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1., INTROIVJICTION

In recent years a great number of papers have appeared
wherein the attempts have been made to understand quantum pro-
perties in the behavier of nonlinear systems. Attention has
been focused on the systems being under the periodic perturba-
tiun1’5. This ie dues, firat of all, to nqw'pnasihilitiea to
etudy experimentally the behavior of atome end molecules in
8 field of laser mdia'tic-ng'ﬂ.

The present paper is an extension of Ref.12. Our medel i=
& plane quantum rotetor with the external nonlinear, periodic-
ally time-dependent perturbetion (delta-like "kicks"). Up to
now the behevior of the corresponding classicel system hes heen
gtudied sufficiently well. In particular, it was ahuﬂn13 that
under certain condition the motion beccmes stochastic even
though it is governed by stricktly dynamical equations. Om the
other hand, if pevturbation ie emall, motion is quasi-periodie.
Therefore, there exists a criterion of arising statistical pro-
perties in & dynamical system. NHumerical investigation carried
out in Ref.12 hes shown that the behavior of gquantum system
differs from the classicel one even in the strong quasiclassic-
8l reglon. In particular, the diffusion rate of the average ro-
tetor energy only for comparatively small times equels the clas=-
gical one and then decresses sharply. In addition, it hee been
discovered the specific type of motion (quantum resonence),
which have no analogue in the classicel system. In this case,
the rotator energy grows unlimitedly, independent of the extern-

al force value,




The purpose of our work is a caraful investigmtion of

the quentum remonence discovered in12. It 1a revealed that

in the system there is infinite, dense set of such rescnesnces.
The generaé condition of their appearance is also found., The
main characteristice of the resonance motion for this syatem
are determined. It is shown analytically that for large timea
the rotator energy grows as JE! s What is velideted by numeric-
al experiments. The form of meymptotics is independent of per-

turbation'pammeter and is universal. The structure of quasi-

energy spectrum being contimued in the resonence ie enalysed.

2. Quantum Hesonance

The model we choose to study is described by the Hamilto-
nian:
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A T
H =,.£- -';?E-? +xc0$5"£}:(f)

27 (2.1)

whe re E ims the perturbation pamnete:i g;fta':.‘"i_#fff—nﬁ' is
the periodic delte function of period T ("kicka"), g s
the moment of inertia of the rotstor, & is the angular va-
riable. In the following J= 1 .

Cme can integrate Schrodinger's eguation with Hamiltonian
(2.1) to obtain the mapping for & wave function. This mapping
involves free rotation during 7 and a "kick" (mee Ref.12):

Vig)=expl-ikcos0) S A expl-¢ B0 +ing)  (2.2)

LU B Y

where K = i‘;",?’:;f and %§j=514“£‘”€

q -in
An= 2, Sv()e T do
Ume can note from eq.(2.2) thet the motion does not change

in what Tollows, fi=4 .

if T is replaced by T+ 47 mm , where #7 ig integer.
It therefore suffices to consider the values of / within
the interval [0, 427,

From eq.(2.2) one can find the connection between the
Pourier componente in one step:

A, ‘-'mi Frwm Am ; (2.3)

=

where Fy,, = (-¢)" "exp(-¢ Fw?) 3, 1K) 5 T, (K) o
Beggel function.

Ag wes noted in Ref.12, in the case of mein quantum reso-

nance ( 7= 47 m , m  is integer)

b WiB) = expl-xecos8) 6] (2.4)
-

the rotstor energy (< EMFI7= "'}“JV*{W% F’."FJJﬂ} for large

times increases as f'z + S50, if the ground state (# = Q)

wam oxcited at the initial moment ¢ = 0, then

< EfL)> = ng (2.5)

Here and below, £ is the dimensionless time measured by
the mumber of "kicke".,
#e investigmte now the general caese of quantum rescnance:
T 4_'3'.3, P wnd ¢ ere the integer, mutually simple
numbera. From eq.(2.2) we have ngf-'— exp(-‘keos8) F(8) .
whe

re y. !
F{’ﬁ}:—‘ ZAH .‘_’,.‘-}D{-:' %’fﬂz +inf) =
= Fl= = b s
= i £Xﬂf~ o z;fm:) ?_:_‘HL,?? é’xp{'z‘(m+ﬁf)§rj= (2.6)

Mag

= é‘j gxp(-( -%E?my B,
B,y = & Aumegt Ol 1ty l)8)




To determine ‘gh. s let us ealeunlate the sum:
42

Y explitmag, = ;’_‘A, exXp(i(6+52)0) = V(6+782) (2.7)
el
Thence, ZEXFL(‘ Lgm—#) e+ J_L/r_

Az & result we ﬂbtain the main relation for Fe)

Pig) = expl-i K mw.ij: Y.¥(0+288) - (o5

q-
eve ¥, = L5 Oxpl-i GEmi-ii2pn).

Rewrite eq.(2.B) in the 'f'urm suitable for a further snalys-
is:

— =4

wm;gm;:g:m V(6+222) s

Here 5,.,,_ is the matrix of the form:

P& Iﬂ‘ a:[ ]
5= '*_G gl . i‘:: (2.10)
P o L. 0

Bi= cxpcrax.:os{m%g'» T el S
Due to unitarity of the matrix [ , its eigenvalues
A;(8)= f.)(PffnCJfﬁ)), [A;f=1. Tote, that )lj depend, in
s genersl case, on & , &8 it will be shown below.

It ias cun\rana.ant tu repregent the matrix £ as

Lolp
S = Zﬂméf Qen (2.11)

£=0

4 +
where Q is some unitary metrix {ﬂ-= & } of dimensiomality
g x4q with the & -dependent elements & ima
L&t us introduce the vector-column ngj with the ele-

o

ments ? (8,¢)= e+ M;f.' From eq.(2.9) and eq.(2.11) one

can find the time d&pandence of <P

Qe )= 2 @y EXP(ER,(8)2) Gy, B (8,0) (2.12)

n,f=p

iith a known ‘Pm fﬁ?,‘f_f one obiaine the dependence of the rota-

tor momentum and rotator anermr on time:

<PlE)>= —Lz j’?’?srf)? P (8,¢)d8

Mmap B (2.13)
=
CEWD=-% }: [P, ¢) ;,—.x F’ (6,¢)d8  (2.14)
-r-g a

Mrectiy from (2.12) end (2.13) one gets:

.‘_
P> = <'wa>+a1£+&ip+§f Fn® s (2.15)

.y

where

&

f,=-% ; {do{86.0)0" 6,004, 4. §

£
[« {860 £16,08,..45 146 @16)

L]

<

m,f,4

=

. E i i
P itie-t = 16{%,80%604, 4 0.4 em-4)0]

Here and below the dash denotes the derivetive over &

Since ﬂf,.,, gepends in gpeneral case on ] y for aeymp-
toticelily large times Pm_ﬂlff,} (for mrgtm, ) is expressed
by the integral of fastly oscillating function esnd, hence, for
" = 4 ; 5
large £ Pmn‘ff)—&me’ﬂ)c&w-ﬂ- ol ¥¢) « Pinally, the asymp-

totic time dependence of the rotator momentum mey be readily



found:
(’P{{jl} =da‘.f —F-{t +<plor> (2.17)

-
ehere £, = f“-Fé B, (0)
For arbitrary times the dependence < E£(¥)) is determined
in & similar feehion:

CE(&)>=<E0)> +gf”+ a,t+6,+

(2.18a)
+ Z 0 Lo+ 2 Z R..,.- .y
and for Bamptoticﬂlly large t:l.mes
<EW)>=nt +a,t + 4, + < E(0> ’ (2.18b)

A
T = L fdbf g i B 0ROl § 50

*

o= % gﬁ ﬁ” & L Qemler 2.9 ‘F"?gm@... +20/% P,

.gﬁhg,m 4z~ ;j; [ 4l #0800, 00 |
A=A 5 Lol erpeca)) 1B 00, tr 0 G O
A wg,{,’o:_‘ﬂ., Qo t 2%, % Comfrn, G, Qv 1
R..,_jf)= “§ 5, 401K RO 01 0] 4 explin a2
Gl E b, f= byt B

The expressions derived for the mqltar energy and rota-
tor momentum are universal and yield the saymtrotic form for
large timen. Examination of expression (2.19) for the coeffi-
cient f s Which gives the aseymptotic, showe that this co-
efficient equale zero when all AJ‘ ; And hen-a d(j also,
ere independent of & f.—#j = ¢const) . Moreover, H= ¢ in the
cage when at least one value of )u = ¢0ngt and the initial
distribution aatiﬂfies th;e gpecific condition ,r'l '.'fV fﬂ)-

= exp(-irecosd) 2: Yo 1, (6 +552)
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Hext, we geek to find the quasl-energy Bpact:mmm'-ls.

Prom eq.(2.8) it follows that the wave functionm with & defi-

nite gquasi-energy at moment 4=¢ are repreaentable in the

Torm:
i
‘whers S}"E} = ",',E-“:‘- E

;
The guasi-energy Ejf&} gnd the coefficients -fnt’%}
are defined from the f‘alloﬂing get of linear equations:

expl-c 6671 0)=3 5, cim), 2.59)

m=g
where -?;..: ﬁnf%} X,,,_,., « The matrix f ie unitary and its
eigenvalues if!’ﬂnl=€-.¥ﬁi’f‘i::fﬂ.)} determine the gquesi-enersy
apectrum:
__ (&)
€ (6) = - Sl a2
fere 6, 1is & continuous parameter: & € & <AF
From eq.(2.22) it follows that the quapi-snerpy spectrum
has the discrete levels only if the matrix F hea the el7on-
values ‘I; =¢0nif{. Uaing the explicit form of f-. 5 it in
essy to show that for any P/@ {except the case £ =%%which
will be analysed below), SIP 3” # I depends on the conti-
nuous parameter é"ﬂ y i.e. there exist A:g congf . Thue, the
quasi-energy spectrum (2.22) is continuous in regonance, Resides
this continuous component the spectrum may have the discrete le-
vels whose full number is the same as that of eigenvalues

i} = ¢onst . It becomes clear that there are no then §-4




diserete levele in the rescnence .
Letting ¥g.0)(8,0)  to be known, it is easy to find

£J_f,_}(ﬂ, t)= EXP(-iEi(8)¢E) ﬂﬁfi 4. (2.23)

where 5?1_{‘,) is the quasi-energy eigenfunction, which is
(-
time-periodic of period

Ueita,) (6, £) = eXP ({58t~ ixcosp HE-77).

23 A exp-1%E wind)y. octeT | 2

AS=gpo

A' are the Fourier components ¥, .. (&,0) and PET is
Eplg)
& single step function.
It is worthwhile to note that in resonence <I#i>is pro-
portional to the time f{!m‘:}*ﬁ. Therefore, if the unperturbed

"
aystem possessed the spectrum E,.—H (m>1 is the integer),

™
then ite energy would increse with time by the law < E@)>~Z 7

The explicit form of Aj(#) has been found for three cases.
1] F‘/g =4 is the main resonsnce. The time-energy danpen-
dence (when at € =0 the ground state MW=0 ig excited)
is determined by formula (2.5). The quasi-energy spectrum has

the form:

(2.25)

£(6,)= zrf? c0¢g,

Anm 'P‘;,mm, )= 3{54&} » the quasi-energy eigenfunction
is determined, according to (2.24), by the expression:

Yera,)(0,¢) = explieg)t-ikcosodee-T)) -
Z expl-¢ ‘.’;,ﬁ +in(e+6,))

LT,

(2.26)
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where @0 % 'Ef?f; T= o5
2) ngz Y9 o eq.(2.8) it followa

V(#9) = expt-i keose) %F—(é"{sam;w"{‘r‘fgm] (2.27)

(1f q:é’f . £ s8.the integer, the coefficienta B;M,f—'d}
snd the dimensionality of §  is %7 X %2 ). The eipenvalues
Ay = I = fxpfifim}"‘%ﬁ where

cos(xrd)) = cos(K cosd)

l,rf' (2.28)

st K<<{ we have g—: SLFH{X}K séind g , and if at the

L3
initial moment ﬁ""{ﬂ T (ground state), then M == “
= —

L
Under the same initial conditions, at M >>{ we have 9. & E .

From eq.(2.22) we find the quasi-energy mpectrum:
e _ etrE
E+(6,)= 4 7 =& (2.29)

For K<< 4 the gpectrun f_f_—!r&,)‘“ -l'-(é""' cﬂf@}m two nEr=
row zones of ~K* in size. For K27 we have two wide benda:
i‘é ffﬂ)-‘éi,f{ E(@)<1 . The time dependence ﬁt (8 is glv=
en by formula (2.24), where Ah are Fourier components of
the function Y7, . (8,0)= ¢,08)8(0+4,) + Co&)5(6+8,+7) s
here {C4 s €;) is the eigenvector of the metrix L4 :

3) If Pfg: J:‘f-?, from eq.(2.8) one obtains:

Wie)= EXp(-ikcos8) ¥(B+7) (2.30)
It is seen that the system returns to the initiel state
in two "kicks". The eigenvalues are equal to Ay, = Ay, =14 ,

The quasi-energy apectrum consists of two discrete levels with
the quasi-energies £,=0; £ = /7, The eigenfunctions of the

11



leval é—'x s to be more preciee, their wvalues at moment t= 3’7,
are the functions '!‘Eifﬂ' =Fgf’§){'ﬁ‘$£{,ﬂ’-€ﬂﬁﬂwﬁem P (&) is an
arbitrary function satiefying Zx(6+7)=1 7(f) . The eigen-
functions of the level fz are %{f@-’—fifﬁffiIﬂxﬁ'tzf‘fdﬁgﬂ.
Fach level is degenerate infinitely-fold and the functions “f'g
and ‘f:g.{ form the totel set.

Apparently, the degensration of eigenvalues (when }.j =
= £0MSE ) is mccidental and there is nocase fur.othar Tesonan-
ceg. Indeed, at the arbitrary initial distribution Wfﬁ) ir
gome A_,-—-—c. onct wers available, then 8 fraction of the ener-
rpy would possess to the discrete compoment of the gquasi-energy
discrete spectrum. In accordance with this, the time-energy de-
pendence would include periodic time-undemping cscillations
{juat es in the case of Pfg = 47 ). In our numericel experiments
such an effect has not been obeerved, At K374 the dependence
<Ef#)> was a smooth function of time, at K< 1 the slope
glge grew &g the time incrglaed (see Fige 1 and 2 respectively).

Thus, in quantum resonsnce ( f/g #%2)the energy of the
system growa infinitely by the asymptotic law £ Ef)> ~ fz.

the quasi-energy epectrum being continuous.

2 i, '
For the quantities (o), =max J _#Lg'fwf{tha line indic-

92 2q
ates the sveraging over & ) one has succesded in obtaining

the following estimates (they are valid for ;C-}' of the mat-
-

rix 5§ as well) from the explicit form of S5 :
a) It K <=4 , then

/JJ 2 E 15!

o max s g | Lox (5
LBy, g el it
ark, that this estimate is that of the lowest poseible wvalue

12

gk
of 'ff{ J'mu . One might expect that the exect value in the
order of megnitude coincides with this lowest estimmte (=e:
saction 3).

o
by If K}?q, and since {,ﬂ@?fi_'ﬂl, we heve

2
p o= L (2.32)
i?
where is some guentity dependent on the initial condi-
independent :
tiones and, in practice, of & and ? Vi Under the smooth

initial conditions ¥7§,0) the estimate for 3  yields
3> 2

Prom the estimates obtained for fef “l... it follows that
at X=¢g ( p4 are any mutually simple numbers) the quasi-
energy @pectrum coneiate of 'E exponentislly narrow zonee of

AE *{-g—,al.} in size. In case K> , to find the sone struc-
ture, it im required a comprehensive knowledge of the eigenvalue:
of the matrix E . mfortunately, the explicit form of I_; 8l
has failed.

Prom the seid above (see eqs.(2.31) and (2.32)) it follows
that =0 at P> ee , §->09 k=coml Thie means that for
irrational values of ?yfyﬁ the quentity { is equal to zeroc.
In this case the motion of the system has gquite another charac-
ter (see Ref.12).

tat = %{Eﬁr where 18 /%4, Then during t, ~ “r;é'f'

o~ max <E#)>
[0
the system cherascteristice vary in time just as the case of

exact resonsnce / = é‘%ﬁ , what wae observed clearly in the
; ¥ :
mumerical experiment (Pig.3). From ffz =K fz let us find

13




|
|
such & detuning cg; &t which the rescnmance &§ influences !
greatly (it is suggested that o ~&“Z, ). At £>¢ (other- |
wise, the detuning ie exponentislly smell) we have [
X
2 kg2 (2.33)
For the mmin resonance ( ¢=41,P=0) 7= 4 ana
from the condition (2.33) it follows that 7 £ /&7 | 4s is i

asan, within the quasiclessic region ( K-—>e=. ?r—'t?,ﬁ?t'fﬂ-”d}

Inequality (2.33) is not satiefied, i.e. an influence of the main

reaonance is uneseential. One may find the summary of all the de- ,
/]
tunings: i E g g} g '.
= O -~ |

& T ah - T (2.34)

Gince S-! <<{, then in the case of irrational //4* the reso-

rances influence weskly the syatem motion,
3. Numericael Experimentsa

In addition to theoretical anelysis of our model, the nu- i
merical studies hu.va.baen carries out also. In computation the
Pourier components of the wave funetion have been found by formula
(2.3). Although the summation in (2.3) has been made from — o [
terme since IJ:.,(K'JI'
falla exponentially down with incresse of # at > & (the
"kick" covers &4 levels). In view of this, the finite number \

to *eo , the sum contains ~< &

( *Ak ) of Béssel functions has been used in our caleulstions,

The control for computation accurscy is to test the cormaliza-—

W= f‘;wﬁ;;gg.:i . In all

3,707, The major limita-

tion condition of the wave functiom:
cages the errors do not exceed FL'/!E

tion on 8 run is impoeed by the firiteness of the chosen number

of levela. Tnder 8 quite large perturbation the fast sxelba¥ion
of the system, hich levels pcour and computetion errors become
esgential. The program has been improved (as compared to that
in Ref.12), what made it possible to inersase the computation
rate approximately by a factor of 2 and the mumber of levels
of model system - up to EDDi.I In the main experiments the real
computetion time was +~ 10 min et BESM-6 (Tables 1,2). The con-
sideration of symmetric initisl distributiems ( ¥/6)= ¥{-&lnabl-
ed ue to increase additicnally the number of levels up to 4001
(=2000, +2000). NWevertheless, the computatiem was carried out
with the 20018t level, due to symmetry of indtiel conditions and
Hemiltonian (2.1).

The initial conditions were verled from excitation of one
level {ground state) to excitation of about 20 levels (Gaussian
packet), In all cases the asymptotiec form of motion depended
slightly on a choice of th‘n.:? ini::iul gtate. During each run the
rotator energy <E}=—~j—5|'?"*@ Wl wae caleulated. At the

game time, the time-energy dependence was plotted and the least

-ggquare fit < Ef#)s for a squared polinomial was performad.,
Por K< g the squared time-energy dependence (see, e.z.,
Pig.
the formula {Eﬁ/',}:‘ffz + < EM)?, Tavle 1 containe the data
at different £ and g
are too small and the squared emergy growth for finite times
t £ 200 is not always nuti&%ﬁ, it ie difficult to talk

was observed well, The fit was there carried out by

for 'E « At K& g  the values of

about quantitative agreement with estimate (2.31) but one can
assert that #  decreases much more quickly than ng 4

For K}.?, the dependence #(X,§) is approximated by

L]




enalytical estimate (2,.32). Experimetal data (Table 2) show

a quite good agreement with this formule. The value of '?' V-
ries slightly and is independent explicitly of K and ¢ .
ised¥> = 2.4.

It was varified separately in what extent % depends on

The average value of ?’

the values of £ at the same value of !? « A8 wam expected,
the dependence on f , sccording to (2.31) and (2.32), is nepg-
ligibly emall.

In the gquasiclassical region ( K—=oe, = ‘—?‘"ﬂ’ at w/=comcd 5y
experimental date show for A > !,", that for smell times the de-
pendence < E/)» in dimensionless varisbles is described well
by the semiemphirical formula:

< EfD>= 52*4. %’:54 < £

i

4
At ‘f the coefficient i in egreement with the theoretical

(3.1)

eatimate (2.32) for E « The second term in eq.(3.1), linear in
time, correeponde exactly to classical d.ifruaianm. Hevertheless,
the coefficient Kj{é’ differs from the ssymptotic value of &,

in (2.18). Therefore, the term K“f/{/ is not, strietly speaking,
diffusional. It follows from the experimental dependence (3.1)
that for the times Z< ¢ , wheve 27 %% ~ 47 (4n dinen
picnal variables &< »¥= f*ﬁf >0 )y the energy grows mainly
due to the "diffusion” term K!%’ . For gk the squared

term being a purely quantum becomes dominating.

4, Conclusive remarks

Our study shows thet in the came of qu;ﬁtum resonances

whose system is“"dense, the ssymptotic dependence of the rotator

16

energy on time is universal and is described by the squared’

lew (2.18). Thie implies that there is no quantum stability
border (& * £ ), which was pradictadj and cbserved in the non-
=T"eaoneance caaa‘a. It is important to note that the classical
eriterion of stability ( 7% -f ) ie abeent too, although the
gystem can be in the sirong quasiclassical region. At the same
time, for the non-linear system,which is governed by the classic-
al Hemiltonian corresponding to (2.1), the KAM theory (FKolmogo-

16418

rov=Arnold-Moser ) ia applicable., This theory pointe out

1
(just es numerical experiments 3] the motion etability under

a emall perturbation. In our case this means that there is the
dietinction in bebavior of the quantum system in comparison to
the clapsical one, at least, for large times.

For relatively small ; When the asymptotiec prnﬁcr'tias
do not yet arise, the character of the system behavior can be
complicated encugh and strongly depends on the perameters K
and T ., Por exemple, the squared growth of the system energy
is not clearly observed if K 2~ ¢=< and 7%4 , In this case,
the energy is proportiomal to % . Ir K<§ y then, in prac-
tice; the energy oscillates and the squared growth of gfl ise
small because of § <1

It is interesting to obeserve the motion at p->oo. g -ves,

%ﬂ eonst , what correaponde to the non-resonant value of T .
As numerical experiments have uhm12, the motion of the system

is quite different as compared to that in resonance. The analyt-

" ical study faces excessive difficulties due to necessmity to

know the exact solution in resonence for any time rather than

17




ssymptotically only. On the other hand, ome can alga investi-
gate the gquasil-energy spectrum structure under transitiom to
high resonsnces §>7{ . It has been showed that at &> &
the width of each gquasi-energy zone ia-exponantia}ly small
( 2%~V =)' ). soreover, the total width of all @

zones iz small ae well. Thie apparently indicatea that the

quesi-energy spectrum becomes diserete in the non-resonant case.

If €37 , the question on the overlapping snd the guasi-ener-

gy Bpectrum ° fones remains open.

In cloging, we would like to meke a remark concerning the
feagibility of gquentum rescnances in the systems under delte-
-like in time perturbation (for the one-dimensional cese, the
latter is representeble as follows: ,ﬁ’fx)«ﬁw , Where f/}jf is
arbitrary function of X -coordinate). There is no difficulty
to show that for the existence of a resonence it is necessary
that the spectrum of unperturbed Hamiltomian H; be discfete
and have the form of & polynomial of the gquentum number with
rational numbers, In addition, it is aleo required that the
condition of the form Y. ¥l = ¥i,m
functions of the Hamiltonisnk,We then have: E,rfa{; ”-ﬁ-—“;-“é‘#

be satisfied for eigen-

A {EXF("-%K J{fﬁﬂ(x%ﬁ)ﬁ). Pollowing from this equality,

one succeeds in reducing the mapping in one perieod to multipli-
cation by the matrix. Probably, the last condition may be relax-

ed.

The suthors are much indebted to B.V.Chirikov for hie at-
tentisn to the work and valusble comments, to G.M.Zaeleveky,
1,4.Malkin, V.V.Sokolev, and S.A.Fheifets for stimulating dia-
cussions, and to L.A.Khailo for the help in calculations.
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