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Arnold - Schrodinger cat algorithm

* periedic
=y + z(modl) ..L_,EF h\\_. kicks

z + y(modl)  time inversion at t = t,

81 Q|

Discretization on a grid N x N with N = 2™
where ng is number of qubits for Bmumﬁm_,

|z; > or |ly; > z; =4/N, y; =j/N,0<4,j<N-1
(i,7 are integers)

Initial classical distribution in the phase space (z,y)
is coded in the initial wave function:

P(t =0) = X; jajlz > |y; > |0 > w

with a;; = 0 or 1/3/Ng where Ny = O(N?) is

the number of classical orbits; workspace register
|0 > has ng — 1 qubits

# Quantum algorithm is based on modular additions
(see e.g. V.Vegral, A.Barenco, A.E.Ekert

Phys. Rev. A 54 (1996) 147),

it uses 8ng — 10 C-NOT gates and

8ng — 12 C-C-NOT (Toffoli) gates.

In total one map iteration requires:

O(ng) quantum gates

versus 0(22m) classical operations.

The Hilbert space has Ny = 231 states.
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Figure 1: Dynamics of Arnold-Schrédinger cat simulated on a classical (left)
and quantuny computer (right), on a 128 x 128 lattice. Upper row: initial
distribution; second row: distributions after 10 iterations; third row: dis-
tributions at tor = 20, with time inversion made at t, = 10; bottom row:
distributions at tar = 400, with time inversion made at t, = 200. Left:
inversion is done with classical error of one cell size (e=1/128) at t =1,
only; right: all quantum gates operate with quantum errors of amplitude
e = 0.01; color from blue to red gives the probability _a&_w., ng="T7.
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FIG. 1. Fourier coefficients |P(kz,ky)[* of Liouville distri-
bution for —N/2 < kzy < N/2, initial state as in Fig.1 of
[1). Left column: cat map at t = 3,5,7 from top to bot-
tom for ng = 10. Top right: same at &t = 5, ng = 7. Mid-
dle right: |P(ks,ky)|* for perturbed cat map (see text) at
t = 5, ng = 10. Peaks are shown by circles; maximal circle
size marks peaks with 1 > |P(kz,ky)|* > 0.1, circles twice
smaller those with 0.1 > |P(ks,ky)|* > 0.01, etc... Bottom
right: coarse-grained image of |P(kz,ky)|* (proportional to
grayness) for the data of middle right panel, n; = 4.
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Quantum computer turning
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Figure 1: Diffusive growth of the second moment < y? > of the
distribution w(y, t) generated by the Arnold cat map with L = 8,
simulated on a classical (Pentium III) and quantum Aa@ca
I”) computers. At t = t, = 35 Maxwell’s demon inverts all veloc-
ities. For Pentium III inversion is done with precision &= 104
(red line) and €= 10~2 (green line); 10° orbits are simulated,
initially distributed inside initial distribution. For Quantium I,
the computation is done with 26 qubits (nq = 7,n4 = 10)(blue

line); each a:wE_EE gate operates with imperfections of ampli-
tude €= 0.01 (unitary rotation on a random angle of this ampli-
tude). The black straight line shows the theoretical macroscopic

diffusion with D = 1/12.
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Boltzmann - Loschmidt dispute

0.6
A legend tells that once Loschmidt asked

Boltzmann on what happens to his statistical the-
ory if one reverses the velocity of all particles so
that, due to the reversibility of Newton's equations,
they return from the equilibrium to a nonequilib-
rium initial state. Boltzmann only replied

“then go and invert them" .

0.4

02 r 1

o I 1 i
0 0.2 0.4 0.6 £2 39» 0.8
Universality of fidelity f = | < ¥e|tho > |* as a

function of gvmm for Quantium I
A<n<T 10-2 < ¢ < 10-1 (from Mayer and Goeppert-Mayer,
<n<T, <e<

1 Statistical mechanics, Wiley & Sons, N.Y. 1976)

t; 7~ 0.5/(ne?)
_.L A quantum computer with 125 qubits can

perform Boltzmann’s demand for Avogadro’'s num-

n, number of qubits, € quantum errors ber of classical chaotic orbits.

@ defined/by f(ty) = 0.5 k i

27
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Kicked rotator model

The Hamiltonian is time periodic

M mnwﬁrﬁ\hammﬁ?gﬁ w

The evolution operator is
=2
£0 = o T% V@, 5y ¢

Here h = 1,7 = —id/df and the classical limit
corresponds to £ > 1,T < 1,K = kT = const.

The classical map in action/angle variables:
, M = n—-kV'(8)
= 0+ Tn (mod2r)

Rescaled classical map (y.=Tn, z = 0):

< Sl

y— KV'(z)
= z+ 7Y (mod2m)

8l
I

Examples of classical and quantum maps:

V(6) = cosf gives the Chirikov standard map and
the quantum kicked rotator
y= y+Ksinz, z=z+7y mod (7%)

V(8) = (8 — w)?/2 gives the sawtooth map i
V(z) = (22 — a?)? gives the double well map

Arnold cat map

Baker map (quantum computing of

quantum baker map Schack (1998))

Classical properties:
from Kolmogorov-Arnold-Moser integrability to
chaos and diffusion

Quantum properties: dynamical localization,
quantum ergodicity, chaos assisted tunneling
Anderso, Trans!tion
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is wg = 2V2K. The classical dynamics depends
on two parameters: K and a. The map becomes
integrable in the continuous limit K — 0.
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Schrédinger cat animated on a quantum computer
e=20 e = 0.04
Decoherence induced by noisy gates
K =0.04,a=16, ng=5
amplitude of noise: ¢ =0, 0.01, 0.02, 0.04

1.0 : :

W,

0.0
A Chepeliouskei, DS (coOming wup ) 0

Time evolution of the Schrddinger cat:
probability distribution in z—axis ( blue for zero,

Probability for Schrodinger cat to be alive W, as
red for maximum) is shown for 180 kicks (from a function of number of kicks t (W, =total prob-

bottom to ”8u in y—axis). Here K = 0.04,a = 1.6 ability for & < 0). The time dependence allows to

: ) or z, . | |
and simulations are done with nq = 5, Hilbert space determine the period Ty of chaos assisted tunneling
size N = 2"¢ = 32. The algorithm uses the gates of

oscillations (here T, =~ 90) and their decoherence
QFT, controlled phase shift QGXE and Qﬁv?&_ decay rate I'. [Raizen et al. experiment (2001)]
cB3)(y) gates; it takes O(ng) gates. Amplitude of
random unitary gate rotations is €
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Effects of static inter-qubit interactions for
operating quantum computer

The quantum computer hardware is modeled as a
two-dimensional lattice of qubits (spin halves) with
static fluctuations/imperfections in the individual
qubit energies and residual m:oﬁ-_ﬁm:nm inter- qubit
couplings. The model is nmﬂu\__uma by the many-
body Hamiltonian (B. Georgeot, D.S. (1999)):

W Hs = MHADO |_|%svo. 1M wnu M

7 “4<g
where the o; are the ﬂmc__.. matrices for the qubit 1,
and Agq is the average level spacing for one qubit.
The second sum runs over nearest-neighbor qubit
pairs, and ¢§;, J;; are randomly and uniformly dis-
tributed in the intervals [-§/2,8/2] and [—J, J], re-
spectively.

Quantum chaos border for quantum hardware:

§ 7> Jem36/ng > An~ 627 g

What happens for operating quantum computer 7

(model: gates are perfect but between gates a
propagator with Hg is applied during time 74, Qg
rotation is compensated, hence effective imperfec-
tion strength is € = 749).

Effects O_q static imperfections:

Husimi n__mﬁ_.__ucﬂ_o: for the sawtooth map

n=n-+
K =kT

m 2
I I
o o

o m\: quantum

ﬁ.ﬂ”@

ng =29

cover pege
PR L
2E& nov 04

¢ = 0.001 classical

k(@ —w), 6 =0+ Tn,mod(27)
= —-0.1, T=2#/2™, t=~ 1000,J =0
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Time scale for fidelity:
simulation of sawtooth map

noisy pates

Fidelity time scale ; as a function of ¢, for ny =9, in the

case of static imperfections (J = d (circles) and J =0
(squares)) and noisy gates (diamonds). The straight lines
have slopes —1 and —2.

The msmmm shows the dependence of t; on the number of
qubits, for e =107%, J = 0; the power-law fit (straight line)

: -2.6
gives tf X ng .
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Eigenstates of operating quantum computer:
hypersensitivity to static imperfections

e —
D

0.000 0.001 € 0.002

Variation of quasienergy (red curve) and correspond-
ing eigenstate (shown by Husimi function) of uni-

tary evolution operator of guantum sawtooth map

with strength of static imperfections e:

=0y = o—iT7% /4 (ik(0-)%/2 o—iTA? /4y = e"iBy

Here e = 0, 4 x 104, 10~3 (right top, left/right

bottom); and K = kT' = v?2,J = 0,nq = 9.

Mixing of eigenstates induced by static
imperfections

Analogy with parity breaking in the scattering of .
polarized neutrons on heavy nuclei

(Sushkov - Flambaum enhancement (1982)):

N

In the regime of quantum chaos »:.m quasienergy
eigenstates are ergodic

N
=3 Mum
m=1

With u, quantum register states and [c{™| ~ 1/vN
Imperfection induced matrix elements are
N
0)(cn
Viyp ~ (85716577565 = ¢ 3 c§m ™
m=1

and the mixing of levels takes place at

f Viyp/AE~ VN ~1 %

Critical interaction strength:

M mk?p\%%

Page 11
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Dependence of ey, at which perfect quasienergy
m_@m:mwmﬁmm become mixed by imperfections, on num-
ber of qubits ng. Here circles are for J = 0 and
squares are for the single impurity model, The curves
give the theoretical dependences e, = A~1/2N~1/2
(above) and ey = B-12N-1/2,75/2 (pelow), with

the constants A = 0.37 and B = 0.25.

For € > ey the entropy of eigenstates
, 0
(Sa = — 1 pag 10 Where pos = (957 165)12)
is exponentially large
but fidelity remains close to unity for time scales

t < ts.

b

Conclusions

(® Rich physics of classical and quantum maps
can be studied on quantum computers

with 6-11 qubits

(9 New information about classical and
quantum chaos from efficient quantum

computation

@ and also .........

Page 12
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ematical equations similar to those used by NASA for landing
spaceships on the moon — tracks _ball in orbit around a spinning
disk of numbers/+ ++ « . . « » . andthenannounces where
in this rmm<maw\:ﬁ0mﬂom a roulette ball will likely come to rest on
a still-spinning rotor. Its predictive power lies in the fact that the
computer in our shoes can play out in microseconds a game that
in real life takes a million timeg longer.
A 44 percent advantage is significantly larger than any other
gambling system extant. The payout in roulette is thirty-five to
one. For every hundred dollars invested — compounded fifty times
an hour — one can expect a tidy hourly return of $2200. The money
is sweet, but so too is the glory in beating roulette.
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