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D Y N A M I C A L  S T O C H A S T I C I T Y  IN N O N L I N E A R  Q U A N T U M  S Y S T E M S  

D . L .  S h e p e l y a n s k i i  

The p r o p e r t i e s  of nonl inear  quantum s y s t e m s  that a re  s tochast ic  in the c l a s s i ca l  l imi t  
a re  invest igated,  It is shown for a definite model that for the quantum sys tem,  in 
con t ras t  to the cor responding  c l a s s i ca l  sys tem,  the Kolmogorov-S ina i  ent ropy is zero ,  
and the co r r e l a t i ons  a r e  damped only as a power and not exponential ly.  

The re  has r ecen t ly  been a cons iderab le  growth of in te res t  in the dynamics  of nonlinear quantum 
s y s t e m s  [1-7] that a r e  Kolmogorov s y s t e m s  [8, 9] in the c l a s s i ca l  l imi t  (~i = 0) .  In the p resen t  paper ,  taking 
a s imple  model ,  we show that such quantum s y s t e m s  do not pos se s s  the typical  p r o p e r t i e s  of c l a s s i ca l  
s tochas t ic  sy s t em s ,  namely,  a nonvanishing Ko lmogorov-S ina i  ent ropy [10-11] and exponential  damping of 
co r r e l a t i ons .  

We cons ider  the model of a r o to r  in an external  field with Hamiltonian 

/~ ._~_ h ~' 0~ 
2J 002 ~- k'(t)cos06~ (t), (1) 

where  k ( t )  is the p a r a m e t e r  which c h a r a c t e r i z e s  the magnitude of the per turbat ion,  

6~(t) = E 6  ( t -nT) 

is a t ra in  of delta functions (jolts), J is the moment  of iner t ia  of the ro to r ,  and 0 is the angular  va r iab le .  
In what follows, J = 1. 

The cor responding  c la s s i ca l  p rob lem for  k = const  was invest igated in detail  in [12], in which it was 
shown that for kT >> 1 the r o t o r  energy  i n c r e a s e s  in accordance  with the diffusion law 

E(t) = ~ t+E(O). (2) 

Here  and in what follows, t is the d imens ion less  t ime,  measu red  by the number  of jol ts .  For  a lmos t  all 
initial conditions,  except  for  smal l  (when kT >> 1) is lands of s tabil i ty,  neighboring~~ t r a j e c t o r i e s  diverge 
exponentially:  d = d0exp(ht) , where  d=l/(Thp)2+(AO) ~, and h ~ l n ( k T / 2 )  (for kT > 4) is the K o l m o g o r o v -  
Sinai ent ropy [12]. 

To invest igate  the quantum s y s t e m  (1), we proceed  f r o m  the equations for the Heisenberg  o p e r a t o r s ,  
which a f t e r  integrat ion over  the period T go over  into the ope ra to r  mapping 

p,+,=p,+7/(t) sin 0t, Ot+,=Ot+Tp,+~, (3) 

where  Pt and 0t a r e  o p e r a t o r s  which sa t i s fy  the commuta t ion  re la t ion  [p,, O,] = - i h .  For  ti = 0, (3) goes  
over  into the s tandard mapping for  a c l a s s i ca l  r o to r  [12]. 

It should be noted that in (3) the ope r a to r  0 co r r e sponds  to a continuous phase,  which v a r i e s  f rom 
- ~  to ~ .  In the case  of a flat  ro to r ,  the ope ra to r  ~ can be r ep re sen t ed  in the fo rm p=-iO/O0 [t3]. The 
per iodic  phase r which v a r i e s  in the in terval  f r o m  0 to 27r, can be de te rmined  by means  of the re la t ion  

= 6(0 ), where  r  is a per iodic  (with per iod 2~r) discontinuous function, with ~(x) = x for  0 ~ x < 2~r 
[13]. Since ~,=U+(I)(O0)U=(I)(O,) (U is the evolution ope ra to r  (1)), for  an a r b i t r a r y  periodic function g (with 
per iod 27r) the re la t ion  g(~,)=g(O,) holds and the re fo re  it is sufficient in what follows to invest igate  the 
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proper t ies  of the opera tor  0t, which uniquely de te rmines  ~t"  

To analyze the mapping (3), we r ep re sen t  ~)~ and 0t in normal  fo rm with respec t  to the initial 
opera to rs  P0 and 00 (suppose, for example,  all the P0 a re  on the right) af ter  which it is a simple mat te r  to 
obtain the project ion of these opera to rs  onto the space of the initial s ta tes .  Such a method of investigation 
in the quas ic lass ica l  approximation was used in [3]. 

It can be shown that for  the opera tor  mapping (3) one can obtain an exact normal  form of Pt and ~t" 
This makes it possible to show that in the quantum case  the cor re la t ions  dec rease  with the t ime not fas te r  
than a cer ta in  power of the t ime, in contras t  to the exponential damping in a c lass ica l  sys tem,  and the 
Kolmogorov-Sinai  entropy of the quantum sys tem is ze ro .  

Using the well-known equation (see, for  example,  [14]) 

exp (~+b) =exp (b (e ~  4)/c) exp (ti) 

for opera to rs  with the commutation re la t ion [~, g] =cg, we obtain 

(~) 

p~=-po+k (0) sin Oo, pa=p,+Ap~, 

(5) 

hpz= ~(t)2i { ~J~o(k~.o)exp{i - -~(mo+l)}exp{i(mo+i)Oo}exp{ipoY}-c .c .} ,  

where k~.0=2k(0) sin (T/2), k(0)=I/(0)/h, T=T/~, Jmo(k,,o) is a Besse l  function and c . c .  denotes the complex 
conjugate t e rm.  It follows f rom (3) and (5) that the normal  form Ap~=~(2) sin0~ with r e spec t  to ~ and ~ is 
obtained f rom A~2 by the index substitution 1 -+ 2, 0 --+ 1. Applying (4), we obtain f rom it the normal  form 
of Ap3  ̂with r e spec t  to P0' ~" An a r b i t r a r y  Ap,+,=~/(t) sin fit is obtained f rom A~) t r ecu r s ive ly .  Thus, if 
r)t and 0t a re  a l ready represen ted  in normal  form,  then 

A,  ~(t) t 
p,+~=p,+Ap,§ O,+,=~,+~p,§ P+'= 2~ ~ * '  ]~,(~,,,-,)~m,(~.~-~) .. ],,,_, (~,,o) • (6) 

r t t a , ~ l t l , . . . , ? n t - i ~  ~ 

where 

exp (i(p ........ t-~) exp (in ........ t_~ 00) exp (i~,~,...,~,_~ Tp0) --~. c.}. 

T T T 

T 

To investigate the obtained mapping, we project  (6) onto the basis of initial s tates  $,~(00)=(2n)-%~'% 
Then (6) goes over  into a c -number  mapping (with P0 replaced by hn),  which can be regarded  as a mapping 
describing the dynamics of some c lass ica l  sys tem for which the mean values of Pt and Or, 

00)d00, 
0 

coincide with the quantum mean values and which in the l imit  h -~ 0 goes over  into a c lass ica l  sys tem with 
standard mapping ((3) with 1i = 0). Thus, to understand the p roper t i e s  of the quantum sys tem,  we must 
study the c lass ica l  sys tem descr ibed by the mapping (6), where P0 and 00 a re  c numbers .  Note that the 
obtained mapping does not conserve  the Jacobian Jr=O(pt, O,)/O(po, 00) ffor it=0, 2"=i) ,  which osci l la tes  with 
the t ime, which indicates the presence  of "damping" with var iable  sign. 

We consider  the case  when k ( t )  = k = const.  In the c lass ica l  case (11 = 0), m 0 ~ kT,  ml ~ m0kT ~ 
(kT)9, etc.  There fo re ,  am, ......... ~(kT)  t, O0~/O0oNCZ ........... ~ (kT) '  and neighboring t r a j ec to r i e s  diverge exponen- 
t ial ly.  For  11 r 0 when t < ts, we have 

t,~ln (~/h)/In (~T), (7) 

i . e . ,  as long as T~,~ ...... t,<<~, the sine in the Besse l  function in (6) can be replaced by its argument,  and then, 
as before,  we have local instabili ty of neighboring t r a j ec to r i e s .  When t > is, we use the c i rcumstance  that 
in (6) Im,t I ~ 2k (otherwise, J ~  (k) is exponentially small),  and, the re fore ,  la ...... .~-~l<~2kt, ! ~  ...... t-~t~g2kt~. 
Then d]do~(I ~ . . . . . . .  t l+lct . . . . . . .  t_~l)~2kt 2 for  t > ts, and the entropy h dec reases  with the t ime in accordance  
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with the f o r m u l a  

h~ (In k+2 In t)/t. (s) 

Thus ,  fo r  the s y s t e m  (1) the en t ropy  is z e r o  and, hence,  (1) is not a Ko lmogorov  sy s t em,  al though for  the 
c o r r e s p o n d i n g  c l a s s i c a l  s y s t e m  h ,z l n ( k T / 2 )  > 0 (kT > 4) [12]. Note that  fo r  k ( t )  = k ( 0 ) t  a the en t ropy  
a l so  tends to z e r o  in a c c o r d a n c e  with a law n e a r l y  the s a m e  as (8) (there is a d i f fe ren t  cons tan t  in f ront  of  
In t ) .  And it is only when k ( t )  ~ exp (p t )  (this s y s t e m  is ac tua l ly  of  no phys ica l  in teres t )  that  the en t ropy  of  
the quantum s y s t e m  is nonze ro :  h = p .  

We now c o n s i d e r  the behav io r  of  the d i f f e r en t - t ime  c o r r e l a t i o n  funct ions  in the quantum s y s t e m  
( l ) :  Tl(t, n, q)~'12(nle-~q~~176176 where  the mean  value is taken with r e s p e c t  to the init ial  s ta te  

~ (00) = (2n)-v' exp (in00). F r o m  (6), we obtain an e x p r e s s i o n  for  R (t, n, q ) (k = c o n s t ) :  

i 
R(t, n,q)=--~ 2 ]m(ki)I,~,(k~)...l,,,_, (k,)exp(~,~ ...... ~_i) X 

m~,~ 

exp(i[~ . . . .  ~t ~ Tn)(l+exp(--~[~,~..,~, . Tq))6~ ,q. (9) 
' ' - -  ' ~  ~ 1  m ~ , , ~  I 

For  t < ts, the quan tum c o r r e c t i o n s  in (9) can be ignored  and the c l a s s i c a l  value of  1~ used .  Then 
( l  l R(t, n, q)~e -'~, where  ~ / ~ l n  (kT) [3, 15]. At the t ime  t ~ t s (7), the c o r r e l a t i o n s  r e a c h  the value R(t,, n, q) 

~l /k  '~', and for  the subsequent  ca lcu la t ion  of  R it is n e c e s s a r y  to use  the exac t  e x p r e s s i o n  (9), which p r e s e n t s  
c o n s i d e r a b l e  d i f f icu l t ies .  We t h e r e f o r e  r e s t r i c t  o u r s e l v e s  to a rough  e s t i m a t e  and lower  l imi t  fo r  [ R (t, n, q) I. 

For  t >> t s and a l m o s t  all  m5 (]>t,) kj~k. A s s u m i n g  a l s o t h a t  r and fiT a r e  d i s t r ibu ted  with equal  
p robab i l i ty  in the in te rva l  [0, 2~] (then 

we obtain R(t, n~ q)~R(t,, n, q)~k -'1', t>t,. To find the m a x i m a l  r a t e  of  d e c r e a s e  of  R( t ,  n, q ), we use  the 
condi t ion of  un i t a r i t y  Of the o p e r a t o r  e '~ and the ident i ty  (niexp(-/8,)exp(~0,) I n ) ~ i ,  f r o m  which we have 

But it fol lows f r o m  (6) (since a .......... t-L ~kt), that  the sum ove r  m conta ins  mma x ~ kt  t e r m s  (A~) with 
I rni:>mm~ a r e  exponent ia l ly  smal l ) .  A s s u m i n g  that  all A m with I ml < mma x a r e  of  the s a m e  o r d e r  (o the r -  
wise  t he re  is a q with ]q[ < m~a x for  which the c o r r e l a t i o n s  will d e c r e a s e  s lower  than (10)), and us ing  the 
exac t  equat ion R(t, n, q)-~/~(A~'"q-A~-q)), we obtain for  t >> t s 

[~(t, ~, q)I ~ i / ~ .  (10) 

In the c a s e  k ( t )  = kt a ,  we mus t  in (10) make  the subst i tu t ion t-~V+~/(l+a). 

Note that  a l though the c l a s s i c a l  value of  the c o r r e l a t i o n  function will a l r e a d y  differ  f r o m  the quan tum 
value a f te r  the t ime  t ~ t s (in the c o m p a r i s o n ,  we c o n s i d e r  the q u a s i c l a s s i c a l  reg ion) ,  the absolute  value 
of  the c o r r e l a t i o n  funct ion will be smal l ,  R~]/h//~, and t h e r e f o r e  quant i t ies  that  do not d e c r e a s e  in the 
c l a s s i c a l  c a s e  ffor example ,  the r o t o r  e n e r g y  E=(ni'/2pt2in)), will d i f fer  by a sma l l  amount  ~(h/~) '~' dur ing  
a t ime t o cc 1/~i (the n u m b e r  of  c o r r e l a t i o n  funct ions  i n c r e a s e s  with the t ime as  a power) .  A m o r e  a c c u r a t e  
e s t i m a t e  for  t o [7] g ives  (a  -< ~) 

to~ [ (}7/h) ~ ( I - 2 ~ )  ] ' / ( ' -~)  (11) 

It is i n t e re s t ing  that fo r  o~ > ~ the quan tum c o r r e c t i o n s  r e m a i n  smal l  at all  t i m e s .  

Final ly ,  it should be noted that  the r e a s o n  for  the power  d e c r e a s e  of  the c o r r e l a t i o n s  is the power  
g rowth  of  the number  of  0 h a r m o n i c s  in U with the t ime (U is the evolut ion o p e r a t o r  (1)), o r ,  in o the r  words ,  
the number  of  populated leve ls  of the unpe r tu rbed  s y s t e m  (one jolt  c o v e r s  ~2k levels  of  the unpe r tu rbed  
s y s t e m ) .  Because  of  this ,  the n u m b e r  of  ~ h a r m o n i c s  in Pt = U+(- i t iO/aO)U also  i n c r e a s e s  as  a power ,  
which leads  to h = 0 and nonexponent ia l  damping  of  the c o r r e l a t i o n s .  Since this  p r o p e r t y  of  U holds for  
a l m o s t  all p e r t u rba t i ons ,  it is na tu ra l  to expec t  that  o the r  quantum s y s t e m s  which a r e  s tochas t i c  in the 
c l a s s i c a l  l imi t  will  have van ish ing  K o l m o g o r o v - S i n a i  en t ropy  and power  d e c r e a s e  of the c o r r e l a t i o n s .  This  
r e s u l t  ind ica tes  that  the d i r e c t  g e n e r a l i z a t i o n  of  the concep t  of  the Ko lmogorov  en t ropy  to quantum s y s t e m s  
[16, 17] is not so impor t an t  as  in c l a s s i c a l  s y s t e m s .  
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K I N E T I C S  O F  R E L A X A T I O N  T R A N S I T I O N S  B E T W ] ~ E N  

M U L T I L E V E L  Q U A N T U M  S T A T E S  

A . A .  D e m i d e n k o  and E . G .  P e t r o v  

The nonequil ibr ium densi ty ma t r ix  method is used in the approximat ion of s t rong 
"longitudinal" re laxa t ion  in each individual mul t i level  quantum sta te  to study t rans i t ions  
induced by resonance  in terac t ions  between levels  belonging to different  s ta tes  of a 
quantum subsys tem.  The t rans i t ion  r a t e s  a re  found in the cases  of weak and s t rong 
interact ion of each of the levels  of the subsys t em with the t he rma l  bath. 

1. In the theore t ica l  study of the t r anspo r t  of energy  and charge  in different  physical ,  chem}caI.~ 
and biological s y s t e m s  (see, for example ,  [1-4]), it is f requent ly  n e c e s s a r y  to find the c h a r a c t e r i s t i c  t imes  
�9 0o, of t rans i t ions  between se ts  of levels  ~ and ~r' in which internal  t rans i t ions  take place during shor t  t imes  
�9 ~, ~o,<<~o~,. For example ,  in the invest igat ion of i n t e r t e r m  t rans i t ions  in a molecule ,  the v ibra t ional  levels  of 
each t e r m  a re  the se ts  of leve ls ,  and the t imes  T o a r e  the internal  convers ion  t imes ,  which can be caICulated 
explicit ly in the harmonic  approximat ion  [2, 5]. In the invest igat ion of e lec t ron  t r a n s f e r  between molecules ,  
one will take as the set  of levels  the v ibra t ional  levels  of the molecules  when the e lec t ron  is at e i t he r  a donor 
or  an acceptor  [3, 4]. 

The s imples t  way of finding ~ ,  - and the one usual ly  employed - is to calcula te  the t ransi t ion 
probabi l i t ies  using F e r m i ' s  "golden r u l e "  under  the assumpt ion  of a Bol tzmann distr ibution of the populations 
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