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RESONANCE PROCESSES IN MAGNETIC TRAPS®

B. V. CHIRIKOV?

Abstract—Consideration is given 10 resonances between the Larmor rotation of charged particles and their

. siow oscillations along the lines of force. Under certain conditions these resonances can resuit in 2 complete

exchange of encrgy among the degrees of freedom of the particie. so that the particic escapes from the trap.
The influence of resonancss on adiubatic processes associated with 2 time variation of the magnetic field is

also examined.

1. INTRODUCTIOXN

ONE of the methods for thermaliy insulating 2 plasma
in order to rezlize a controlled thermonuciear reaction
is the use of so-cziled adiabatic traps. or traps with
magnetic mirrors, proposed and calculated by
BuUDKER." Similar systems have been proposed by
YORK'*' and calculated by Jupp. McDoxNaLD and
ROSENBLUTH.®® Recently. considerable developments
in this direction have occurred and therefore it is of
interest 1o study further similar sysiems.

The action of an adiabatic trap is based!) on the
conservation of orbital magnetic moment of a charged
particle in a magnetic field (4 = Mr,%(Q2H) where
v, is the component of the particle velocity in a
direction perpendicular to the magnetic field H). It
is a necessary, but of course not a sufficient condition
for the usefulness of a trap that it can entrap a single
charged particle. Generally speaking the lifetime of
such a particle in the trap is not infinite because the
magnetic moment is only an adiabatic invariant. i.e.
it can change slowly and so allow a redistribution of
energy among the longitudinal and transverse degrees
of freedom of the particle and consequent escape from
the trap.

The question of the time variation of an adiabatic
invariant has been considered in a number of
papers.= However. only Kulsrup® takes his
calculations as far as concrete results for a harmonic
oscillator. obtaining

A7 AW

T (2wg)?7?
Here I is the adiabatic invariant. A is the discon-
tinuity in the gth derivative of (7). 0, and w, are the
phase and the frequency of the oscillator at the time
of the discontinuity in the derivative. The basically
unsatisfactory feature of the above expression is its
asvmptotic nature. This means that it is correct only
if 1 {evT)— 0 (T being the characteristic time for the

.
-
T

cos (20, — 27 (1.D)

® Translated by N. KEsmser from dwmmava Encrgiva 6, 630

(1959).
—————

<
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variation e(1). For finite values of the adiabaticity
parameter 1 /(wT) equation (1.1) is not always correct.
(The conditions for its applicability are given in the
Appendix.) In the particular case where «i1) is an
analvtic function, equation (1.1) gives AJj/f = 0. This
means that when 1/(wT)— 0 the quantity AJ/J tends
to zero faster than any power of the parameter 1/(cs7)
(for instance as exp (—T)). but it remains unknown
how exactly it behaves. For this reason the normally
used methods of asymptotic expansion in powers
of a small parameter such as (1/T) are not applicable
in this case.

1ni the present paper we consider a different approach
to this problem. It is based on the simple physical
model of resonances berween the Larmor rotation
of the charged particle and slow oscillations of the
particle along the magrietic lines of force.* Such
resonances are possible in spite of the differences in
frequency if the slow oscillations of the particle are
anharmonic and contain high harmonics of their
basic frequency. The action of the resonances leads
in particular to a change in the magnetic moment of

_an individual particle (ignoring collisions).

2. BASIC EQUATIONS
The present paper does not aim to produce formulae
for computation. The main attention is directed to
the physical processes taking place when 2 charged
particle moves in a magnetc trap. We therefore
confine ourselves to the study of the simple Hamil-
tonian used by Firsov'®’ (A1 = 1)

Bhpt = e

= @.n

pr=X: p,=1.
Here x and v are the co-ordinates along and across the
magnetic line of force respectively and ¢ is the Larmor
frequency. The equations of motion have the form

(=)

- bad ol
F=—(@Yy): X =—WwW=— 1"
s dx -

+ The importance of rcsonances for the change of adiabagc
invariants has becn pointed out by ANDRONOV. LEONTOVICH and
MANDEL'SHTAM.'
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Further, the motion along each of the axes will now
pe periodic: A, =A,cost. The stability of this solution
in the linear approximation is determined by the Math-
jeu equation (A=A,)

A+(1+H+1l cos 2t) A=0). - (4.6)
For 4> 1 the stable and unstable intervals of & have
approximately the same width (see, for example, Ref.

22). The centers of the intervals are given by the ap-
proximate relati

Hoap =" (nt+,)22, Huasuap=""13%n2—1,

where n>1 is an intege

In this way, the mass terms in the Hamiltonian (1.11)
actually stabilize the moti so that for H—0 the cha-
otic component is preserved only in an exponentialky
narrow layer around the separatrix. However, the sit-
uation changes fundamentally with an increase in the

-number of degrees of freedom. Let us consider, for
example, the model (1.9) with the mass addition (1.11)
but for N=3.

Passing to the actibn-a.ngle variable as for the case
N=2, we arrive at the averaged Hamiltonian

Hy=l+ L1+,
V=Iily[1+; cos 2(8,~8,) ] +1.4,[14+/; cos 2(8,~8,) ]

+1.0,[1+/, cos 2(9’_3‘)]: (4_7)

The principal peculiarity of this model is the presence
of, not one [as in (4.2)], but three resonances which are
preserved for H~0. For complete integrability of the
system two additional integrals are now needed. Nev-

| ertheless, (4.7) contains two linearly independent com -
binations of phases, so that there is only one cyclic
combination of phases and correspondingly only one ad-
ditional integral H°=1, +I,+1,. In these conditions one
. can expect a sizeable chaotic component of motion for
any H—-0. Moreover, as for N= 2, the structure of the
phase space generally does not depend on the quantity
H, which determines only the time scale. Actually,
thanks to the integral #°=const the system can be re-
duced to two degrees of freedom. Then if we carry the
scale transformation of time H%~¢ and pass to the can-
onical variables

3 ‘PI-Z(el"el)v (F:-?.(ex-el)-
Ji=I/H, l.=[./K.

the Hamiltonian of the reduced system assumes the
- form

(4.8)

A=l (1~1,=1,) (1+Y: cos )
+h(1=2=1) (14 cos g2) +1.J:(1+; cos (@y—gy)) (4.9)

and does not depend on the energy of the initial system
=H° 1f the motion of this system is chaotic, then

‘miversal chaos in the initial system will be preserved

for any weak nonlinear perturbation. This beautiful

. Phenomenon was discovered and investigated in Ref. 23

i a similar model. We remark that the KAM (Kolomo-

gorov-Arnold-Moser) theory is inapplicable in this
Case, since the unperturbed system (linear oscillator)

is isochronous. %

The investigation of the dynamics of the system (4.9)
Was carried out by means of numerical modeling. The

913 Sov. J. Nucl. Phys. 36(6), Dec. 1982

€

accuracy of the conservation of the integral & r is in the
interval from 10™ to 10™® ang does not influence the

I..ﬂ E

a0 v X L7
FIG. 3. Same as in Fig. 2; Hg=0.324, hg=0.14.

914 Sov. J. Nucl. Phys. 36(6), Dec. 1982

X=':(1+4=1)), Y=",93(1—=1,-1,). (4.10)

The energetically accessible region of motion is rep-
resented by the intersection of the region inside the
circle

0.0

1 . . . . 5 . , 1

7.0 1.4

FIG. 2. surface of the Poincare cross section for the system
(4.9); Hp=0.404. The picture of motioa is symmetric rela-
tive to a vertical line. The center of the triangle coincides
with the center of the circle, which bounds the energetically
allowable region of motion. The irregularly distributed points
belong to one chaotic trajectory; hgp=0.026.
- Ho

h=Hoh, .
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