),
n = 12 (triangles), n = 9 (circles), n = 6 (*). Average is made
over 200 initial states ¢p randomly chosen in the central band.
Insert shows the same curves normalized to their maximal

value. After [25].
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Distribution of the occupation numbers n; as a function of

the qubit detunings d;, for one random realization and one

eigenstate m = 5/100 (left/right). Solid line shows the

Fermi-Dirac distribution with effective temperature Trp.

Number of qubits n =24
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First quantum paper of the Millennium III

http://arXiv.org/abs/quant-ph/0101004

Quantum Physics, abstract

quant-ph /0101004

From: SHEPELYANSKI Dimitrii < dima@irsamc.ups-tlse.fr>
Date: Mon, 1 Jan 2001 00:01:12 GMT (103kb)
Quantum Computing of Classical Chaos:
Smile of the Arnold-Schrédinger Cat

Authors: B.Georgeot, D.L.Shepelyansky (CNRS,Toulouse)
Comments: revtex, 4 pages, 4 figures
Subj-class: Quantum Physics; Chaotic Dynamics

We show on the example of the Arnold cat map that classical
chaotic systems can be simulated with exponential efficiency on a
quantum computer. Although classical computer errors grow
exponentially with time, the quantum algorithm with moderate
imperfections is able to simulate accurately the unstable chaotic
classical dynamics for long times. The algorithm can be easily
implemented on systems of a few qubits.

Paper: Source (103kb), PostScript, or Other formats
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PHYSICAL REVIEW A VOLUME 54, NUMBER | JULY 1996
Quantum networks for elementary arithmetic operations
Vlatko Vedral,” Adriano Barenco, and Artur Ekert

Clarendon Laboratory, Department of FPhysics. University of Oxford, Oxford OX1 3PU, United Kingdom
(Received 3 November 1995)

a a' ; abc|a'bc

. a a’ (0001000

6o b b 001001
, , |010[010

T F ° lorilori

ala’ 0o0lo o 1 00{100
0|1 0110 1! c ¢’ 1011101
110 10|11 (c) 110/ 111
@) 11110 111[110
NIy Comkrol- .
Ry Ad ._.oﬂ.won,

FIG. 1. Truth tables and graphical zpresentations of the el-
ementary quantum gates used for the construction of more compli-
cated quantum networks. The control qubits are graphically repre-
sented by a dot, the target qubits by a cross. (a) NOT operation. (b)
control-NoT. This gate can be seen as a ‘‘copy operation’’ in the
sense that a target qubit (b) initially in the state 0 will be after the
action of the gate in the same state as the control qubit. /<) Toffoli
gate. This gate can alsc be seen as a control-control-NOT: the target
bit (¢) undergoes a NOT operation only when the two controls (a
and b) are in state 1.

l
SUM
I
CARRY

(a)
(b)

FIG. 3. Basic carry and sum operations for the plain addition
network. (a) the carry operation (note that the carry operation per-
turbs the state of the qubit 5). (b) the sum operation.

[

FIG. 2. Plain adder network. In the first step, all the carries are calculated until the last carry gives the most significant digit of the resui

" Then all these operations apart from the last one are undone in reverse order, and the sum of the digits is performed correspondingly. No

the position of a thick black bar on the right- or lefi-hand side of basic carry and sum networks. A rstwork with a bar on the left sic

represents the reversed of el Yy gates embedded in the same network with the bar on *  right side.
A6 ny  gusatem gotes
Vs.

%N\Mbﬁwb e lassical gpe ratious

AOW-¥aaay

a+bh
mod N

FIG. 4. Adder modulo . The first and the second network add a and b together and then subtract N. The overflow is recorded into th
emporary qubit |r). The next network calculates (@ +b)mod¥N. At this stage we have extra information about the value of the overflov
stored in |¢). The last two blocks restore |7) to |0). The arrow bsfore the third plain adder means that the first register is set to [0} if the valu:
of the temporary qubit |¢) is | and is otherwise left unchanged (this can be easily done with control-NOT gates, as we know that the firs

- egister is in the state |N)). The arrow after the third plain adder resets the first register to its original value (here |N)). The significance o

T

he thick black bars is explained in the caption of Fig. 2,
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o
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Figure 1: Dynamics of Arnold-Schrodinger cat simulated on a classical (left)
and quantum computer (right), on a 128 x 128 lattice. Upper row: initial
distribution; second row: distributions after 10 iterations; third row: dis-
tributions at ¢3, = 20, with time inversion made at ¢, = 10; bottom row:
distributions at #5. = 400, with time inversion made at t, = 200. Left:
inversion is done with classical error of one cell size (¢ = 1/128) at ¢t = ¢,
only; right: all quantum gates operate with quantum errors of amplitude
€ = 0.01; color from blue to red gives the probability |a;;|% n, = 7.

Cun total L0 gubots

Pentium Nuwantiwun
£ 111 T
. -42 -2

£ = 70

10

N% .TN*K..J\..

400 return

\Qh oré’ts

Figure 1: Dynamics of Arnold-Schrodinger cat simulated on Pentium IIT (left)
and Quantium I (right). Image is shown on a 128 x 128 lattice. Upper
row: initial distribution; second row: distributions after 10 iterations; third
row: distributions at ¢5, = 20, with time inversion made at t, = 10; bottom
row: distributions at £5, = 400, with time inversion made at ¢, = 200. Left:
inversion is done with classical error ¢ = 1071% at ¢t = ¢, only; right: all
quantum gates operate with quantum errors of amplitude € = 0.01; color
from blue to red gives the probability |a;; 2. ng = 7. Quantium I operates
with 20 qubits.
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FIG. 2. Quantum fidelity f of Arnold-Schrod: ger cat a:
a function of time ¢ for quantum errors ¢ = 0.003, 0.01,0.03
(dashed and dotted curves from top to bottom respectively).
Initial state: cat’s smile as in Fig. 1 (dashed cuvves) and line
z = 1/2 (dotted curves). Full curve shows the drop of fidelity
when a minimal classical error is done at ¢ = 200 (see text).

1
12t :
c.8

0.6 |

0.2

o . , .
20
o 5 . 10 15 g,

FIG. 3. Classical fidelity f.(2¢.) vs. time t. when the min-
imal classical error (e = 1/128) is made (full curve). Dashed
curve shows the same f. obtained by the quantum computer
with imperfections of amplitude ¢ = 0.01 (see text).
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FIG. 4. Fidelity time scale ¢; as a function of €ng:
ng = 4 (circles), 5 (squares), (diamonds), 7 (triangles

up), 8 (triangles down)); filled symbols are for quantum er-
rors (0.003 < € < 0.1), open ones are for classical errors
(0.003 < € < 0.1); the full line gives t; = 0.63/(e?n,). In-
set: - probability distribution W, in |z > at the moment of
return ¢2, = 400 for time inversion at ¢, = 200, and quantum
imperfections ¢ = 0.03, for ng = 7 with z = 1/2 at ¢t = 0.

fty) = 0.5
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Z
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\ / Quantum computer turning

the arrow of time-
S — £=10"0)

Boltzmann-Loschmidt controversy | <¥% £=1%)

A legend tells that once Loschmidt asked

Boltzmann on what happens to his statistical
theory if one reverses the velocity of all particles, £= Nﬁ-h\ 4)
so that, due to the reversibility of Newton’s 0 . , _ . _ .
equations, they return from the equilibrium to a

bo%@&mwaﬁﬁ initial state. Boltzmann only

lied “th di t them” Figure 1: Diffusive growth of the second moment < y? > of the
repilie en go and 1nver em

distribution w(y, t) generated by the Arnold cat map with L = 8,
simulated on a classical (Pentium IIT) and quantum (“Quantium
I”) computers. At t =t, = 35 Maxwell’s demon inverts all veloc-
ities. For Pentium III inversion is done with precision €= 10—*

(from Mayer and Goeppert-Mayer Statistical (red line) and €= 10~® (green line); 10° orbits are simulated,
mechanics, Wiley & Sons, N.Y. 1976) initially distributed inside initial distribution. For Quantium I,

: the computation is done with 26 qubits (nq = 7,n4 = 10)(blue

. +\oﬁ 9 line); each quantum gate operates with imperfections of ampli-

_ ) tude €= 0.01 (unitary rotation on a random angle of this ampli-

/ \ﬂV )ﬂ cventce \ tude). The black straight line shows the theoretical macroscopic

diffusion with D = 1/12.

%ln %+Xm§§\mf X=kty CGeodd)

22
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4 R - R

. Classical and quantum. errors
Thermodynamical distribution PENTIUMTIT QUANTIUM ._...
0.4 .
w(y) t=0
03 |
€=40"* £3402
02}
01 | te35
0
== Pentium IIT with 10° orbits _
o e Quantium I with 26 qubits (lattice 128 x 1024)
= theoretical wy(y) t=70
= Convergence to thermodynamical distribution ..
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Scaling of quantum errors

) L i L
0 0.2 0.4 0.6 e2 Dn~ 0.8

Universality of fidelity f = | < te|tpo > |* as a
function of tne? for Quantium I

4<n<T7; 1072<e<107!

Ts ~ 0.5/ (ne) -

n number of qubits, ¢ quantum errors

ts defined by f(ts) =0.5

o

~

27

\

# Macroscopic system

Ny = 6.022 x 10?® (Avogadro’s number) requires
only 125 qubits for L = 8

In this case, if € = 0.01, quantum errors will be

small up to a time ¢ =~ 150

Boltzmann’s demand can be performed !

Applications in cryptography?

28
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God. does not %& dice

Albert Einstein

he simply
controf -not-s them.




