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Abstraect

The conditioms of the validity of the gquasiclaseical
sppreximstion for quantum systems etochastical in the classi-
cal limite are etudied. It is shown that the quasiclaesical
spproximation is spplicable on the times ¢ ~y 174
greatly exceeding the time of epreading the quasiclaseical
packet T,~lnng ~ In{1/h )» The general estimate for the
times ¢  is cbtained. Numerical experiments for simple quan-
tum systems confirm the theoreticel predictiocns.




1. u

In recent years the so—called stochastical motion has
been discovered and studied, that illm one to understand
in what way & random motion can arise in the classical me-
chanice systems described by purely dynemicel equations (aee,
Bafey /1=6/1a It hes been shown that the stochastielty appe-
ars when some restrictions imposed on the interaction and
the system nonlinearity are met. It is connected with the
locel instability of motion, f.e. with the exponentislly re-
pid divergence of close trajectoeriea in a phase space. If the
stochasticity eriterion iz satisfied; the system motion is
mixing, thet meane the tripping of the time correlations of
dvnamical verisbles.

The stochastieity in classical eyatemsz has been andly-
sed adequately, meanwhile the study of muantum dynamical
systems stochastiecal in the classiecel limit ( =0 )
hes bequn quite recently (7=11). Investigatiom of such sya-
tems is of considerable interest both for the comestruction
of & statistical mechanics with no use of addlticnal hypo--
theses and for the explanstion ¢of verious phenomens in quan—
tum systems. 2o, the new possibilitles of sn experimental
stadr of the bebavour of stoms snd molecules in the fleld of
& strong electromagnetie weve M2-14,24-25/ have stimulated
the publication of pumer-ous pepers in which the grantum espe-
eifie features of the behavour of nonlinesr systems under the
gction of en exterral time-pericdical perturbation are exa-=
mined (see, for esmample, /5-21/). One of the methods of con-
gidering such problems 1z the quasiclassical spproximetion
S7=8, 15,19,26/. At the same time, it i3 known thst in non-
inear syestems the correctione to quasiclessicel expressions
inerease with time (=ee, €.g.,79) and after some time period

tﬂ the quesiclaessicsl expansion becomes inepplicable.
For integrable systemsz these times are proportionsl; 2= & ru-
le, to & characteristic guantum nmumber or to a certain other
quentur peremeter of the problem ( %, ~n 4, ~ 1/ h B
This follows directly from the Ehrenfest theorem and is a




result of the fect that until the peacket is npt'ﬂﬂlild'. it
moves over (slong) the clessicsl trajectories. For stochan-
tical eystems the question concerning the times on whish the
WER epproximetion (Wenzel-Kramers-Brillowin ) method 4m walid,
is a more complicated one because of the locel instebility
of the classical trajestories, which leads to the exponen-
tlally rapld spreading of the guasiclassical packet. Thus,
the quasiclassical approximation is entirely conserved om the
timese T ~lnng ~1n ( 1/ % ) . The behaviour of sto-
chastical quantum systems (203s), by such systeme one means
the quantum systems which are stochastical in the classical

1imit, on such times was examined anmlytically in Ref./8/ on

the example on a nonlinear oscillator with external periodi-
cal perturbation. In /9/ the 5QSs were analyzed in the gue-
siclassical approximation but the validity of the method on
large times was not substentiated.

The analytical and numerical anelysis of the 5388 in
Refs./10,20/ wae exemplified by the gquantum rotetor under the
action of periocdical perturbation. The main result /0/ is
that the motion of the 545 under consideration is similar,
under certain conditions; to the stochastical motion of the
classical system. In particular, the rotator energy grew dif-
fusively with time. However, sipgnifieant differences in the
diffusion rete on large times were chasrved. Tn Ref./20/ for
an infinite series of parametera the nmymptotic energy-=time
dependence has been found, which differs from the classicel
one.

The aim of the present paper ia to study the conditions=
under which the WEB method is wvalid for the 505 n the examp-—
le of simple models, the times are found on which the devia-
tions from the clasalecal values are amall. The conditions are
found under which the gquantum corrections keepe =mall in com- ;
parison with the classical values on all times. The general
gondition of the welldity of the quasiclassical approximation
for the 545 iz obtained, hasing upon Maslov's resulta /22,23/.

2. The model

Let us consider & model of the rotator in sn external
field with Hamiltonian

H 2
ﬂ._%i.;dmas,,m (2.1)

where § 1._: a parameter characterizing the perturbation,
Eplt) =, K, b6(t- u) is the time paling of delta—functions
(kicks), J iz the momemt of ineriis of the rotator, © ie the
angular variable. In what follows we sgsume that J= 1.

The sssociated calesical problem im deseribed by the
Hamiltonian i

H= %i-yf cos 6 6y(t) (2.2)

and in view of the periodicity of perturbntion, the rotstor
motion may be described by the mapping :

P=p+¥ sind
B=p+Tp
where T, § are the values of the variables after & kick.

The mapping (2.3} has been studied in detsil in Ref./5/,
where it has been shown that the velue ¥ M =1 is the border
of stability. At ¥ Y < 1 the motion is stable, =nd the change
of the quentity p is limited (|ap|g im Jo At UM, it is
the case already at ¥%= 5, the rotion becoresz stoghestic. In
this case @ ig & rendom varisble, 4p changes according to the

diffusion law, snd the pulse-distritution funetion has the
Gausaian form :

(2.3)

(p(e)=p ) =D & ¢

1 (2.34)
£(p) = . IV BIP[" .’E;|
|
me K
= p 4y D, Here and balow t is diuensionless tims ressu-



red by the mumber of kicks. The brackets { ) imply the
averaging over a large mumber of the trajectories correspon-
ding to different initial data. Hote also that such simple
mapping (2.3) describes approximately the total number of
interesting mechanical systems, for instanece; the motion of
a charged particle in a magnetle trap and, what is much more
essential, the motion in the vicinity of the separatrix of
g nonlinesr rescmance of the quite general form /6/.

Iet us proceed now to the gquantum-mechanical considera-
tion. Solving the Schrodinger equation with the Hamiltonian
(2.1), we obtain the mapping for a ware function in one step,
which ineludes free rotation during the time T and the kick
{the action of the kieck is reduced to the produet of the wave
function by expl(-i E/h cos x) A0/

Tex) = (2ram) ™2 [ ¥(x ) exp[-ik cos x, + i E._';r,i ]Ex (2.%)

where k=%/H, T=1", and h=1.

EBecsuse of periodiecity ¥(x) with period 2m , Fix) is also
preriodical and normalized over the period 1{ (x| *ax=1.
From (2.4) we obtain the expression for ¥ at the time moment
t s

il (2.5)

=)
=(2riT)"% 2 _r..:m_r 9, (x Jexpli8(x,x, _ yeoux Vax ...dx,
where
2 z
(x":t-f' (z -x, }

S{I.It*‘.-.-,xﬂ}zT = k cos X, tees +_E"T'_

-k cos x_+ Sp{xnl, v{x,0) =mn(xﬁ)m(isu(xni}-

In what follows we are interested in the guasiclasscal
approximstion in the stochasticity reglon, thet corresponds
to k *1 (the number of quanta in a kick is large), T € 1,
ET > 1. In thie cese t-fold integral is caleculated by the

stationery phase method /277 :
i)
¥(x,t) =“§.,I<:F.:I""’rz ﬂlﬂ{iS:(:} +iF w, =1 ﬁ 'l:] .
(2.6)
{ —rI-'[l! (x )axp(iﬁj]}- 4:}+D(k )

where %= %% is the stetlonsry point in the t-dimensional =spa-
ce, which 18 = solution of the set of equatioms

as(x,:t_1 i .,xﬂ_']
axi

= s S T
N is the total mumber of stationery polnts ;
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It follows from the set of equeticns for Slfx.xﬁ qrerr ey
and elso from (2.3) thet at the statinary point % is the
coordinates of the classical trajectory of the system (2.7)
at the time mement 1(0 £ 1 £ £-1), which satisfies the
conditions

a8 (x. ]}
px,,0) = —S—t- (2.7}

Iw I{Iu;t}r n



The nmumber of solutlions of (2.7) is equel to the numbar of
stationary pointe N correspending to different trajectories
x“{xn.t} from the initial distribution n(x ,0), arriving to
the point x at & time t with various differemt momenta. For
stochastic systems because of the local instability of tra-
jectories, the number of the terms in the sum (2.6) W and

the Jacobian J’u(x} = Eﬂx"(xo,t:ﬂﬁ:n (see /1-3/) grow exponen=
tially with time F ~ exp(ht) (see Fig.1), J_~ exp(ht), where
h £%§(is the) entropy /28,29/. For (2.3) h = In(kT/2) at

kT »4 JB/,

It is seen from (2.6) that the guasiclassicel expension
is unvalid near the degenerated stationary points at whiech
Jﬁ{x): C. In this case, the wave funetion st the point x has
the caustic (really, the caustic is on the k-=th trajectory
and Bpk(X.t}fax =@ }. Put even in the presence of g degene-—
rated stationary points in (2.8) there are N -gq quasiclassical
terzs irn X. Poth q and N grow exponentlially with time and
eince the size of the caustic is finite ( ~ k'z‘h ) and t‘.‘hq
are distributed over x more or less uniformly, q ~ k'z ‘WEH,
It is worth noting that in a wicinity of the degenerated point
the amplitude peak decreases exponentially with time
[~ k"f‘ exp(=ht)). It is already clear from the fact that
a genersated stationary point appears in one step from some
quasiclassical term of the sum (2.6), which has an exponen-
timlly smell pre—exponent. Hence, g ~ k= “explht) classical
trajectories with ceustica will srrive at an arbitrary point
x in the period t > T ~ ln(sz’}fh (ame Fig.1), whereas
the nuwber of classical trajectorlies arriving at this point
will be much larger N-q ~ exp(ht ). Tt is =meen from (2.5)
and (2.5) that the main contribution to the t-dimensional
integral comes from the reglon AV ~ k=% 2, i.e. the statio-
nary points are well isolated. From the said above, we make
the conclusion that the influence of the caustics at all ti-
mes is insignificant and can be neglected (eof./11/). This
result is borne out by numerical experiments (see § % ).

Assuming the quantum corrections to the main gquasiclas-

sical term (m=0) in (2.8) to be ==all, let us find the time
dependence of the rotator energy .

5(t) = 7 :}r [Pz ax .

The main energy contribution is given by differentistion of
the action Su in the exponent. Ddifferentiation of the pre-
exponent and the phase shift B, ¥ields non-increasing-with-
time correcting terme of the order of k™' from the main con-
trivution :

E(t) =

f}HH

]
dx {ku E = kc!jﬂkq{tleka‘I [-11/21.

(2.8)

-exp[itsh(xj-sk‘{ﬂ +3 Euk-ﬂtqJJ]-q&nf::f:c,t}hu(x:"(:r.t)%

whare pkf::] = (E!Su{x}ix’hx is the classical momentum along
the k-th trsjectory arriving at the point x ; z:(x,t} is

the initial point of the k-th trajectory ss s function of

the final point. Let us try to eveluate the contribution from
the interference terms with k # k,. Their number is N, .~ K°
and the value of each term is A~ .T" } dx exp(1(s f:l:}-.s (0D
~ exp(-2ht) ~F~%, The integral entering A iz a tw:ca} cor-
relation funetion exponentially time-—damping because of ran-
domness of the classicel action. Hence, due to the fact that
the claseical problem is stochastic, we have the sum L

of rendom quantities with amplitude A ~ ¥™%, which glve the
value quantity L, 6~ N A~ . Moreover, at k k,

the integrent in IE.-_.B} has ny stationery point. Indeed, the
phase stationary nature gives 88, Jox = - rmhaa XE':: =P, (=)

tut since the momenta now cuin{;ide. ttis means rhuz Lether

k=Ek or x is the caustic, whose concribution, as already

shown, can be neglected. Because of the sbsence of stations-
ry points, the terms with k # k_ are of the order of 0(k™ ™).
The interference terms with k # k, in (2.8) can therefore be



neglected and the sum over k # k remaines which glves the
classical energy value (see /22,23/).

Thus, to find the times on which the characteristics of
the gquentum problem coineides with the classlcsl ones with
an sccuracy vp to O{k™') in their relative megnitude, it is
necessary to know on what times the terms with m # O in (2. G)
keeps small in comparison with the main quauiclassical terms
(m=0), Hote that at kT » 1 the matrix elements !
readily evaluated from the matrix explicit form : {H’“_r i ;+.“1‘
o (ET)™™"?, Let us find first of all the correction 5 ~ k
to the term with m=90 in (2.6) with an accuracy up to tha
terms with due redard for the setion L_ only at exp(i¥), he=
cause this gives the corrections rapidly increasing with time.
e represent the sum over m in the form 3

o et =
B, &t L"'[tp (x Jexp(i¥) Jlg 3 = E 670, (2.9)
where 5 =1, &, ~15,fh:.

Calcu]atiuma 13&:1 tu the following expression for &, (the
contribution to it is given by the terms with m=2, E )

- 2x*+58in’x"
Cied =§ :;; M;_:l + 0(1/21) (2.10)

| 4 cﬂa3z';

Note that the singularity in the denominater arises with
the presence of the caustic st the point = (J (x)=0 ) but
since the influence of the cauaties is insignicant, upon
summing over all N trajectories the gontribution from these
Aivergences is small too. Tue to the randomness of the clas-—
sical trajectory, the sum over j grows as t/° and, therefors,

on average
6, ~ 136 T (z11)

where the rmerical coefficient iz ¥ ~ 1. Tt is worth mertiming
5. -]
khat the Subsetuesnt successive Lerms over (x7) in the ex-

ir2
nrasaion for & rrow nobt mors radidly t and; hence, thay
T8 i

can be ignored. Analysis of the .cmhaequgm terme of the ex=
pension over k™' shows that Ej ~ (tﬂr:)"f? « Hence, at the
times i

t <t~ k? (2.12)

the guantum corrections are =mall and the characteristice of
the quantum system coincide with the classical charescteristics
with an aceuracy up to 0(k™"), It should however he noted
that the quantities exponentislly decreasing in the classies,
for exsmple, time-different correlstor, during the time T, ™
~ 1n k becomes of the order of O(k~') and the quantum correc—

ticns must be taken into account for their further ecaleula-=
tione.

In the times t ~ t, all the corrections ﬁj ~ 1 and the
quasiclaseical approximetion becomes inapplieable. Thus, he=
ginning with the timea t > t, the cheracteristic of the
quantum problem, for instance the rotetor energy, could be
expected to highly differ from their classicsl values. Fol-
lowing from this, it is possible the estimstion for the ti-

mes t* at which the energy diffusion chserved in /0 / slows
down =

ot~ k? (2.1%)

Unfortunately, it is difficalt to make the sccurste experi-
mental check of the functional dependence of t* on k becau-
ge of a sharp increase of the count for large k{ k > 100).
The mumericsl results cbtained are discussed in §3.

Hote that in the system (2.1) the gquasiclessicel parame-
ters ere ky T and , for this reason, the diffusion does not
improve the quasiclassic approximetion. However, in many sys-
tema the guasiclassical approximation is improved with in-
creasing the level number. It could therefore expect that at
& quite rapid diffusion the quantum correctioms inm such sys-
tems will ingresse much slower then in (2.1). Tet us consi-
der as a model the system with Hamiltonlan (2.1) in which k
depends on time according to the law kit)= kn(‘1+1:}°°. As A ru-
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1e, ¥ is an increasing function of acticm k= k(I} and, hence
of time, since with the presence of stochastieclty I the num-
ber grows with time. This pireumetance is reflected in the
chozen model which is slsc convenlent for mumerical study.
Tevertheless, it should be noted that in realistic systems
mith k=%(I) the situstion say be more complicated. In view
of this, the model proposed should be regarded only as the
first approximetion.

At RaT = 4 the varighle x becomes, already after a few

kicks, Tandom and
2

[ap(8) [ = k26™ < sin®x(t)> = —y— (2.14)

From (2.74) we find the law of diffusion energy growth 3
L+

B(t) = ﬁm + E(O) {2.15)

The expression for &, is the same as (2.10) but with
k=k(j)s On average, Ef ETOWS BS

P Oy g (2.16)
(852 ~ o ®*(3) { kit’“ K k2(1-20)

Tt follows from (2.16) thet at & > 1/2 the corrections always
are smell and the time—energy dependence is described by
{2.15) on all times. The limiting value is @=1/2., TIn this
case

{5 w2l (2.17)

[}

and Eg.(2.15) holds on exponentially lerge times tuwerpfk:')-
A4t 0 < o < 1/2 the quasiclassical approximetion is true for

t < tﬂM[k§{1—au)]1’{1-ﬂj (2.18)

and during this pericd the energy grows according to the clae-

12

gical law (2.15).

3. Numerical experiments

In order to verify the results obtained the numerical stu-
dy of the model (2.1) has been performed. Solving the Schro-
dinger equation, we have used the fact that the sction of a
kick is reduced to multiplication of the wave function by
exp(-iV(x)). Then, its Fourier components A have been found
with the aid of the fast Fourier transform (FFT), for which
the free rotation has resulted in a phase shift —4(Tn®/2).
The wave functiom has been found from the obtained wvalues -ﬁ.“
with the use of the FFT and so on. The mumber of the levels
was Ny = 4097 (=2048,2048), but because of symmetry of the
initial conditions (¥(x)=¥(-x)) and the Hamiltonian (2.1}
2049 levels of virtually heve been teken in our computations.
A high aceuracy of the computation {(up teo 1% ) was provided
by coincidence of the resulta when changing NL by a factor
of 2 end when the population u“|*or the upper levels was
smell. The major limitation on & run was imposed by the fini-
tenese of the pelected mmber of levels. In addition, & test
run was performed for agreement of the results (up to 1077)
with those givem in /M0/ under the same conditions. Tpon =
quite large perturbation, especimlly at k=k(t) & fast excita-
tion of the upper lewvels cccurs and the computation errora
become significant. In typicel experiments (NL="ID@5, t = 300)
the computetion time at BESM-E was 10 minutes.

The initial comditions were ranging from exeltation of
a level (the ground state) to excitation of sbout 200 levels
(the Gaussisn packet). The noticeable dependence on the ini-
+ial conditions was not observed. When proceseing of the com-
putatimpraaulta the rotator energy was caleulsted Ere
= 1/2 n_ﬁwnalﬂnlz and the time—energy dependences and the
distribution funetions £{n} were plotted in the normalized
coordinates i

13
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k
£.(n) = £(n) E,:—;,’-,- g (3.1)

In cese of the classical diffusion Ep.(3.1) is reduced to

£.(n) = exn(-x) (3.2)

In Figures this distribution is depicted by the line "s".

The results of numerisal experiments for fnfn} were in-
tarpolated according to the formula (sea /MO 3

£.(n) = Aexp(-"x) {3.3)

where 4 and B are the parameiers termined by the least square
fit. The fraction of the diffusible cormonent wes determined
23

=Bx _dx

T G
v {5

-~
Wy=4 g e (3.4)

The results for matching experimental distribution over (3.3)
rre given in Figures ty lnes "b" (&t the end of computation).

To verify whether the influence of the caustica and i1s-
lands of Wmstability /6/ is essential in the gquantum conside-—
ration, the system was studied, which hed no eeusties end in
which & measure of the stable components {islands) wes strict-
1y equal to zero /. This is the model of the s=me rotator
but with another external perturbetion over x :

x /2 4ni/E, 0= x=

T(x) = s
%“;L-uafﬂ, a2 s xsm
(3.5)
Vix) = V({x+2®w)}, V(x) = V(-=x)

14

The eclassical dynamics of the system cen be described
by the mapping similar to (2.3) 2

P=p-kJL, T=x+Tp (3.6)

At kKT > 4 the motion becomes comnletely stocheastic and the
energy grows according to the diffusion law :

B(t) = EEL ¢4 n(0) (3.7)

The study of the guantum preblem (3.5) shown that the quali-
tative behavour of the system remrined the =zame as the heha=
wvour of the system (2.1)(=ee Fig.2) - at some tirme moment +*
the diffusion rate depgun to decrease sherply. This indicates
the fact the slowing down of diffusion is not associated with
the presence of the caunsties and islandsz of stability. Hote,
thet in contrast te (2.1), the Pourier spectrum of a kiek
exp(-ikV(x)} decreases only in a power mamner (~ 1/n7)(the
FFT turms out to be indispenssble) and alresdy ome kick con-
nects all levels, whereas in {2.1) a kick covers ~ 2k levelse
with the exponential accuracy.

For the system (2.1) the compsrison wea made of the mo-
re fine charecteristics of the classiec and guantum problecs
and nemely 1 of the dependence of the diffusion coefficient
T on the KT parameter on the times smeller than t*. The re—
sulte of the sxperiments (see Fig.3A) indicrtes o pood agree-
ment of the dependences D(KT)for the dessic (these results were
taken from /6/) and guantum sases. For the quentum problem
the spame oscillations I with the same pericd ere observed as
thos=e in the clagele cese. An insignificant difference in
values is acgounted for by the fmet thet the initial condi-
tions in /5/mnd in the present work =re, generelly snemking,
different. In case of the same initisl conditions (in the
clasgic = the line p(x)=0, 0= x = 21, end in the quantum
problem - the ground state with =0, k=40) sxperimental do=
ta for D(KT) are given in Pig.3B. The insignificant difference
iz only observed at the level of quantum corrections.

15



The time period t* during which the energy grows sccor-
ding to the law similar to the ¢lamssic cne, was calculated
on the basia of the experimental data. In this camse; as 1:;
and 1.'.;. it was taken the time pericd ¢, begining from which
the energy of the quantum operstor differed by 25% and S50%
from the energy in the classic cese (see Tebles 1 and 2). In
order to verify the functionel dependence (2.12),(2.18) the
quantity &, ,=[(t} b}"“f(k'ﬁ-am}i]’f’ = const was also
calculated. depéndence By p= (83 )" /K, (1) = const
was also verified; which nmaspn.udu to the linear growth
of quantum corrections ( & u} dt/k(t) ). Some cases of the
motion of a guantum rnt&tnr at’ k= k(t) are presented in
Figs.4=6. The experimental results show that, according to
the predictions (section 2), the time t* increases sharply
with increasing k and growing «. At o 2 0,35 the computer
reserves do not already allow the slowing down of the diffu-
eion rate to be cbserved, that makes difficult the experi-
mental verification of the relation (2.18). It is worth
emphasizing that at o 2 0,35 not only the diffusion law coin-
cides with the classic law, but also the distribution funec-
tion are similar to the classic Gaussisn distribution.

4., The general criterionm

Let's make use of V.P.Maslov's /22,23 quasiclassic ex-
pression for the wave function, which eatisfies the Schri-
dinger with the Hamiltonian

£=- E 4 +V (x) +e¥(x,T) (5.1)

and the initial conditiomn ?Itﬂ -, Qu[ﬂmfis(x}fh ) (note
that ¢ 1s independent of i and S is real) :

N
¥(x,®) = I 13,177 exp[ g5, xm0-15u].

& (2.2)
'{-;n[t:'ncxh}] |:q=:t(x.t3} +0CH")

18

Here, Just as in (2.6) the summation ie performed over all

classical trajectories reaching tHe point ¥ at the time mo-
ment T and satisfying the inftial conditione =

x (x;T) = x* p (%) = D—:{ip-; |
" . & T K
0 |x, e
L4 ]
L
G i (4.3)
-3 “¢f —-q_—-
e ]
3 .
he problem gen be n-dimensicpsl ), {

S (x,T) 18 the H.L‘tlﬂ""
LOnE the clussic trajectory connecthi ing the points € X
o

B

§ im iy Mowsae ¥wde AaF +he e
12 B 318 The Morse index of thie ajectory; the operator
cts oo an arbltrary function as .-‘..'.-'M-'.%E
- B + 1
s (X JT) mo= | [T (x f#= (olx. v 31 T J~FE
o F vy am g et | AL TR R E SR KJ“J?-::
%.0)
o . " - M V(S e 1R
ere 4 i L.‘.I‘-.E;!-'.u:,__,,-r?..,.-..,nm{, 18 the Laplace cperator

: curvilinear coordinetes,

Formally, the expansion {4.2)

ot being caustics /22,2%/. However

LB True at the volnts x
#e shown in sectiom 2,
slthough the clﬂ*s cel trejectories with caustica ( T,

~ 1n B, ™ 78) ) alweys arrive st x in a short ti"z,

their relative mmber iE mmzll and their contributi
neglected,

~

on can be

The sum over m in (4.2) is en expension in pewers of h.

The term with m= 0 gives the elassical value for the average
/22,23/ and the following terme with n # 0 are quentum gor-
rections to them. Therefors, if on

56
=

8ll times

- [Iﬂsp (z,)] <
ix ﬂ:(:.f:' %o (%.5)

the corrections to the Bverages will be slways amall. Thus,

17



the guestion on what times the quasiclassic is applicable, re-—
duces to the study of the time dependence of & . From (4.4)
gnd (4.5) we obtain an expression for 51 in the one-Aimen=2io-
nul cmse @

- a7 o
slxd g%}' {[ra 2% a5k jﬁ] +
1 S * #xt * ax Bx
(4.6)

- |7 5 1 -}ath
+['E L [51:] i ot |7 T
[+

Because J ~exp(ht) and 3] /ox ~exp(2nt ), the first tern
vields the not=time-increassing correction, and its contribu-
tion can be neglected. Hence, the condition (4.5) thus redu-
cee to
, 8%
x4

T J1*
N e R PO

The verification shows (see Application A) that for the system
{2.1) the correction ({%.7) coincides with (2.10). Tt should
be taken intec account that the time integral in :.I"EEZ«?: should
‘be understand as a difference of the protoplastic'at the time
moments ¢ and 0, Since at the intermediate time moments J
venigshes the integral neither from the first nor from the se-
cond term in (5.7) is sign-varying (ef.(2.10). Estimetion of
the higher corrections shiws thet & NE: and the condition
of their smallness is equivelent to (4.7).

Tue to the stochasticity of the classieal system the
tollowing estimates take place :

ag a%g
Rk gt SGRHE A 4.8)
o
where L is 2 certain typical size. It follows from (4.7) and
{4.8) that the exponential time depsndence in (4.7) decresses
and, hence, the quantum eorrections in 225 grow with time

18

not more rapldly than according to the degree law. To find
th

e time dependence 6_‘ it is convenient to proceed to the
veriables of the angle—action unperturbed problem in the
classical Wamiltonian. Tn the chse when the perturbation is
smell and the condition of "modsrate™ nonlinearity /2/ i=

fulfilled, it sufficies to confine oneselves to the expansion

of the Hamiltonian near the initial I, up to terms (AI)® .

At I:/"h > 1 the standerd quantization (2ee, for example, 15
19) lesds to a Hamiltonisn = :

B = wofeytis e[V (1 ,8,%)+
(4.9)

.
vz a0 v (10,01 4 F By (1, ,0,0)%]

where w =2E{1) w av a’
IaI, 'h“g‘.l'rﬂ v Yadgr v Yty
Ia= -i#laag

znllnwing VeP.laslov /22,23/ we find the solution of the

chrodinger equation with the Hamiis

¥=N_1/|§ M 2 tonian (4.9) in the form
XD » Where J,2 is the Jacobian and the clas-

sical p?nhlm actlon. Substituiing ¥ into the equation and °

teking into account the fact that J and § are the soluticns

of the Liouville ana Hamiltonian—Jaecobd equations, raspec-
tively, we get an enquation for (8, ,7) 2

3
ﬁ. = E{Bn,t) @

80,7 = 1h (v +§ v (8,205 2(s~/2 o v,
[}

& et s [ﬁ\f;{ﬂj <] 5 1/} (&.10)
*=h o T._ aﬁ_ I
£ e For . = s 5 %
1 e 1 1 sle .0 T -"[._ Vo Imt ."'-'."i":":.{."-: the



T
operator =/ 8(e,s7,)ar, similar to (4.4), 1t ie possible
renresent 1}(5 +T) B8 B nrl.“ over F or, which is the same,
over b

0(6,,7) = E,2% (6 (8,11

Hence, Y(8,t) is of the form (4.2) with substitution of x
vty @ , L by P . The expression for 6, is analogous to

(4.7 ¢
|'Efu}|-lﬂu [I (y +Ev (Bn,‘r}){ [;'!J !J—: ]ﬂ i
(&.12)

1: a‘-* (@ ,v ) aJ }l

N T

Taking into aceount of the following terms of the expan=zion
of the liamiltonian over AT leads cnly to an insigniflcent
change (by the quantity ~€ ) of ¥ and V, in (4.12), Thie
change can be neglected. Thus, the quantum correction for
the system described by the Hamiltonien H=H (I) +eV(I,8,7)
in the classic is given by Eg.(%.12), where

4 4%
y =5 —=

= y V= a’v/ar? Tl Jk-ua("}(eo.ﬂm,

I-Iu

Let's consider, as an exemple, a system with the Hamil-
tonian

Ha= nﬂ(:} +eV(I,8)eglt) (%.13)

where g(t) have the fore of the kicke acting during the time
T end each kick is followed by the other with the interval
T('I‘ > T ) g we'll see below, at small & the contribution
‘l.l’= to {a'+ 12) ean be neglected. For this reason only the
term with ¥ is taken into sccount. ILet's denote the change
of the action during & kieck by AI (at uTD, 'g*f['u( 1 ﬁqu'-l'Tn}

20

and the stochasticity criterion is assumed to be fulfilleA
E=yTaI » 1. To caleculate & we divide the integrsl in {(4.12)
inte a sum of integrals over Tn and T 3

O] b £ (O enl)y

£ al+T
(el _ " po (xd. v B a0 0 wit)m
k. £V RIne ey
(4.74%)
{x) L ;
n, ' = Ijﬂw"’ck-‘:.eﬂ}t‘.‘:
mT+T

i a3 1* o'
gl )= [£J o x

|

:1-". 4 _.,...J""'
Y% |58 -7 %

and g0 om (the eimilar releticns held for the system (2.1)
with AI~k ), -";ﬁ' Y .,-'._“'_-'1. , Eince the termeg of the
er 0 in (4.74) are stochestic

ally independent because
ef the stochasticity of the classical system, I-_r grows, on
average, according to the law

{ IEi“"i B & ; m— Y I <1 (&.15)

where IT (a2)={ (AI _(=T)}") /% 15 the change of the sc-
ticn during & kick aversged over a rendom phase 6 . Just &s
in the system (2.7 the condition of quasiclassicsl approxi-
mation is fulfilled, when the nunber of the levels captured
by & kick is large.

If the classical system is & flow /2/, it ie impossible
to reduce its dynamics to the action of kicke and then
Ttee 3%, T"~ T and so en. In this cese the integral in (&.12)

21



can be divided inte & sum of integrals over timing intervals
ot ~ 1, =1/h (7, is the inverse K§ - entropy ) which will
be time statistically independent and, hence, we obtain @

B2k (v /m P har € 1 (4.76)

At ¥y = const FEq.(4.16) gives ]’qu Ni‘f‘ flﬂ?]‘fz

S+ Conglusion

The main aim of the present work was to determine on whet
times the gussiclassic approximation for 3@5 is applicable.
The performed study has shown that despite sn exponentislly
fast spresding of the gquasiclazsic packet the quesiclassic
ig valid on the times t ~n, ~ 1/fh . Moreover, as a result
of the clasasic diffusion up the levels, the growth of gquantum
ecorrections can slow down with time. Basing on V.FP.Maslov's
results /22,237 the general criteried (4.712) is obteined to
determine the times on which the guasiclassic is epplicable
is velid for SQ@S.

The snslysis of the system (2.1) which has bee studied
snelytically and mumerically in /0,20/, has shown thet in
this system the gquantum corrections grow 2 ime &, ~ k.
The estimate (2.12) has been cbisined for the time 1:*, be-
ginning from which the diffusion rate charply slows down /10/.
nfortunately, the avaiable experimentel date do not aloows
the predicted relation to be verify with encugh accurecy. At
the seme time the numericel study hes shown that on the times
t < t* the guasiclassie aporoximation well describes even fine
characteristics, such as the dependence of the diffusion co-
efficient on the stochesticity paremeter ( see Fig.3).

Fumerical experiments for the rewds Totator model with
perturbation (3.5) confirm the above made (seetion 2) oonclu-
gion on the insignificent influence of caustics and
islands of stability. In case of the system (2.7) with k=k(t)
the results of mumerical gounting substsntiste the conclusion

on & sharp increase of t* with growth of @ . In this cese
already 8t o = .35 t* i3 not observed during the Tun coun=
ting. Unfortunately the qualitatgve testing verification of
the dependence (2.18) has failed because of a sharp increase
of t* at & =+ .5. On the whole the conclusicon may be made

thet mmrerical experiments comfirm the predictions of the
developad thaory.

The aunthor express his deep gratitude to B.V.Chirikow
for his attention to the presented work and valuable remerks,
G.M.Zaslavaky, F.M.Izrailev, G.Ceeetl, A.T.Milstein, J.Ford
= for stimulating discussions, V.V.Sokelov and S.A.Eheifets
for some critical notes, to V.V.Vecheslavov for the help desling
with the FFT method and to L.F.Ehaile for the help in com—
putations.



Appendix A.

Let us calculate the correction K for the system (2.1)
using (4.7). According to (2.1) and {E 3) we derive the expres—
glons for p, @ between t and t+1 kicks ( h=1, m=1 )

p(t) =p _+k sin 8

(A1)
ait) = Bt +ptt+k': gin ﬁ‘
The following relation is obtained from (2.3) :
a8
e ckmj""‘euua ,c088, __...cos8 +0(1/kT) (4.2)
2]
Aceording to (A.2) we have :
aa(ct) a8
_:':'ﬂf_ ﬁ'f (1+%t con®_ ) +0(1/kT)
3%e(x) (A.3)
BB" = E_ k'v: ui_nﬁ +0(1,%T)
ala(r) LR
= - - 58, kr cos® +0(1/kT)
[+

After partition of the integral (4.7) into a sum of integrals
from t to t+1 wa get

Clﬂ'}zuin::: 1 kv r:oa:; ]

(1% cos2)? 2 (Tekw conx’)’]

4t + 0(1/&T)

After a simple integration we derive the expressiom (2.70).

Isble 1.
! a=0 k, =k
I < -ﬁ.l.‘-" = E-q‘i {(ﬁ! - }}2 1i‘fﬂ > m -53
< ty> = 5.7, <(8, - )2 > 1;’"“"‘1: = .59
| <8.> = .27, <(8, - <6,>)" > ’f-::b:s- 32
J" <8 > = .49, -=:|[t,b -:ﬁh:-:n“ >1 ’,fc:ab;- = .28
f
i | & A /r & -
¥ | ok L B e B #,..a-f"f
v f &y e By
T TG P
5 5 g -
oo B et .63
1 — :
: a5 | 25 - 50
5 10 " 38 if'_'._,.-« 3.5 s .59
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. 22.5 o o~ e
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Fig.
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Figure Captions

Image of line p(B,t=0)=0, 0 < 8 < 2x after
action of trensformation (2.3) At = 3, BYt = 4,
E =5, T = 1. Phase space is reduced in square with
dimengion 2m .

The time dependence of rotator energy E in the cage

of perturbetion type "saw® (3.5). k = By Tm 1,

T = 200. The straight line "a" corresponds tc slasgi-
cal diffusion (3.7}, the straight line "im - tq linear
interpolation at the moment t (rum end), the hroken
line — to experimental result.

Detribution function of ayetem (3.5 in normalized
o-ordinsies Ty(n) end T (@ee (2.1) with

k*» nik?/e i for values of Figs 24, The straight
iine "a" gorresponds to the theoredicel formule {3.2),
"B" - fo linear interpolation according to formulas

{342}, the btrokem line - to experimentsl result.

Dependence of gttitude of experimentel ncoefficient of
i ffueion Dy %0 theoretical Dp = 1. from fractional
rart { ¥T/2x ) ¢« = for clessical aystem
(2:3): + = for quentim system (2.1) with ke 40; fi-
furens nesr some. pointeg-veiues of kT: initigl conditi-
one are different.

The pame as in Fig. 34, but for equal initisl conditi-
ong in cleseicel and guanium csseg.

The time dependence of rotator energy E for the ays-
tem (2.1} with k=k (1+t)* k, =5 Tui,
® = 0«2y, + = 600. The pmooth line corresponds to
classional diffusion (2.15). The brokem line - to expe=
rimental result.

Detribution lunction of eyeten (2.1} with ¥ o=

=k (14+)" in normalized co-ordlnstes #.(n) and
x (@ee (3.1)) for veluem of Plg. 4A. The straight
line "a" corresponds to the theoretiesl formuls {3.21,

Fig. Sh-

Flg. 5B.
Fig. Bk

r-ig. ;8

npn - to linear interpolation asccording to formula
{3.3) the brokem line - to experimental result.

The same as in Fig. 4A for k, =5, Tw= 1, & = 035,
T = 5‘0‘}-
The game as in Fig. 4B for values from Fig. SA.

The same as in Fig. 4A for k =5 T=1, o=0.5,

+ = 200.
The same as in Fig. 4B for values from Fig. 6A.
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