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Abetract

The properties of nonlinear quantum systems stochastical
in gleseical limit are investigated. On a example of comcrete
model it is shown that for a gquentum system in difference from
corresponding classical one KS = arntr;up:r is zero snd sorrela-
tions decay not in exponential but in degree way.

In receat yearda the interest to the dynemice of nonlinear
quantum syetems which in claseical limit esre regarded s K -
= gystems 8, 9 hae eubstantislly growm 1-T . In pregent pa-
per it is -shown, on the exemple of simple model, that such
quantum syetems haven't typical properties of classical sto-
chastic syetems: different from sero ES - entropy 10-11 and
exponential decay of correlations.

Let's conelder a model of rotator in extermal field with
the Hamiltonian:

TR W (1
H= = g + kit) cosp §a(4)
where T(H.) is the perturbation parameter, E’f {4) =
=2 S¢-nT) is the periodic delta function of

period ("klcks™), J is the moment of inertia of the rota-
tor, £ 1is the sngular verisble. In the following J = 1.

The corresponding classical problem with k = conat was
dipoussed in detalls in 12 , where it was shown that for

s> | , the rotator energy increases asccording to the
diffusion law:

2
El(t)= -‘;,-—ﬁ + E(0) (2)

Hers and in the following t is measured in number of
"kicks". Almost for all initial conditions, except emall is-
lands of stability (in case kT = 1), the dietance between
initially close trajectorlies grows exponentially:

d=d, exP(ht) , where d= ((Tap)*+p8)* = emd
h o {n(ET/z) (for ¥F 5 4) ie ES-entropy 12 .

In following we will use thi. Helipenberg equations for
operators which after integration on periocd T are tranaformed
in operator's mapping:

Ps= P+ ktt)sind,
aﬁu ] at T f ﬁtf.l.

where f,, ﬁt satisfy the commutation rules [F: ,EZ.]': -ik.

13}




When % = 0 (3) turms to the stendart map for the clmesical
rotator 12 .

To analyze the obtained map (3) we represent ﬁ,, 5 a{.
in & normal form in respect to the initial operators ,ﬁ;,
(for example, let's all ﬁn to be in the right part). After
this procedure one can obtain in & simple way the projection
of these operators on the space of initial stetes. Such inves-

tigation method was used in 3 in quasiclessical approximeti-
on.

Using known relation
explé *?J=EX,P(5' E_:_i‘}erpfaj (4)

A L
for operators with the commutation rule [ a-,‘ ;1 -
obtain

bunb 2 K0)sinds , Furfoveh
(5)
S 4tk el iesol Y L

M= oo

he S

where ki o= 2k(0)sinTs , k(o)= KO/, T=HT,

Jn“'uj- Beapel function, c.c. = complex cﬂrnjmtcd ‘u:'l. From
(3}, (5) we get that the normal form apj = E(2) -.1.115; in
respect to P;, can be obtained from ﬂﬁ by changing of
indexes 1 -~ 2, 0 — 1. Using (4) ong can find the iwmal
form AP, in respect to Po,f . An arbitrary AP, =
= k(1) ein "?t is obtained from Aﬁt by recurrence method.
S0 if ﬁt E.E are presented in the normal form, then

e . ey
Ptu. = Ff.- + djpiﬂ
- F a—
Bey = E;'t + T Poes

(6}
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To investigate the obtaimed rnprumtu.tion we project
(6 on the basis of initial states W(B)=@#) % gi"%
Then (6) becomes C-number mapping (with f* instead F‘n ¥
which may be enalyzed as mapping describing dynamics of some
classical system with the average values [P, B,
(<Pe> -_—é} F‘{H,E'J-J#n colneiding with gquantum
one. Por #=0this eystem turns in claseical system with
gtendart map ((3) with % = 0). S0, to understand the proper-
ties of quantum syetem one can study the classlcal system des-
eribed by mapping (6) where Po, §, are C-numbers. It should
be noted, thnt obtained mapping does not preserve the Jacobi-
an }- ”‘ ; , which oscillates with time that indi-
cates the presence of some "decay” with changing eign.

Let's snelyse the cass with k(t) = k = const. In claselc




(h =0) m,~ kT, m,; ~ mekT ~ {£7)2 end so on. Therefore
'{w.r-w?:fkrjt'?’%ﬂﬂh_,.;:fkﬁtm& eloge trajectories diverze
exponentially. For + @ 0 and + < +s

v ntkss)
3 En(kT)

that is if T P, ,ymy, << { gine in Bessel function in (6)
may be substituted for an argument and then the locgl insgta-
bility of close trajectories takes place. For t > . one can
uge the fact that in (6) |mu.l £ 2k (in opposite case

]

:I"HEB:] is exponentially small) and therefore |elw.,,....,|<
2Rt . B . pd kAT s
Then for t > . dfle~ (1Proimid + 1%, g 1} 5 2K
and entropy b decreases _with time as
o 2 bnk +2 ént (8)

t

Thus the entropy is zero for the gyetem (1) and this means
that (1) is not the E-system, although for the corresponding
clapalcal system ho= &@j.}ﬂ (kT> 4 ) 12 « Note
that for k(t) = klio}‘l‘!'! the entropy goes to zero in a gimiler
wey (B) (another conatant before bt Y+ And only for
kE(t) ~ exp(At) (actuslly this cese is not of phyeical inte-
Tﬂﬂ the ewtropy of quantum system is greater than zero:

= # .

How we coneider the dependence of correlationa from time
for quentum FF?“ (10 R(t,n,q) = £<m &P e 4
+ o' ,E"“?v | = -y where the
brackets <k l...1> imply the averaging over initial ata-
te Y.(0o)=(2w) expling,) . Prom (6) we get the
expresmion for R{t,n,¢) (k = const):

R(t,ng)= &+ ;‘P__,_h T, (k) 1o () 3 (6D

(9]
? EX'P{; w“‘n"‘)"'ﬁ-‘ ) ex]p{i ﬂ""ﬂ"""‘f-\: .TFHJ 2

(L4 KPP m TN 6,

Emgyuney ey 1 {9}

For t < t; quantum corrections are negligible a.ud._tﬁl_lf clas-
gical value for R may be useds Then KR{f,n,g)~ € .
where 6 ~ £&n(k T) 3, 13 « For t ~ %¢ (T) correla-
tions decay to the value Rltg,sg) ~ k™% gna precise
expression (9) must be used for the following calculations
that is difficult problem. So in followlng only rough estimate
and low limit for [R (£, h,§)| will be obteimed.

For t >»> %, almost for all m; (J> %) k;~k. Coneider
that ¥ and pT are_distributed in the interval
equipartislly (thﬂ_}t‘;ﬂ'ﬂwt ket i dlone can obtain:

R4, ng)~ Rit,m,g) ~ k™™ , t > €5 o %o find the
mexrimsl speed of decay .R(%,h, §) let's use the condition of
uni tary for operator € ° end the condition
<miexpl-ibe ) expli &) 1n>= 4 . from which one get
exptiB = (B AL € ") 1n> and

Lf": JA"[*= 4 - But from (6) it follows (due to

et mes ~ kt) , that the sum by m has Mg ~ K ¢
terma {jén} with [kl Pigay gre exponentially small).
Assuming that ell Ay with | | < WYy,  are of one order
{on the contrary there are q with gl <m, - for which the
correlations will decay elower than (10)) and using preclse
equation R (%, h.4)= 3% fﬂl;”"' A:;_‘}J one gets for
t 5>t

IRt n,8)1 > ———,_Hit (10}

Fae
In the case k(t) = kt“ we must chenge t=t f/f-“‘ﬂi,] .

Although after £ ~ t¢ the classlcal value of correle-
tione will differ from quantum one(the comparison ie made in
quasiclaseical region), the absolute value of correlatioma
will be mmall £ ~ {R/E .+ Therefore in quantum case the cha-
recteristics, which don't decrease in the classical aystem



(for exemple, the energy of rotator [ = <u Iij Ine ),
will differ from their classical sizes only on emall value

~ (% D b during time 40 ®C 1/4 (the number of correlati-
one grows with time according to the degree law). The mors
precise estimate for T glves { =< = 43)

TS [fEfﬁ (1 -20)] Mol o2 (11)

For = >3rthe quantum corrections are small during all
the tima.

It's interesting %o note that degree decay of correlati-
one takes place due to degree inereasing of number of harmo-
nice £ in U with time ( {/ 18 the operator of evolutiom (1)
or, to say in other words, due to degree grow of number of
excited nonperturbed levels (ocme kick cccupies =.2 k levela).
In view of this fact the number of harmonics of & in

ﬁ‘ = 4*{-ik ) also growe in degree way that
lesdes to h = 0 and not exponentisl decay of correlations.
Because thie property of U tekes place reslly for ell types
of perturbations it'e naturally to expect that and other
quentum systems, stochastical in clapsicel limit will have
zoro E3-entropy and degree decay of correletions. This result
showes that the generalization of conception of Eolmogorov's
entropy for gquantum systems 14, 15 apparently has no inte-
rest for wide clase of physical systeme.

The author express his deep gratitude to B.V.Chirikov
for his attention to the presented work end valusble remarks,
G.M.Zeglavaky, F.M.Izrailev, V.V.Sckolov end S.A.Eheifets -
= for stimulating discussions.
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