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DYNAMICAL STOCHASTICITY IN NONLINEAR QUANTUM SYSTEMS
D.L. Shepelyanskii

The properties of nonlinear quantum systems that are stochastic in the classical limit
are investigated. It is shown for a definite model that for the quantum system, in
contrast to the corresponding classical system, the Kolmogorov—S8inai entropy is zero,
and the correlations are damped only as a power and not exponentially.

There has recently been a considerable growth of interest in the dynamics of nonlinear quantum
systems [1-7] that are Kolmogorov systems [8, 9] in the classical limit (A =0). In the present paper, taking
a simple model, we show that such quantum systems do not possess the typical properties of classical
stochastic systems, namely, a nonvanishing Kolmogorov—Sinai entropy [10-11] and exponential damping of
correlations.

We consider the model of a rotor in an external field with Hamiltonian

~ 72
H =7 agz =+ F (1) cos 06 (), 1)

where k(t) is the parameter which characterizes the magnitude of the perturbation,

b5() = Z«S(t——nT)

Ne=—o00

is a train of delta functions (jolts), J is the moment of inertia of the rotor, and ¢ is the angular variable.
In what follows, J = 1.

The coz'responding classical problem for k = const was investigated in detail in [12], in which it was
shown that for kT > 1 the rotor energy increases in accordance with the diffusion law

E()= ~7Z—zt+E(O). @)

Here and in what follows, t is the dimensionless time, measured by the number of jolts. For almost all
initial conditions, except for small (when kT > 1) islands of stability, neighboring trajectories diverge
exponentially: d = dexp(ht), where d=V(TAp)*+(A6)", and h =~ In(kT/2) (for KT > 4) is the Kolmogorov—
Sinai entropy [12],

To investigate the quantum system (1), we proceed from the equations for the Heisenberg operators,
which after integration over the period T go over into the operator mapping

Peor==ptE(t) sind,, 6, =6,+Tprss, ' (3

where f)t and gt are operators which satisfy the commutation relation [p;, 8.J=—ifi. For i = 0, (3) goes
over into the standard mapping for a classical rotor [12].

It should be noted that in (3) the operator 9 corresponds to a continuous phase, which varies from
— to w, In the case of a flat rotor, the operator p can be represented in the form p==—id/08 [13]. The
peI‘lOdIC phase ¢, which varies in the interval from 0 to 27, can be determined by means of the relation
= #(6), where ®(x) is a periodic {with period 2#) discontinuous function, with &(x) = x for 0 < x < 27
[13]. Since @:=U*0(8,)U=0(8,) (U is the evolution operator (1)), for an arbitrary periodic function g (with
period 27) the relation g(9:)=g(8:) holds and therefore it is sufficient in what follows to investigate the
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properties of the operator g ¢» Which uniquely determines c'ﬁt.

To analyze the mapping (3), we represent p, and § ¢ in normal form with respect to the initial
operators 60 and 60 (suppose, for example, all the p are on the right) after which it is a simple maiter to
obtain the projection of these operators onto the space of the initial states. Such a method of investigation
in the quasiclassical approximation was used in [3].

It can be shown that for the operator mapping (3) one can obtain an exact normal form of p and 9; .
This makes it possible to show that in the quantum case the correlations decrease with the time no+ faster
than a certain power of the time, in contrast to the exponential damping in a classical system, and the
Kolmogorov~Sinai entropy of the quantum system is zero.

Using the well-known equation (see, for example, [14])
exp (ﬁ+71) =exp(b(e*~1)/c) exp () {4)
for operators with the commutation relation [4, 5] =cb, we obtain

P=potE(0) sinfo,  Pa=pi+Ap,

{5)
Ap— E(i) {Z]"m(ki u)exp{l-—(mﬁ"i)} exp{i(m,+1)8.}exp{ip.T}—c.c.}:

My= —o0

where k,,=2k(0) sin (7/2), k(0)=K(0) /A, T=T*H, J.,(k.,) is a Bessel function and c¢.c. denotes the ccmplex
conjugate term. It follows from (3) and (5) that the normal form Ap.=F%(2)sind, with respect to ) and 5 is
obtained from L‘p by the index substitution 1 — 2, 0 = 1. Applying (4), we obtain from it the normal form
of Ap with respect to p 90. An arbitrary Apz+r~%(t) sin §; is obtained from Apt recursively. Thus, if
pt and 6 are already represented in normal form, then
R E(t)
P:+1=P:+Apz+g, 91+1=Gt+7‘ﬁ1+1, Apl+1“”~{ Z J (ki 11 )Jml(kz t—z) m, 1 (kt,o) x (6)

mymy, .., M_g= ~0o

where

T
(Pmoz‘i"‘(1+mo)1 amo=m0+17 ﬁm«=11 Pme

T
,,,,,,,,,,, m, ==Omq,....m _, +ﬁrmy,..,,mn_i kn‘1*2k(t) sin ‘é— Bma,... e

To investigate the obtained mapping, we project (6) onto the basis of initial states ,(8,)={2mx) "™,
Then (6} goes over into a c-number mapping (with f)o replaced by fin), which can be regarded as a mapping
describing the dynamics of some classical system for which the mean values of p, and 9,,

17
o=~ j pi(n, 8,)d0s ,

coincide with the quantum mean values and which in the limit & — 0 goes over into a classical system with
standard mapping ((3) with i = 0). Thus, to understand the properties of the quantum system, we must
study the classical system described by the mapping (6), where p and 6 are ¢ numbers. Note that the
obtained mapping does not conserve the Jacobian Z=23(p., 6:)/0(ps, 8;) for A=0, F=1), which oscillates with
the time, which indicates the presence of "damping" with variable sign.

We consider the case when k(t) =k = const. In the classical case (i = 0), m  ~ kT, m ~ mkT ~

(kT )3, etc. Therefore, Gm, .. m.~(kT)?, 30,/000~0m, ... m..~(kT)* and neighboring trajectories diverge exponen-
tially. For fi # 0 when t < t_, we have

to~In (k/h) [In (RT), {0

i.e., as long as TBm, .., m, <1, the sine in the Bessel function in (6) can be replaced by its argument, and then,
as before, we have local instability of neighboring trajectories. Whent > t_, we use the circumstance that
in (6) Im,| ¢ 2k (otherwise, Ja, (k) is exponentially small), and, therefore, |am, .., m |2kt |Bm, .., m | <252
Then @/de~(|Bum, ..., m| T Cmo ... m_y |) <2k for t > t, and the entropy h decreases with the time in accordance
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with the formula
h~(In k+21nt) /2. ®)

Thus, for the system (1) the entropy is zero and, hence, (1) is not a Kolmogorov system, although for the
corresponding classical system h =~ In(kT/2) > 0 (kT > 4) [12]. Note that for k(t) = k(0)t> the entropy
also tends to zero in accordance with a law nearly the same as (8) (there is a different constant in front of
Int). And it is only when k(t) ~ exp(ut) (this system is actually of no physical interest) that the entropy of
the quantum system is nonzero: h = .

We now consider the behavior of the different-time correlation functions in the quantum system
(1): R(t, n, @) ="/An]e e+ e~ |n) where the mean value is taken with respect to the initial state
Pa (80) = (2n)~" exp (in6,}. From (6), we obtain an expression for R({t, n, q) (k = const):

1
R(t,n, g)=— Z T (ki) Ty (B2 < T, () @XD (i@me,.m,_, ) X
igyene,M3ay

exp (iBm,..m,_, Tn) (1+exp(~iBm,..m,  T9)8e, . o ©)
For t < t,, the quantum corrections in (9) can be ignored and the classical value of R used. Then
R(t, n, g)~e~", where o~'/;ln (kT) [3,15]. At the time t ~ t_ (7), the correlations reach the value R(t,, n, ¢)
~1/k*, and for the subsequent calculation of R it is necessary to use the exact expression (9), which presents
considerable difficulties. We therefore restrict ourselves to a rough estimate and lower limit for IR(t, n, g@)1.

For t » t_ and almost all m; (7>t,) k;~k Assuming alsothat ¢ and BT are distributed with equal
probability in the interval [0, 27] (then

Y, Tmslle “izt)

mjz-—ca

we obtain R(t, n, ¢)~R(t, n, ¢)~k™*, t>t,. To find the maximal rate of decrease of R(t, n, q), we use the
condition of unitarity of the operator ¢ and the identity <n|exp(—if.)exp(if;)|r>=1, from which we have

exp (i) Ind>= (ZA,(,."’ e""‘°°) {n> and Z 145 [2=1.

Mon weod Mo e &

But it follows from (6) {since am, .., =, ~kt), thatthe sum over m contains m .~ kt terms (A with
|m|>mnx  are exponentially small). Assuming that all A, with Im| < m__  are of the same order (other-
wise there is 2 q with Iqf < m___ for which the correlations will decrease slower than (10)), and using the

exact equation R(t, n, q)=",(4y" +A™®), we obtain for t > t,
[R(t, n, q) | 21/Vkt. (10)
In the case k{t) = kt®, we must in (10) make the substitution :—#"+*/(1+a).

Note that although the classical value of the correlation function will already differ from the quantum
value after the time t ~ t_ (in the comparison, we consider the quasiclassical region), the absolute value
of the correlation function will be small, R~V#/k, and therefore quantities that do not decrease in the
classical case (for example, the rotor energy E=<(n|'f,p*|r>), will differ by a small amount ~(A/E)" during
atime t o« 1/ (the number of correlation functions increases with the time as a power). A more accurate
estimate for t [7] gives (¢ = %)

to~ [ (B/R)* (1—20) /022, 11)

It is interesting that for @ > } the quantum corrections remain small at all times,

Finally, it should be noted that the reason for the power decrease of the correlations is the power
growth of the number of 6 harmonics in U with the time (U is the evolution operator (1)), or, in other words,
the number of populated levels of the unperturbed system (one jolt covers =2k levels of the unperturbed
system). Because of this, the number of # harmonics in f)t = UT(-ifi8/66)U also increases as a power,
which leads to h = 0 and nonexponential damping of the correlations. Since this property of U holds for
almost all perturbations, it is natural to expect that other quantum systems which are stochastic in the
classical limit will have vanishing Kolmogorov—Sinai entropy and power decrease of the correlations. This
result indicates that the direct generalization of the concept of the Kolmogorov entropy to quantum systems
{16,17] is not so important as in classical systems.

927



I should like to take this opportunity of expressing my thanks to B, V. Chirikov for interest in the
work and valuable comments, and to G. P. Berman, G. M. Zaslavskii, F. M. Izrailev, V. V., Sokolov, and
S. A. Kheifets for valuable discussions.

LITERATURE CITED

=t

©. V. Shuryak, "Nonlinear resonance in quantum systems,” Zh. Eskp, Teor. Fiz., 71, 2039 (1976).

G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, "Stochastic behavior of a quantum pendulum

under a periodic perturbation,” in: Stochastic Behavior in Classical and Quantum Hamiltonian Systems,

Vol. 94, Lecture Notes in Physics (eds G. Casati and J. Ford), Springer, New York (1979}, pp.334-352;

"Stochastic behavior of a quantum pendulum under a periodic perturbation,” Preprint 78-46 [in Russian],

Institute of Nuclear Physics, Siberian Branch, USSR Academy of Sciences, Novosibirsk (1978).

G. P. Berman and G. M. Zaslavsky, Physica (Utrecht), 91A, 4, 450 {1978); 97A, 367 (1979).

G. M. Zaslavskii, Usp. Fiz. Nauk, 129, 211 (1979).

M. V. Berry, N. L. Balas, M. Tabor, and A. Voros, Ann. Phys, (N.Y.), 122, 26 (1979).

F. M, Izrailev and D, L, Shepelyanskii, Dokl, Akad. Nauk SSSR, 249, 1103 (1979).

D. L. Shepelyanskii, "Quasiclassical approximation for stochastic quantum systems," Preprint 80-132

[in Russianl, Institute of Nuclear Physics, Siberian Branch, USSR Academy of Sciences, Novosibirsk

(1980},

8. V. 1. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, New York (1968)}.

9. Ya. G. Sinai, Introduction to Ergodic Theory [in Russian], EGU, Erevan (1973),

10. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 119, 861 (1958); 124, 754 (1859),

11. Ya. G. Sinai, Izv. Akad. Nauk SSSR, Ser. Mat., 30, 15 {1966},

12, B. V. Chirikov, Phys. Rep., 52, 265 (1979).

13. Coherent States in Quantum Theory [Russian translations], Mir, Moscow (1972), p.146.

14. V. N, Baier, V. M. Katkov, and V. S. Fadin, Radiation of Relativistic Electrons [in Russianl, Atomizdat,
Moscow (1973).

15. G. M. Zaslavskii, Statistical Irreversibility in Nonlinear Systems [in Russian], Nauka, Moscow (1970},

16. A. Connes and E. Stormer, Acta Math., 134, 289 (1975).

17. M. D. Srinivas, J. Math. Phys., 19, 1952 (1978).

[\

oUW

KINETICS OF RELAXATION TRANSITIONS BETWEEN
MULTILEVEL QUANTUM STATES

A.A. Demidenko and £.G. Petrov

The nonequilibrium density matrix method is used in the approximation of strong
"ongitudinal" relaxation in each individual multilevel quantum state to study transitions
induced by resonance interactions between levels belonging to different states of a
guantum subsystem. The transition rates are found in the cases of weak and strong
interaction of each of the levels of the subsystem with the thermal bath.

1. In the theoretical study of the transport of energy and charge in different physical, chemical,
and biological systems (see, for example, [1-4]), it is frequently necessary to find the characteristic times
e Of transitions between sets of levels 7 and 7 in which internal transitions take place during short times
To, Tor<Top. For example, in the investigation of interterm transitions in a molecule, the vibrational levels of
each term are the sets of levels, and the times 7 are the internal conversion times, which can be calculated
explicitly in the harmonic approximation [2,5]. In the investigation of electron transfer between molecules,
one will take as the set of levels the vibrational levels of the molecules when the electron is at either a donor
or an acceptor [3,4].

The simplest way of finding 7. — and the one usually employed — is to calculate the transition
probabilities using Fermi’s "golden rule" under the assumption of a Boltzmann distribution of the populations
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