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In this survey we consider some recent results of investigations of stochastic motion in
classical and guantum dynamical systems. We discuss in detail the phenomenon of
transient, or temporary stochasticity in quantum mechanics. Results of numerical
simulation of this phenomenon are given. Estimates are made of quantum effects in the
quasiclassical region. A simple classical model of quantum stochasticity is discussed.

1. Introduction.

The term “dynamical stochasticity™ in the title of this survey paper
emphasizes that we are dealing with a specific case of motion of a
completely deterministic (dynamical) system. The fact that the motion
in this case turns out to be extremely irregular, complicated and
unpredictable, is determined exclusively by the internal dynamics of
the system, and is not related to any effect of external random
perturbations. This type of dynamical motion has been called stochas-
tic or chaetic, terms whose vagueness reflects the enormous variety of
the different special cases of such motions.
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210 CHIRIKOV, IZRAILEV and SHEPELYANSKY

The ever increasing interest in the study of stochastic motion is
caused mainly by two factors. First, in various branches of physics,
engineering and other sciences, more and more particular problems
arise whose solution requires a well developed theory of stochastic
motion. Secondly, this unusual (nontrivial) regime of motion builds a
bridge between dynamical and statistical laws of physics, which at
one time were considered to be contradictory, and gives the possibility
of understanding and deriving the latter from the former.

From the view point of applications, stochastic motion is a wide-
spread (and dangerous) instability of nonlinear oscillations, which
leads to diffusion in the phase space and to other unpleasant conse-
quences. An example is the loss of charged particles in accelerators
[1], plasma traps [2], [3], or in the Earth's radiation belts [4]. Still,
sometimes such stochastic instability may also prove to be useful, e.g.,
for the heating of a plasma by a high-frequency field (cf., for
example, [5]) or for realizing stochastic acceleration of charged parti-
cles (cf. [6]).

Within the framework of applications of the theory of stochasticity,
the problems of main interest are the following:

1. To determine the conditions for stochastic instability of a mo-
tion,

2. To find out the statistical properties of stochastic motion, and
primarily the rate of diffusion in the phase space of the system. These
are the problems that will mainly be discussed in this paper.

In regard to the more fundamental problem of the relation between
dynamical and statistical laws of physics, the most “acute” question
is: can a strictly deterministic motion (of a dynamical system) be at
the same time a random one (in the intuitive sense of the word)? Any
detailed discussion of this (partly philosophic) question goes beyond
the range of this paper. We would however like to make some brief
remarks, since it seems to us important to help overcome the still
existing psychological barrier that has been built up by the centuries-
long tradition of opposing the deterministic to the random. The
development of contemporary ergodic theory, and also the
Kolomogorov algorithmic theory of complexity have recently reached
such a level that one can give a quite definite answer to the question
put above, namely, there exist dynamical (completely deterministic)
systems, whose motion is in principle indistinguishable from a
“random”™ motion, whatever the precise meaning that we attribute to

[ &
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the latter term. The validity of this “global™ assertion is related to an
interesting feature of the motion of a random dynamical system: in
the language of symbolic dynamics, the set of its trajectories is
complete, i.e., contains all the trajectories. We shall come back to this
interesting question later in Sec. 4.2. A systematic and relatively
readable (for physicists!) presentation of this circle of questions can
be found, for example, in the reviews [7-9]. A fairly realistic example
of such random dynamics is the elastic collision of balls in billiards,
as was shown in the classic papers of Sinai (cf. [9]). Thus now the
example of a truly random process is not the traditional coin, nor the
roulette wheel at Monte Carlo, but rather the balls of “Sportloto.”

In ergodic theory such systems are termed Bernouilli systems; we
shall call them simply random. We recall that such systems can be
very simple; in particular, two degrees of freedom are sufficient for
random dynamics (cf., for example, [9]).

We shall restrict ourselves to treating Hamiltonian (nondissipative)
systems. Such systems are sometimes called conservative, but this
term seems to us misleading, since it gives rise to a confusion with the
conservation of energy. Actually, the energy of a Hamiltonian system
may not be conserved if the Hamiltonian depends explicitly on time.
It is however important that even in this case the phase density is
conserved (Liouville theorem). This significantly simplifies the statisti-
cal analysis of the stochastic motion in Hamiltonian systems, since
they possess a simple and well known invariant measure.

Until recently it was supposed that including dissipation simplifies
the dynamics, since it seemed that all the trajectories then approach
either stable equilibrium or a stable periodic solution (limit cycle),
which are the simplest examples of attractors in a dissipative system.
We now know that this is not always the case. The first example of a
nontrivial (stochastic) attractor was studied in the classic paper of
Lorenz [10). The nontriviality of the Lorenz attractor is related both
to the fact that the motion is stochastic and that its geometric
structure in the dynamical space of the system is highly singular
(Cantor structure). It should be noted that such a structure of a
stochastic attractor is typical for so-called Anosov [11] systems with
dissipation, which are also Bernouilli systems. One of the types of
stochastic attractor was investigated in detail by Smale [12]. So, the
recent popularity of the term “strange attractor” is surprising (strange
to whom7).
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The fundamental difficulty of the theoretical analysis of a motion
on a stochastic attractor is related to the fact that one must before-
hand find an invariant measure, and it may prove to be highly
singular in the original dynamical space. We note, however, that in
the case of an Anosov system with a weak dissipation one can make
approximate use of the simple invariant measure corresponding to the
system withowt dissipation, for example, the phase density of a close
Hamiltonian system. This follows from the fact that all Anosov
systems are structurally stable [11]. But then another difficulty arises,
connected with the fact that in many cases of practical interest one
has to deal with more general systems, which, in particular, are not
structurally stable. For such systems weak dissipation leads, as a rule,
to a degeneration of the stochastic motion into a periodic one [13].
True, this degeneration disappears with increasing dissipation, but the
invariant measure may then turn out to be quite complicated.

It should be mentioned that a dissipative system is not, strictly
speaking, purely dynamical, at least if we are dealing with a real
physical system. In fact, the dissipation describes (in a very simplified
form) some stochastic process at the molecular level, and is therefore
necessarily accompanied by fluctuations, i.e., by some random pertur-
bation external to the dynamical system, which must also generally be
taken into account. An excellent review on dissipative stochasticity
can be found, for example in [14].

Returning to Hamiltonian systems, we note that in certain simplest
cases a complete and rigorous investigation of stochastic motion is
possible on the basis of contemporary ergodic theory. It is, for
example, the already mentioned Anosov systems. However, such a
class of dynamical systems turns out to be rather limited from the
application point of view. We mention that recently some advances
have been made toward broadening the class of dynamical systems
permitting a rigorous mathematical analysis [15].

The main contents of the present survey are some recent results of
the physical theory of stochasticity, which is based on models, various
approximations and estimates, and supported by numerical simula-
tion. We shall consider both stochasticity in classical mechanics (Sec.
2) and the behavior of quantum systems that are stochastic in the
classical limit (Sec. 3). The importance of the latter problem from the
physical point of view is that quantum mechanics gives a more exact
description of real systems. So the question arises: to what extent the
unusual properties of the stochastic motion of a classical system
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persist in quantum theory? In principle, the answer to this question
has been known for a long time (cf., for example, [43]), although it
may appear somewhat unexpected to somebody: the stochasticity is
not possible in quantum dynamics at all; more precisely, the time
evolution of the wave function (or the density matrix) of a closed
quantum system, bounded in phase space, is always almost-periodic,
i.e., its frequency spectrum is discrete. In classical mechanics such a
motion is regarded as just the opposite of stochasticity, for example,
the motion of a completely integrable system.

In the present paper we attempt to resolve this apparent contradic-
tion by using the concept of transient, or temporal stochasticity. This
approach is based on the introduction of different time scales, so that
the different statistical properties of classical dynamics manifest them-
selves over certain finite time intervals of the quantum motion.

If we now apply this approach back to classical mechanics, we
arrive at the curious conclusion that here also, an almost-periodic
motion, for example, the motion of a completely integrable system,
may, under definite conditions, imitate a stochastic process over a
finite time interval. This sort of imitation has actually been known for
a long time, and moreover is the basic method for studying the
statistical properties of macrosystems (in particular, for deriving ki-
netic equations) in statistical physics. So far as we are aware, such an
approach was first taken by Bogolyubov [16], who investigated the
statistical properties of a large number N — 50 of uncoupled linear
oscillators, and has completed, in a sense, in paper [25], where the
Bernouilli property (randomness) of the classical ideal gas was rigor-
ously proved, also for N — o0

A new formulation of the problem, arising naturally in classical
mechanics from the analysis of quantum dynamics, is the following;
for a fixed (and not necessarily large) number of degrees of freedom
of a classical completely integrable system, to find the conditions and
the time scales for which imitation of stochastic motion occurs. In
particular, such a problem arises in numerical simulation of classical
stochasticity. Because of the discrete representation of numbers in a
computer, all the trajectories of any dynamical system are then simply
periodic. Bearing in mind the wide use of numerical simulation for
investigating various dynamical systems, estimates of the accuracy
and the limits of such simulation are extremely important. This circle
of questions will be discussed in Sec. 4.

We take this opportunity to express our sincere thanks to G. Casati,
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J. Ford, J. M. Greene, 5. A. Kheifets, J. A. Krommes, Ya. G. Sinai, V.
V. Sckolov, I. L. Tennyson, F. Vivaldi, G. M. Zaslavsky for stimulat-
ing discussions.

2. Nontrivial Problems of Classical Hamiltonian Dynamics.

Nontriviality of a problem is here understood in two senses. On the
one hand we have in mind the problems of stochastic motion, which
still remains a quite unusual regime of classical dynamics. On the
other hand, we refer to those (more complicated) problems which still
defy rigorous mathematical analysis. Their solution (partial, of
course) is based on a qualitative picture of the mechanism of stochas-
tic motion, approximate estimates and numerical simulation. For
Hamiltonian systems the most effective method for such semiempiri-
cal investigations is the analysis of nonlinear resonances and their
interaction. The corresponding technique is described in detail, for
example, in the surveys [17, 18].

In this section we consider several specific problems related to the
stochastic behavior of simple systems in classical mechanics.

2.1, Border of Stochasticity.

The determination of the border of stochastic instability of nonlinear
oscillations is one of the fundamental problems in the theory of
stochasticity. Here we must distinguish between the stochasticity
border in the space of system parameters, i.e., the critical values of
parameters such as the perturbations strength, and the border of
stochasticity in the phase space of the system, including the critical
value of the emergy for a closed system. The latter problem is
especially complicated. In fact, the structure of the phase space of
nonlinear oscillations is usually characterized by an extremely com-
plex interchange of stable and stochastic components of the motion.
An example of such a structure is shown in Fig. 1 and will be
discussed in more detail later. That structure has been called a divided
(into stable and stochastic components) phase space.

The complexity of the structure of a divided phase space is deter-
mined mainly by two factors. First, this structure is hierarchic, i.e., the
interchange of stable and stochastic regions takes place over smaller
and smaller spatial scales. Secondly, the border between the stable
and stochastic components is itself a stochastic surface. All this makes
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Figure 1. Phase plane of the mapping (2.1.7):
a = 0.95; o =0323;
K=65%x10"%> K_==46x10"? (2.1.13)
Stochastic component shaded.

a rigorous analysis of such dynamical systems extremely difficult.
Moreover, even the formulation of the problem on the stochasticity
border raises some difficulties.

However, there are certain special systems for which one can at
least formulate the problem clearly. An example is the so-called
standard mapping

F=p+ K-sinx 2.1.1)

I=x+p=x+p+ K-sinx
Many specific problems in the theory of nonlinear oscillations with
two degrees of freedom reduce to this mapping (cf., for example, [18]).
Here, however, this mapping is of interest to us from a different point
of view. The important thing for us is that the phase space of this
model (x, p) is periodic not only in x, but also in p (with period 2+).
Thus there exists a critical value of the single parameter of this
mapping K = K_. above which the motion becomes unbounded.*

cr?
*For K > K, the motion is stochastic [18]. Actually, even for K < K_ there are
stochastic regions of complex structure bounded in p. Therefore the condition K = K
should be understood as the border of global, or connected, stochasticity.
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The trivial case of K_ =0 is excluded by the KAM theory (Kol-
mogorov-Arnold-Moser, cf., for example, [19]).

Numerical experiments with the standard mapping gave the result
[18]:

K, ~0.989 (2.12)

In order of magnitude this result could be gotten from a simple
criterion of nonlinear resonance overlap (cf., for example, [18]). For
this purpose the mapping (2.1.1) should be replaced by the equivalent
continuous system with the Hamiltonian

oo

2
H(x,.py= £+ K 3 cos(8 —2mm) (2.1.3)

If we take account only of the resonances in first approximation
# = p = 2an, we have

KO =T 225 (2.1.4)

More complicated calculations involving resonances of higher approx-
imations, and also the stochastic layer of resonances, enable one [18]
to improve the agreement with the numerical result (2.1.2): K_ = 1.1.

An entirely different approach to the solution of the problem on
the stochasticity border was recently developed by Greene [20]. His
approach is based on the study of trajectory stability at the center of
resonances. Generally, this method always overestimates K, since
the unbounded motion is possible over a set of touching (intersecting)
separatrices, while the resonance centers are still stable. Thus, for
example, the fixed points of the mapping (2.1.1) x = 7; p = 2, i.e.
the trajectories with period T =1 at the resonance centers, remain
stable up to K = K, = 4, which exceeds even the value (2.1.4). How-
ever, already K, =2 (T=12); K;=152; K,=1.24 etc. [21]. Thus
Greene’s hypothesis that, as T— o0, K — K, seems to be plausible.
His result for the standard mapping [20]:

K,=0971635 ... (2.1.5)

is noticeably less than the value (2.1.2). In connection with this
discrepancy, we have carried out a new, more careful processing of
the numerical data given in [I18]. But the new result K_ = 1.00
increased the discrepancy even more,

One of the reasons for this discrepancy may be the following. The
investigation of the stability of periodic trajectories for large T can be
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carried out only numerically. One can therefore not run through all
the periodic trajectories, and so one has to assume the additional
hypothesis that the most stable periodic trajectories at resonance
centers are those with the unperturbed (K = 0) frequency

w _ M 1 _ -1

—_—E o =) =
2w T & TP 2
T

~0618 (2.16)

where M, T are integers, T being the full period of the trajectory
before it closes. Greene calls the number g “the most irrational
number” on the grounds that it is the most poorly approximated by
rationals, as one sees from the representation of g by a continued
fraction (2.1.6). From the viewpoint of resonance overlap, however,
this last hypothesis of Green does not seem convincing, since for the
overlap not only the spacing between resonances but also their width,
which depends on the denominator of the rational w/2w = M /T, is
of importance.

For a more detailed investigation of this question we chose a
somewhat different model, given by the mapping [22]:

i K - sinx
e
(1 - a-cosx)? (2.1.7)
I=x+]
Unlike the standard mapping, the perturbation in this system already

contains many harmonics in phase x in first approximation (for
a=>1);

sin x 2 o -
prem———la i B

where o=:y1 — a*. Thus, already in the first approximation there
“operate” not only integer resonances p = 27n, but also fractional
ones, p =2an/m (with m < 1/0), as one sees from the Hamiltonian
of the equivalent continuous system [22]:

2 o ]
Hxpym £+ 2K 3 emom 3 cosimx - 2a0m) (2.19)
m=1 A= —o0

First, let us consider each of the resonances individually in the
“pendulum” approximation [18]. The halfwidth of the resonance



218 CHIRIKOV, IZRAILEV and SHEPELYANSKY

Ap) = 2+f 2K o-omn2 2.1.10
(8p), =21/ & (2.1.10)

while the simple sum over all resonances in the interval 0 < w /27 < 1
is

separatrix is equal to

o ] o
S(Ko)=2F 3 (8p),=4y/ 2K T mem 2111)
m=]1n=1 =]

From the condition S(K,o)~ 27 one can obtain a rough estimate of

K_, in the form
2
K, =~ E—Eus (2.1.12)

This estimate can be improved as follows [22]. We should take the
sum in (2.1.11) not over all m, n, but only over those my, n, that form
irreducible fractions ny/m,. The number of these irreducible reso-
nances is on the average 2/3 of all the resonances. The remaining
resonances split up into groups, each corresponding to one irreducible
resonance: m=myl; n=nyl, I=1,2, ... . For o« 1, the motion in
the neighborhood of each irreducible resonance is determined by all
the perturbation terms in the Hamiltonian (2.1.9) belonging to this
group, ie., by the sum over / for given my,n,. As a result, the
pendulum approximation is violated, and the resonance width for low
harmonics (emg =< 1) increases significantly.

However, it is most important to take account of nonuniformity in
resonance spacing. In fact, the total number of resonances with
Mg < m, per unit interval of the quantity w/2w, is (2/3)m], so that
the average spacing between resonances is {Aw) =~ 37 /m;. But near
the integer resonances (for example, n,/m, = 1) the gaps are formed
equal to (Aw), = 2o /my. So it is clear that K_ is actually determined
not by the average overlap of resonances (2.1.11), but by the
“covering” of these gaps. This significantly increases the critical
perturbation for this model [22]:

. — 1 128
.;1.::—4;’1.}2' L=ing= (2.1.13)

Some results of a numerical simulation of the system (2.1.7) were
described in [23]. The simulation was done as follows. Suppose that
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we are interested in the dynamics of the system

PRt T (2.1.14)
X=x+p

where f(x) is a periodic function of period 2%. We consider the
auxiliary mapping

u f(x)
Iery = (2.1.15)
X=x+A-F(F)

where A is some constant; f(x) is the same function as in (2.1.14),
while F(y) is a new function that we will choose later.

We linearize the second equation of this last mapping around one
of the resonant values y = y_, where

A- F(y,)=2mr; r=integer. (2.1.16)

Setting p =X - F'(y, Xy — y,), we get back the original mapping (2.1.
14) with the parameter

K=F(y) (2.1.17)

Now suppose that the function |F'(y)| falls off monotonically with
|¥|; then the condition |K|> K_ determines the stochastic layer
|¥] < v, on the phase plane of the auxiliary mapping (2.1.15). Also,
conversely, if by computation we find the maximum value y,, =~ y,
(|¥] < y,,) which diffusion in the system (2.1.15) reaches, then from
(2.1.17) we can approximately estimate the critical perturbation for
the mapping (2.1.14): K= |F'(y,)|. More precisely, we can assert
that

Kee < |F'(p0)l (2.1.18)

where y, corresponds to the last integer resonance crossed by the
trajectory (AF( y;) = 2r). If the original mapping (2.1.14) is symmetri-
cal in respect to p = =, i.e., in respect to the half-integral resonance, as
is the case, for example, in the standard mapping ( fix) =sinx), and
also in the mapping (2.1.7) under consideration, then y, in (2.1.18)
corresponds to the last half-integer resonance (A - F(y,) = ar).

As the auxiliary function we chose F(y) = In|y|. We note that for
fix) = sinx the mapping (2.1.15) describes the motion in the stochas-
tic layer of the nonlinear resonance in the pendulum approximation
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[18]. Numerical experiments with the mapping (2.1.15) and f(x) from
{(2.1.7), for a number of iterations 1~ 10°, showed a good agreement of
K_., determined by this method, with the estimate (2.1.13) in the
range 0.03 < ¢ < 0.5 [23]. However, as the motion time increases
further, the critical value K_ slowly “creeps” downward. Thus, for
a=0.142 and ¢ = 2 x 10%, the upper limit of K, (2.1.18) dropped to
4.3 % 1077, whereas the estimate (2.1.13) gives 1.3 X 10™% The fact
that this last value, obtained from the overlap of the first approxima-
tion resonances, is too high, would be rather natural (cf. the critical
value (2.1.4) for the standard mapping). The interesting point is
another one, in that the ratio R of the theoretical and numerical
values of K, (R = 3) differs only slightly from the corresponding ratio
for the standard mapping (R =2.5, cf. (2.1.4)). We may add that in
the case of just two overlapping resonances, R =~ 2.3 (from the data of
[18]) and R =2 (from the data of [24]).

In the case considered here this ratio can be interpreted differently,
as a reduction in the effective value o — o* due to the effects of high-
er approximations. From the value R =3 above and the estimate
(2.1.13) we have o* /o = 0.76.

An indirect confirmation of the decisive role of the gaps near the
integer resonances, on which (2.1.13) is based, is the histogram in Fig.
2. Here the fractional part r = {AF(y,)/2w)} characterizes the loca-
tion of the system within the period of the resonance structure
corresponding to the maximum value |y| = y,, reached at the given
time. The ordinate gives the number of iterations T during which y,,
remained within each of 20 intervals covering a period of the reso-
nance structure. The horizontal arrow in the upper part of the Figure
shows the direction of diffusion. It is clear that the most difficult
section to get through is that immediately before the integer reso-
nance r = 1. The two vertical arrows show the “most irrational” (d la
Greene) values r=g (2.1.6) and r=1— g, in the neighborhood of
which no significant delay of the diffusion is observed.

Although the agreement obtained between the last computational
results and the estimate (2.1.13), based on the relatively simple
overlap criterion appears satisfactory, this question requires further
study, in particular the performance of further numerical experiments
over a much longer time of the motion. The latter is connected with a
very slow diffusion in the region of a gap. This may lead to a further
reduction in the numerical value of K_. In addition it is not excluded
that the quite high accuracy of numerical compuation (56 binary
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Figure 2. Histogram of “passability”™ for various sections of the resonance set:
r={AF(ym)/2x), T is the sojourn time (number of iterations) of y,, in the given
interval of the period of the resonance structure.

digits in the mantissa) may still be insufficient, again because of the
low diffusion rate. Then, “cycling” may occur, i.e., the change to a
periodic trajectory because of the discrete representation of numbers
in the computer (cf. Sec. 4.2).

2.2. The Modulation Diffusion.

As mentioned earlier, the structure of the stochastic components in
phase space is usually very complicated. In this section we consider a
fairly simple and little-known case, where the stochastic components
have the form of relatively narrow layers, along which the system can
diffuse over considerable distances. Such a structure arises, for exam-
ple, as a result of weak low-frequency modulation in the system.

Let us consider the case of external modulation. As an example, we
take a system with the Hamiltonian

R 4 4
g ;Pz 3 ‘: X3 — wx,x, — ex,f(1) (2:2.1)

This Hamiltonian describes the behavior of two coupled nonlinear
oscillators driven by the force f(r). The system (2.2.1) was studied
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earlier from the viewpoint of the so-called Arnold diffusion which is a
weak universal instability occurring in many dimensional oscillator
systems (cf., for example, [26, 18, 27] and the end of Sec. 2.3). We
choose f(r), as in [27], in the form

=z 2 -
f(= 3 facosbu(t); === (222)
=

Suppose that the phase of the driving perturbation f(r) is modulated
at a frequency @ much smaller than the unperturbed frequencies of
the system: ¢, (f) = mrr + Asin¢. This type of modulation often
occurs in practical problems (cf., for example, [1]). For small values of
the parameters p,e < 1, which characterize the strengths of the cou-
pling and the driving perturbation, it is convenient to change to I, 4,
the unperturbed action-angle variables ( p,e = 0). Then the unper-
turbed Hamiltonian H,, has the form:

Hy= Co(} + I}?);  Cy=s0.87 (2.2.3)

In this approximation the actions [, and [, are constants, while we
have for the phase angles #, and #,:

bi=w(l);  By=wy(l) (2.24)

where w,, w, are the unperturbed frequencies of the system, depending
on f,,I, because of the nonlinearity of the oscillations. Despite the
strong nonlinearity, the oscillations are close to harmonic: x,(f)
a= a;cos (1), while their frequencies are proportional to the ampli-
tudes: w; = 0.854,.

The parameter A in (2.2.4) determines the modulation factor. In the
absence of modulation the system has driving resonances w,([) = mp
and a coupling resonance w(f,) = w,({;) (cf. Fig. 3). If the perturba-
tion is large enough, neighboring nonlinear resonances overlap, and
strong stochasticity appears, leading to a rapid nise of the total energy.

Here we would like to call attention to the possibility of the
so-called modulation diffusion [28] which is similar in a certain sense
to the Arnold diffusion. The cause for the appearance of this diffusion
in the case of A # 0 is the overlap of modulation resonances around
each of the driving resonances.

Let us find the condition for overlap of modulation resonances near
a single driving resonance of harmonic m. To do this we write the
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Figure 3. Pattern of the first approximation resonances for the system (2.2.1): w00,
are the oscillator frequencies; » is the mean frequency of the driving force; 1 is the
frequency of the modulation causing the formation of the multiplets.

Hamiltonian of the motion in x, without coupling ( p = 0) and near a
particular modulation resonance (w; = mr + nil):

Hy = CI¥? - % [y (I)3a(Mcos(8, — mpt — ne)  (2.2.5)

where §,_(A) is a Bessel function. Estimating the resonance width Aw,
and comparing it with the spacing between resonances { we obtain
the resonance overlap parameter:

Aw Qe g o2 2 4 1/4
e o TN (‘ ] (22.6)

3 = PRGN P sl
Y] a%a"ﬂﬂ\fa— TA

where we have used the estimate §,(A\)~1/y#A for A 1. For K,
~2.55* > 1, [18), a modulation stochastic layer is formed with width
~ 2Afl. We have here introduced a stability parameter K, analogous
to the parameter K of the standard mapping (2.1.1).

Let us take AR < p, so that neighboring modulation layers do not
touch each other (cf. Fig. 3), and any significant diffusion is possible
only along the layer, with increase in the energy of the other degree of
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freedom (1;). The rate of change in I, is (cf. (2.2.1)):

I, =~ — pa,cosb, - a,sinb,

- payday
2

[sin(8, — w,t) — sin(#, + w,1) | (22.7)

where we have set, approximately, #, =~ w,1. For sufficiently small
coupling p < ¢, the dependence #,(1) differs little from the case when
p =0, and is determined by the motion of the system in the stochastic
layer according to the Hamiltonian:

= —— = ——cos(#, — mwt — Asin{lr) (2.2.8)

Here the new canonical momentum A = [, — [ describes the devia-
tion of the action I, from the resonant value ., which satisfies the
condition: w,(I,) = me. If the system is within the modulation sto-
chastic layer, the change in [, according to (2.2.7), is of diffusion
nature and is determined by the correlation properties of the phase
#,(1). The rate of this diffusion will be found in the next Section.

We note that the diffusion mechanism in I, can be regarded as a
“pumping over of the stochasticity” from one degree of freedom to
the other. Such a picture of the diffusion in the stochastic layer was
proposed in [29], where a similar problem was considered. Actually, a
similar mechanism for the “transfer”™ of stochasticity had been dis-
cussed briefly still earlier in [30].

2.3, Suatistical Properties of Stochastic Motion.

For the solution of concrete problems related to stochastic motion of
dynamical systems, in addition to the border of stochasticity or, in the
more general case, the (geometrical) structure of the stochastic com-
ponent, one must know the statistical properties of the motion in the
stochastic region. The most important of these is the diffusion rate in
the stochastic component. In some cases this problem is trivial. Thus,
for example, for the standard mapping (2.1.1), with K% 1, ie.,
sufficiently deep within the stochastic region, the successive values of
the phase x can be regarded to a good accuracy as random and
independent [18]. It then immediately follows that the rate of diffu-
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sion in p is:

(Bap)» g2
i

which agrees well with the results of numerical simulation [18].

But the situation is not always so simple. For example, in the
problem of modulation diffusion (Sec. 2.2) the rate of diffusion is
determined by the square of the Fourier component modulus of a
certain random continuous function (2.2.7). This means that, in the
general case, we must know the Fourier spectrum of the random
process, or the associated correlation function of the motion. Either of
these, of course, depends on the structure of the stochastic compo-
nent. For the problem of modulation diffusion the latter arises be-
cause of the overlap of several “parallel” resonances (Fig. 3).

To study the statistical properties of such a component we consider
the following simple model with the Hamiltonian:

Dp =

(23.1)

2
H(x, p,t) = !-;- +k - cos(x + A - cos 1) (23.2)

Here £} is the modulation frequency, while A determines the modula-
tion factor (the effective number of lines in the multiplet); the total
width of the modulation spectrum is known to be approximately 2A£.
The condition for formation of a stochastic layer is (cf. Sec. 2.2):

2 .k
Ky~2552~23- = > 1 (2.3.3)

where 5 is the overlap parameter for the modulation resonances. We
shall assume that this condition is well satisfied, so that a quite
uniform stochastic layer is formed. Then the dynamics of the system
(2.3.2) is described by some random function x(¢) and we must find
its correlation properties.

We introduce the auxiliary dynamical variable z, whose change is
determined by the equation:

Zmg- Sin{qx - wi) (2.34)

where €, g, w are constants. This equation has the same form as (2.2.7)
(with g = 1) in the problem of modulation diffusion. Thus the latter
corresponds to diffusion in z for the model under consideration. We
have slightly generalized the model (2.3.2,4) by introducing a new
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parameter g which is relevant in the other cases of modulation
diffusion.

We can first draw some preliminary qualitative conclusions about
the dependence of the diffusion rate

Az)? ‘
( :]r : {ﬁz};w fL Sil‘l{qx{l'l} - u:.l"] dt’ (235}

on the perturbation frequency w. In the interval |w| = gAQ the rate of
diffusion is approximately constant and relatively high since within
this interval the exact resonance gx = w does occur (cf, (2.3.5)) due to
the diffusion in frequency % = p which fills up all the modulation
stochastic layer |p| <Af. On the other hand, for |w|> g\ the
diffusion rate falls off exponentially since the function sin(gx(r) is
analytic (cf. (2.3.2)), and the Fourier spectrum of any analytic func-
tion is known to be exponential as |w|— o0. Let

D=

D—A -exp(— Lil], wPw, (2.3.6)
1

The most important problem is the determination of the scale of
exponential falloff w,. Since we don't know any analytic method for
solution of this problem, we went over to a numerical simulation of
the combined system (2.3.2), (2.3.4).

When k<1 the differential equations of motion can be replaced
approximately by the mapping:

P=p+k-sinfx+A-coslls)
E=x+p (2.3.7)
I=:+¢-sin(gx — wl)

where ¢ now takes on only integer values and |w| < 2%. To reduce the
“background™ associated with the discreteness of this computational
scheme, we used an averaging of z(7) over the ten intervals into which
the total time of computation was divided. This very efficient tech-
nique is described at length in [26, 18).

We first consider the case of g = 1. Preliminary numerical experi-
ments showed that the exponent scale is approximately proportional
to the width of the stochastic layer. Figure 4 gives the dependence of
D(w) in normalized coordinates: log(Dg), y = w/Aw, where Dy
= Aw- D /€ is the renormalized diffusion rate, and Aw is the actual
halfwidth of the layver, which usually somewhat exceeds AQ2. In the
Figure are collected data for various values of the model parameters
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a

atd
Figure 4. Frequency dependence of the rate of modulation diffusion (for the notation,
see the text; logs are base 10). The points are numerical values of the diffusion rate in z
for the system (2.3.2), (2.3.4) with ¢ = 1. The solid curve is drawn from formula (2.3.18)
with the average empincal values o) = 6.21, { 87 = & — 0,065,

in the intervals:

W s k<3x107 0.0l14<Aw<036

103<2<2%x10°%; IB<s< 30
10< A< 100

Disregarding the quite large fluctuations, we note the following
features of the function D(w):

1. a plateau |w| < Aw with maximum diffusion rate;

2. an exponential “tail” for w > Aw with @, = Aw/a, where the
average value of a for all the data is {a’ = 6.21 = 0.17 =2m;

3. a sharp drop in the diffusion rate at o| == Aw;

4. an irregular dependence of D{w) on the “tail.”

The maximum diffusion rate on the plateau can be found from the
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condition of normalization of the Fourier transform for the function
sin x(¢) (Parseval equality):

| Dr(ydy=w (2.3.8)
whence the diffusion rate on the plateau (|w| < Aw) is:
2
Pl oy TE_
D~ 2 (2.3.9)

where we have neglected the contribution of the “tail” to the integral
(2.3.8) in view of the sharp drop of D(w) for |«| > Aw. From the data
in Fig. 4, the average value is { D™ = 1.21 = 0.10.

The diffusion rate on the “tail” is

2arfw| 4
A )
where the average value of the quantity B over all the data of Fig. 4 is
B = 16, Because of the large fluctuations, the individual values of
B differ by more than an order of magnitude. It is therefore difficult
to decide from the available data whether B depends on the system
parameters, although the numerical results apparently indicate such a
dependence, mainly on the parameter A. We shall return to this
question later.

The frequency modulation in the model (2.3.2) is a regular external
perturbation, and the question arises to what extent the empirical
diffusion rate that we have found depends on this regularity. To
clarify this question the frequency modulation was replaced by a
“random”™ perturbation in the form of a set of harmonics with
random phases. The results of these numerical experiments show that
the exponent scale then changed insignificantly ({a’ = 5.74 + 0.15),
while the value of B decreased substantially ({B% = 3.4). Such a
change in B apparently provides additional indirect evidence for a
dependence of that quantity on the model parameters.

However, the regularity of the frequency modulation manifests
itself in a different way—in a dependence on the system parameters
of the so-called KS-entropy & (the Krylov-Kolmogorov-Sinai en-
tropy), which determines the average rate of exponential divergence
for close trajectories of the system. Namely, it turned out that the
numerical values of h are very well described by the simple relation

-8 K
.ﬁ—zwln 3

Dy~B- exp[- o] > Aw (2.3.10)

]
Rﬁ;ll‘ls (2,3,11]
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where K, is given by (2.3.3). This relation coincides exactly with the
expression for the KS-entropy of the standard mapping (upon the
replacement of K by K, cf., for example [18]).

This coincidence becomes understandable if we transform the
mapping (2.3.7) for our model. Let us introduce a new phase u = x +
Acos 21, then the first of the two equations in (2.3.7) may be rewritten
in the form (£ < 27):

F=p+k-sinu

i . (2.3.12)
Gezu+ p—All-sinidy

This mapping models the periodic crossing the resonance p
= AMlsin 7, and that process can actually be described using the
standard mapping, at least in a certain range of the parameters [31].

For sufficiently slow resonance crossing (£°< k/A), within the
modulation stochastic layer there is a stable domain, but not a fixed
one, as for example in Fig. 1, but rather an oscillating domain. In
particular, its center moves according to the law:

Po=ALL - sin{¢; X w — A - cosflr (2.3.13)

We found such a stable region, indeed. It should be noted that its
relative phase area, which is readily obtained from (2.3.12),

ak 5

™~ g

ors
is usually small (s < M), so that, for most initial conditions within the
modulation layer, the motion is stochastic.

We note that the phenomenon of slow resonance crossing gives an
interesting example of a process for which overlapping of resonances
can, under certain initial conditions, lead to a regular rather than
stochastic motion.

For a “random™ perturbation the expression (2.3.11) no longer
works. Instead, a “typical” estimate for h, obtained in [31] on the
basis of the notion of renormalized rescnances, holds approximately

hy = 006685 (2.3.13)

The numerical factor in this expression is taken from [32], where it
was obtained by solving the corresponding kinetic equation in the
quasilinear approximation. The average ratio of the computed values
of h to the theoretical values (2.3.15) is <h/hy = 0.89 = 0.05.
Renormalization of resonances is carried out as follows [31]. The



230 CHIRIKQV, IZRAILEV and SHEPELYANSKY

renormalized resonance width (Aw’) is determined by all the perturba-
tion harmonics that fall within the renormalized width, where, be-
cause of the randomness of different harmonic phases, the squared
amplitudes, i.e., the fourth powers of the nonrenormalized widths of
the individual resonances (Aw), are summed up. Then

5 4 (D)
(') ~(Aw)" —5—

and

(Aw)*?

hwﬂ.m'r-- W

____ﬂ " S-ﬂ-.."]
since s~(Aw /1),

The KS-entropy also may be considered as one of the important
statistical properties of stochastic motion. Although it is not directly
related to the diffusion rate, as is clear from the examples just
considered, the local instability of motion, which it characterizes, is a
decisive mechanism for the appearance of statistical properties of the
dynamical motion. On the other hand, it is interesting to note that
there is the inverse dependence as well: the random perturbation
(with continuous spectrum) depending on coordinates does always
result in an exponential local instability of the motion, as directly
follows from the derivation of the relation (2.3.15) in [32].

A general description of the correlation spectrum Dg(y) can be
given on the basis of the following notions. We shall assume that the
spectrum is determined by two different mechanisms:

1. a local law of stochastic motion with spectrum dg( y);

2. a shift of this spéctrum by an amount g - p because of diffusion
across the stochastic layer.

The resulting spectrum is then determined by the convolution

D)= 35 [* de(r=y) (2.3.16)

The local spectrum can be fitted using the relation

ng 1
B cos B + cosh(ay)

de(y) = %dSi (2.3.17)

where B is an additional parameter, related to the quantity B in
(2.3.10). Then the total spectrum, including the plateau, the drop and
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the exponential “tail,” may be described by

De(») = ﬁ [arctan(tanh(a q ;J’ lang)

, ol L
+ arcl:an(l:anh[a 2 Jtan 5 )] (2.3.18)

Performing the Fourier transform, we get the correlation function
of the process sinx(f) in the form

- B
. sinh
= Sm(q..'}.m--r] , ( o ] e
R(T) T sin]](""ﬂ“"’) e T 00
o

Aw- T

(23.19)

where { =7 — B. Thus asymptotically as r— co the correlation de-
cays exponentially, although initially, when the correlation is still
large, it decays only as 1 /7.

It follows from (2.3.19) that the exponent is determined by two
dimensionless parameters £,a. Since a is a constant (a=2w) the
dependence on the system parameters is determined by £ alone, which
is related to the drop of the spectrum, or to the parameter B:

sin{ sinh(ag)

E-Tw—E q

(2.3.20)

One may assume that the rate of exponential decay of correlations
in (2.3.19) is proportional to the KS-entropy h:

R{t)y~exp(—C - hr); 700 (23.21)

where C is some constant independent of the system parameters. We
then obtain a relation between £ A, C:

g=coh (23.22)
For modulation diffusion,
¢=20s (22.23)

Our numerical experiments give the following average value for the
constant: C = 047 = 0.21. The large error is related to big fluctua-
tions (cf. Fig. 4).
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For the “random™ perturbation the expression for £ takes the form:
473
E~0.13C 5~ (23.24)

The average measured value is C =0.13 = 0.028,

For g+ 1 the correlation spectrum Diw) suffers the following
changes:

1. as expected, the size of the plateau becomes equal to glw (for
g > £/ a), and the diffusion rate on the plateau is D(w) = (7e’ /2gA22).

2. in the exponential dependence on the “tail” only the coefficient
B changes (cf. (2.3.20)).

These changes are well described by the relations (2.3.16—18). Thus,
for g < £/« the size of the plateau is independent of g, in agreement
with (2.3.18).

For the diffusion rate on the “tail” we finally get (€< 1, g > 1 /27):

D(w)= EE;I_;:';;‘ . enp( —21?( % —q)) (2.3.25)

in the case of frequency modulation (2.3.2), and

10-3 €222 el —20( £ —
D(w)~85-10 o Bxp( 2m( & q)) (2.3.26)
for the “random™ perturbation.

Returning to the problem of modulation diffusion (Sec. 2.2) we can
now give an explicit expression for its rate. Comparing (2.3.2) with
(2.2.8), we find that x = #, — mer. It then follows from (2.2.7) and
(2.34) that ¢=1 and w = w, — mr for the first term in (2.2.7) and
w =y + mp for the second term. If ALl < p, then, since the rate of
diffusion depends exponentially on « (2.3.25), the second term in
(2.2.7) can be neglected. Outside the plateau (Jw| > Afl) the diffusion
rate in [ is:

r S JHiF
pajaszlns Jws — mp|
DJIEW- [_EW(T_])} {2.3.2?}

Besides external frequency modulation some “self-modulation™ is
possible and always present actually due to the phase oscillations of
the unperturbed variables (including the unperturbed frequencies)
under the action of a resonant perturbation. Since the frequency of
phase oscillations £, — 0 near the separatrix of a nonlinear resonance,
the corresponding modulation resonances do always overlap, forming
a stochastic layer along the separatrix. The motion of the system
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along this hyef has been called Arnold diffusion, and was discussed
in detail, for example, in [18]. We note that the rate dependence of the
Arnold diffusion on the perturbation frequency:

DA {GJ}IIE -l

is similar to expression (2.3.10) for modulation diffusion. This similar-
ity becomes still more complete if we note that the halfwidth of the
Fourier spectrum of the motion in the stochastic layer near the
separatrix (the quantity analogous to Aw for modulation diffusion) is
equal to 28l,. It then follows, in particular, that the diffusion rates in
both cases are comparable in magnitude (for Aw~Qy).

There are, however, two fundamental differences between the two
processes:

1. Amold diffusion is universal in the sense that it persists for
arbitrarily weak perturbation, whereas modulational diffusion has a
threshold, determined by the overlapping of resonances in the mult-
plet;

2. the width of the modulation stochastic layer generally greaily
exceeds the width of the layer in which Arnold diffusion occurs.

Thus, if modulation stochastic layers are formed, diffusion along
them is on the average much faster than Arnold diffusion.

3. Transient Stochasticity in Quantum Dynamics.

Despite the seeming paradox, one can now regard it as rigorously
proven that the motion of certain simple, completely deterministic
systems in classical mechanics leads to a (literally) random process.
Moreover, one can apparently say that the very concept of random-
ness is now most naturally defined in terms of the stochastic motion
of dynamical systems of classical mechanics as a certain limiting case
of a deterministic process.

We also understand the mechanism giving rise to such an extremely
complex and diverse process, associated with strong local instability
of the motion. In particular, we may consider that such an instability
as it gradually “discloses,” in time, the intricacy and peculiarity of
each particular realization of the random process that was already
imposed in the exactly assigned initial conditions of the classical
motion [33]. In this connection we should emphasize that the statisti-
cal properties of the classical motion are not related to the “practical
indeterminacy of the initial conditions,” as is often supposed, but
even manifest themselves in the individual trajectory.
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On the other hand, this same local instability itself leads to a strong
dependence of the dynamical picture of the motion, not only on the
initial conditions, but also on various slight perturbations of the
system, including the various approximations both in each particular
problem, as well as in the whole scheme of the classical mechanics.
An important question arises: to what extent do all these approxima-
tions change the statistical properties of the classical dynamical
system?

At first glance it may seem that this problem is solved by using the
concept of structural stability of a dynamical system. Indeed, many
stochastic systems, for example, all Anosov systems, are structurally
stable, and consequently, even though individual trajectories of such
systems are extremely sensitive to small perturbations, the overall
structure of the motion and, in particular, its statistical properties
change only insignificantly. However, the mathematical theory of
structural stability of dynamical systems, despite its seeming general-
ity, has its limitations even in the domain of classical mechanics (cf.
Sec. 4.2 below). Still more unclear beforehand is the influence of
guantum effects which, small in a sense, are of an extremely funda-
mental nature. In other words, the problem arises to study the
quantum mechanical behavior of dynamical systems that are stochas-
tic in the classical limit.

A great deal of work has already been devoted to this problem. The
possible approaches here are of all sorts; roughly they can be divided
into two main trends. In the first the authors start from the funda-
mental distinction between classical and quantum dynamics, asso-
ciated with the discreteness of the energy (and frequency) spectrum of
the quantum motion. We shall discuss this problem in Sec. 3.1. On
these grounds some authors simply decline to consider the problem of
guantum stochasticity [34]. Others take a more constructive position:
accepting, explicitly or implicity, the above-mentioned fundamental
distinction between classical and quantum dynamics, they put the
question differently (cf., for example, [35-38,51,56]): what are the
peculiarities of the quantum dynamics of those systems that are
stochastic in the classical limit?

The authors of the second trend attempt, on the contrary, to
generalize all the properties and concepts of classical stochasticity to
quantum systems in obvious contradiction to the philosophy of the
first trend (cf., for example, [39—42]). We should state, that there are
serious physical arguments in favor of this second trend, based on the
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correspondence principle, according to which, for large quantum
numbers, there should be some sort of transition to classical mechan-
ics, including also the stochastic motion. These general arguments can
be supplemented by invoking the well known Ehrenfest theorem,
from which it follows that a sufficiently narrow quantum packet
moves along a classical trajectory, including the case of a stochastic
trajectory (cf. Sec. 3.3).

Apparently the first attempt at resolving the above contradiction
was that of Krylov [43], who tried to generalize the complementarity
principle to a relation between micro- and macro-descriptions of a
quantum system. This interesting approach has as yet not been
developed further. Below we shall consider another approach, based
on the introduction of different time scales of the quantum motion.

3.1.  Almost-Periodicity of the Quantum Evolution.

We shall begin our discussion with the problem of the discreteness of
quantum spectra, which essentially limits the possible statistical prop-
erties of a quantum motion and, in particular, completely excludes
stochasticity in the classical sense of the word (Sec. 2). Apparently
Krylov [43] had been the first to call attention to this difficulty, and
later on it was discussed also in other papers (cf., for example,
[44,45,34]). Indeed, the discreteness of the spectrum implies an
almost-periodic time evolution of both the wave function of the
system and its density matrix (or Wigner function). In classical
mechanics this type of motion is usually regarded as the opposite limit
to the stochastic case, and as characteristic for a completely integrable
system. We note that for convenience of comparison with quantum
mechanics it is useful to go over from the usual picture of the motion
of the individual classical system along a trajectory to the evolution of
some function in the phase space of the system (for example, but not
necessarily, the distribution function of an ensemble of systems)
according to the Liouville equation. The spectrum of the latter can be
either discrete (regular motion) or continuous (stochasticity).

In view of the importance of the spectral characteristics of the
motion, we shall try to answer the question of how general the
assertion about discreteness of a quantum spectrum really is. In so far
as we are referring to the simplest quantum problems, described by
the Schrodinger equations, discreteness of the spectrum is a rigorous
mathematical result under the additional condition of bound-
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edness of the system in phase space (including boundedness in
energy, i.e., for closed systems). The spectrum of nonclosed systems
where energy is not conserved may be continuous (cf. Sec. 3.2). We
mention, however, that just as in classical mechanics, a nonclosed
system is only a simplified model of some more complicated closed
system. Therefore the pecularities of the dynamics of nonclosed
systems are not of a principal importance.

A more important question is about the spectrum of other quantum
equations, for example, those of quantum field theory and its existing
or future generalizations, including nonlinear ones. May it not turn
out that the Schridinger equation, which only approximately de-
scribes the simplest quantum systems, is exceptional in this respect.
and that some nonlinear generalization of the field equations has
already led or will lead in the future to a continuous spectrum and
classical stochasticity in quantum mechanics?

We should like to present here some simple physical arguments in
favor of that the discreteness of the spectrum of a bounded quantum
system is a fundamental feature of quantum mechanics. Our argu-
ments are based on one of the basic statistical properties of classical
dynamics, the so-called mixing. On the one hand this property di-
rectly leads to a diffusion of the system in phase space and, on the
other, is related to the continuous spectrum of the motion, or of the
Liouville operator. Perhaps we should mention here a delicate mathe-
matical point: a continuous spectrum is equivalent to a somewhat
weaker statistical property, that is called weak mixing. We shall,
however, not enter into details here.

A continuous spectrum of the motion means that some aperiodic
process is going on in the system, even though the motion itself 1is
stationary. Such an aperiodic process is the irreversible relaxation of
the distribution function to a steady-state one (a constant). If we
expand the initial distribution function within a bounded region,
for example, in Fourier series, the relaxation process means
“disappearing” all Fourier components but the constant. But since
both classical and quantum mechanics are reversible, this “dis-
appearing” can only be explained in that the nonzero wave vectors of
the Fourier components are growing indefinitely (aperiodically), i.e.,
are “disappearing” at infinity. In classical mechanics the wave vector
of a distribution function is a purely kinematic quantity, and there are
no restrictions in principle on its change. In contrast to this, in
quantum mechanics the wave vector of the ¢ function or of the
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density matrix is related to the momentum, and consequently also to
the energy of the system. Thus for a closed quantum system the
aPerindic process described above is impossible, which results in a
discrete spectrum of frequencies (and energies). This limitation seems
to be fundamental and not related to any specific quantum equations.
This last statement should be understood in the sense that, for the
description of a quantum system only those equations, linear or
nonlinear, are suitable that automatically guarantee discreteness of
the quantum spectrum. Very likely all these (nonlinear) equations are
completely integrable,

Thus it seems to us that one of the fundamental characteristics of
quantum dynamics is the discreteness of quantum spectra and, conse-
quently, almost-periodicity of the quantum evolution. But this means
that, at least asymptotically in time {7 — oo), the stochastic motion of
a quantum system is actually impossible. The only statistical property,
and‘the weakest one, that can be present in this limit of quantum
motion 1s ergodicity (cf. [51,56], and also Sec. 3.4). There are two
l_:-asin problems associated with quantum ergodicity. The first is the
investigation of the distribution of quantum levels [35, 36, 57, and the
second is the ergodic properties of the eigenfunctions [51].

On the other hand, for a quantum system that is stochastic in the
classical limit, a narrow wave packet does nevertheless move along
the stochastic trajectory (Ehrenfest theorem)! True, as we know, the
packets are spreading. But the rate of spreading can be made arbitrar-
ily small if we go sufficiently far into the quasiclassical region. Thus,
at least over a certain period of time, the quantum motion will be just
as stochastic, in particular random, as the classical motion. This
suggests the idea that to resolve the apparent contradiction between
discreteness of the quantum spectrum and the correspondence princi-
ple one should introduce different time scales for the quantum mo-
tion. Actually we already know two such scales. One of themis i = T,
and may be called the discrete scale, over which there is fully
manifested the discreteness of the spectrum that is characteristic for
quantum systems. In the opposite limit r = T., which we shall call the
random scale, the quantum motion is close to the classical limit,
pr-:}v:"de:d of course we impose the additional restriction on the quan-
tum 1nitial state whose wave function must be a narrow packet. As we
shall see, only over this time scale can the quantum system be
stochastic or random.

Mow our main problem is to clarify the following question: do the
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two limits 7, and T, coincide (in order of magnitude) and, if not,
what is the character of the motion between them? This problem was
studied in [46] by numerical simulation of a simple quantum system,
though, it is true, not in as clear a formulation as we can now give it.
In the next section we give a brief description and analysis of the
results of this work.

3.2. A Simple Model of “Quantum Stochasticity.”

As the simplest model of a quantum system, in [46] the quantum
analog of the standard mapping (2.1.1) was chosen. This model was
selected for the following reasons. First, its dynamics in the classical
limit had already been studied in detail [18]. Secondly, many particu-
lar problems in classical mechanics lead to the standard mapping.
Finally, this model is a nonclosed system (the mapping is physically
equivalent to a driving periodic perturbation), for which, in principle,
a continuous spectrum is not excluded as it is for a closed system.
The model considered is a rotator in an external field with the
Hamiltonian:
A - - TR
a=-x % + K cos 87 (7) (3.2.1)
where # is the angle varable, k£ a parameter characterizing the
perturbation strength, 87(1) = 2% _ _8(r — nT) is the periodic delta
function.
The corresponding classical problem has the Hamiltonian:

H= fz—l + K cos 857() (3.2.2)
and because of the periodicity of the perturbation the motion of the
rotator can be described by the mapping:

p=p+ksinf
f=0+Tp

which reduces to the standard mapping with parameter K = kT.
We express the solution of the quantum problem in terms of the
eigenfunctions of the free rotator:

Won = B AN (3:24)

(323)
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in the form of a mapping for the amplitudes A, over a period of the
perturbation [46]:

oo
A= 3 F,A, (3.2.5)
= —

where
n—m i 2
Fo.=(—9 exp[ - IEL }_]R_m[;,;};

Ji(k) is a Bessel function; k = k/h: T=hT. From the properties of
Bessel functions it follows that one “kick™ (iteration) couples (to
exponential accuracy) approximately 2k levels, so the sum in (3.2.5)
actually contains about 2k terms, a fact which was also used in the
numerical simulation of the model (3.2.1).

The numerical experiments showed that the motion of the quantum
system (3.2.1) has the following interesting feature. For kT > 1 and
k>1, in the quantum system, as in the classical case, there is
diffusion in momentum p at a rate

ApD _LAE_ K
D, AT 2 Ty (3.2.6)
where
= 3
E= ”_2_m % 4,2 (3.2.7)

is the average energy of the rotator. Yet, the diffusion rate remains
close to the classical value only over a certain time interval r*. When
t > ¢* the diffusion rate drops substantially (cf. Fig. 5), and the
diffusion practically ceases at a very large time. We shall call this
phenomenon the diffusion limitation. The time (* increases with
increasing k. Here 7 is integer and dimensionless time measured in the
number of iterations.

When ¢ > ¢* the distribution over the levels, in normalized coordi-
nates X = n?/k%, f,(n)=|A,|*>-Jat k, is also rather different from
the classical distribution: f, = e~* (cf. Fig. 6). In computation we
used various initial conditions: excitation only of the lowest level
{(ny =0, uniform distribution in #); excitation up to the hundred
lowest levels with random amplitudes; a Gaussian distribution of
width 10=<An <200 around the level my=0,500,1000 (the total
number of levels in the model reached 4001). No significant depen-
dence of the motion on initial conditions was observed.



240 CHIRIKOV, IZRAILEV and SHEPELYANSKY CLASSICAL AND QUANTUM MECHANICS 241

AE

| -

0 ) S

- .| I

| i

|I ° 0" |-

o "

| gy, 8 §

200 ' @ b |

| -] =

|I o ¥ |3

I [ 2

|| = +8| 2
{0 | 1 h §§
i ¥ ik
1e E_Tg
= B
120 - | E E
o 85
’ £5
U‘W jz| =5
r_,.rf\ﬂ S| ris
Do
B0 1 ] 2
4 =
1z &%
15| o%
$ |22
v r ] 5T
1| BE
is EE
+ =
t T ks
o ; : - 1 e je = .E
0 400 800 1200 1600 2000 2| k2
g8
Figure 5. Dependence of rotator energy £ on the time for the system (3.2.1) for + = &
k=20; T=10.25; ¢ =2000. The straight line corresponds to classical diffusion; O— E =
classical model of quantum stochasticity (4.1.1), the wiggly curve is the numerical result 18 & g
for (3.2.10). s| 23
- = =
g2
im|
Supplementary numerical experiments [47] showed that for a time 3.8 é"g’
f < 1* the characteristics of the quantum motion were close to classi- 1 8.2
cal. Thus, we compared the dependence of the diffusion rate D, on is 2 E
the parameter kT (for the classical system this question was studied in sl
[18]). The results of this experiment showed a good agreement be- + e <=
tween these dependences in the classical and quantum cases: for the S g
quantum problem we also observed oscillations of D, in parameter kT E‘E

and with the same period (cf. Fig. 7).
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For kT < 1, k > 1 the change of the energy is bounded, as in the
classical limit. The same is true when k=<1, kT > 1, which indicates
the existence of a quantum stability border as predicted in [40]. In the
case considered, the mechanism of this quantum stability is fairly
understandable from (3.2.5). In fact, for k < 1 all the F,,, are negligi-
ble except for F,, =1. This means that there are practically no
transitions between the unperturbed levels, We may assume that the
quantum stability border corresponds roughly to the condition k~1,

There is still another special type of motion of this system, which
was discovered in [46] and called quantum resonance. It occurs for
T =4mm, where m is any integer. At exact resonance the averapge
energy of the rotator increases proportionally to ¢, The same behav-
ior was discovered numerically also for some fractional resonances
T = 4qp /g, while for the hall-integer resonance T =2« the motion
proved to be strictly periodic.

A detailed study of quantum resonance was done in [48]. It was
shown that for any integers p,q, but p/g =1, the energy increases
asymptotically in time as ¢* for any k. This means that in the
resonance there is no quantum border of stability (k~1). It is also
important to note that there is no classical border of stability (kT = 1)
either, even though the system may be deep inside the quasiclassical
region.

The full set of quantum resonances is everywhere dense (in T),
while the quasienergy spectrum in the resonance proves to be continu-
ous. At the same time, it was shown in [48] that for irrational values
of T/# (whose measure is unity) the effect of the resonances is
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unimportant and that therefore the phenomenon of the diffusion
limitation requires separate investigation.

The results of the investigations presented in this Section indicate
an essential difference in the behavior of the quantum system as
compared to classical at a sufficiently long time (¢ > r*). Special
numerical experiments showed that this time scale (¢*) is much
greater than the time for spreading of packets, which under the
experimental conditions was only one or two kicks. Thus the results of
the numerical simulation indicate that the scales T, and T, introduced
in Sec. 3.1 are very different (T, < T,), and that the motion when
t < T, is characterized by classical diffusion. We shall still consider
this problem further below. Indirect confirmation of the considerable
difference between these scales is the absence of any indication as to
the local instability of the quantum motion, according to the results of
[46].

3.3. Quasiclassical Approximation.

The numerical experiments described in Sec. 3.2 showed that in the
quasiclassical region (k> 1, T< 1, kT = const), when kT > 1 at least
over a cerlain time interval some statistical characteristics of the
quantum motion are close to classical. We shall show that this result
can be obtained in the quasiclassical approximation. To do this we
use the familiar quasiclassical representation for the wave function
(cf., for example, [50]):

N
vxm)= 3 Ihl" Viexp(isy(x)/h— i 5 m)
X pof xo(x,7)) + O(k ™) (3.3.1)

The sum over [ represents the leading term of the quasiclassical
expansion, which as a rule is all that is considered by most authors.

The sum goes over all classical trajectories that reach the point x at
the time r and satisfy the initial conditions

95q(xq)

xy(x,7) = x4, Pol xn"] = i (3.3.2)
The initial wave function has the form
8ol xg)
¥(x0:0) = gulxojexp(i =5 )
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the Jacobian of the classical trajectory is §,(x,7) = (dx(xy,7)/
0xg)| ;= ;s S(x,7) is the action along the classical trajectory joining
the points x, and x, while p, is the Morse index of the trajectory. The
quantum corrections are represented in (3.3.1) by the term O(k ).
They are usually small, although, as will be shown in Sec. 3.5, their
magnitude increases with time and at a large time their contribution
to (3.3.1) becomes substantial.

For stochastic systems, because of local instability of the trajecto-
ries, the number N of terms in the sum (3.3.1) and the Jacobian
§,(x, 1) = (0x'(xy,7)/0x,) increase exponentially with time: N~
exp(hr), &, ~exp(hr), where h is the KS-entropy.

Stochasticity of the classical system also leads to exponentially
rapid spreading of the quasiclassical packet. For the example of the
model (3.2.3) (h = 1) we consider this question in more detail, since
the spreading of the packet determines the time scale T, introduced
in Sec. 3.1, over which the gquantum motion can be completely
random. To estimate this scale we note that the physical meaning of
the leading term of the quasiclassical expansion (3.3.1) is simply that
the initial quantum state q(x,) propagates along the classical trajec-
tories. Consequently the spreading of the quantum packet can be
estimated roughly as the spreading of a beam of classical trajectories
(in doing this we can neglect interference terms, as we shall show later
in this Section). The rate of the packet spreading is determined by the
classical KS-entropy A of the system, but the total time of spreading 1,
depends on the initial dimensions of the packet: Af, in phase and Ap,
in momentum (the quantum number of the rotator). We assume that
the packet has spread out completely when its final size Af@~1 or
when Ap~1/T = k/K, K = kT is the classical stability parameter for
the system (3.2.3). The condition on Ap comes from the second
equation in (3.2.3), since when Ap- T =1 the size A# becomes =1
over one period of the perturbation. Taking into account that from
the uncertainty relation, Af, = 1/Ap, while Ap;= 1, we find the time
for complete spreading of the packet in phase to be /%) < In(Ap,)/h,
and in momentum ' <In(k/K -Apg)/h. Actually the time for
spreading of the packet will be of the order of the smaller of 1/*); ¢{7).

From the condition /"'~ {#, we find Ap;~k /K , corresponding to
the largest
In(k/K)
fm————

3 (3.3.3)
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For typical values of the model parameters (k = 40;: K = 5) the time
t,~1 in agreement with the results of the numerical experiments (Sec.
1.2).

The scale (3.3.3) is generally very small and depends weakly on the
parameter of the quasiclassical approximation k. Mevertheless, the
condition for the applicability of (3.3.1) is the smallness of the further
terms in the expansion (3.3.1) (O(k ")), which leads to the time scale
far in excess of ¢, (cf. Sec. 3.5).

We see from (3.3.1) that the quasiclassical expansion is incorrect
near degenerate stationary points, at which §,(x)=0. The wave
function has a caustic at such points. If there are ¢ trajectories with
caustics, then in the sum (3.3.1) there still remain N — g quasiclassical
terms (without singularities). The number ¢, like N, increases expo-
nentially in time, but since the size of the caustic is finite and small
(~k~2/3 ¢f. [50]) and the caustics are distributed more or less
uniformly in #, the quantity g~k ~%/*- N = N. We also note that the
height of the peak of the y-function near a caustic decreases exponen-
tially with time ~k'/%exp(— hr) as well as that of the guasiclassical
terms. From this, in contrast to [38], we arrive at the conclusion that
the effect of the caustics is at any time small and can be neglected.
This result is confirmed by the numerical experiments carried out in
[47].

Regarding the quantum corrections to the main quasiclassical term
(3.3.1) as small, we find the time dependence of the rotator energy:

o d(x, ¢
fo-§ (452

The main contribution comes from the differentiation of the action in
the exponent. Differentiation of the coefficient and the phase shift p,
give contributions that do not increase with time and are of order of
k™' as compared to the leading term:

2
dx (3.3.4)

i
Em=5 [ dx{ PPN
exp[i(S,(x) = Sy(x) = § (=) ]

() (335)
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where p,(x) = (85,(x)/3x) is the classical momentum along the /th
trajectory leading to the point x; xj(x,1) is the initial point of this
trajectory as a function of the final point x.

Let us examine the contribution from interference terms with [ # /,.
They are N, ,~N? in number, and the magnitude of each term is

R”ﬁ—iszdxexP(f[S;(x} = S,l{x}])muexp(_z;,,}_,ﬁ -2

The integral appearing in R is a typical correlation function, decaying
exponentially in time because of the stochasticity of the classical
motion, Thus we have a sum of N, random quantities with ampli-
tudes R~N ~2, which is equal to 3, ~y/N;n, R~N ~'. This estimate
is not applicable in the absence of stochasticity of the classical
motion. However, the interference terms can also be neglected in this
case. This follows from a universal estimate, valid both for stochastic
and for regular motions in the classical limit [49]. Thus the interfer-
ence terms with /= /, in (3.3.5) can be neglected, and there remains
only the sum over / = [}, giving the classical value of the energy.

Thus the leading term of the quasiclassical approximation (3.3.1)
does not explain the observed diffusion limitation for the quantum
system. The latter apparently is related to quantum corrections which,
though small in the quasiclassical region, may nevertheless increase
with time. This question will be considered in Sec. 3.5. As a prelimi-
nary, in the next section we shall obtain some simple estimates of
quantum effects in the guasiclassical region.

14, Graphic Picture of Transient Stochasticity.

A possible explanation of the diffusion limitation described in Sec. 3.2
is that the quasienergy spectrum of this nonclosed system, which
could in principle be continuous, is actually discrete. This hypothesis
is confirmed to some extent by our direct numerical determination of
the quasienergy spectrum in this model. The spectrum obtained
clearly contains a strong discrete component, although, of course, the
results do not permit us to guarantee the absence of any continuous
component. Let us assume, however, that the spectrum is purely
discrete with average spacing A between neighboring lines. From the
uncertainty relation between frequency and time it follows that the
discreteness of the spectrum will manifest itself only when t = 1/4,
while for r=<1/A the spectrum can be regarded as quasicontinuous,
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i.e., the time evolution of the quantum state will be the same as, or
close to, that for a continuous spectrum (cf. [58]). But a continuous
spectrum of the motion implies, in particular, mixing and diffusion.
Thus we may try to identify in order of magnitude the discrete scale
T;, introduced in Sec. 3.1, with the diffusion time scale t* for the
quantum model (3.2.1):

Ty~t*~1/A (3.4.1)

Actually a similar idea vas already put forward in [46], but there the
quantity & was related to the unperturbed energy spectrum of the
rotator. Actually A characterizes the discreteness of the quasienergy
spectrum which is built up in the system under the action of the
perturbation.

Since all the levels of the quasienergy are located within a bounded
interval (2« in our case), 1/A~ N*.,, where N, is the effective number
of eigenfunctions of the perturbed system that determine the evolu-
tion of the given initial state y(#,0). We point out that the total
number of eigenfunctions, and consequently, also the total number of
the quasienergy levels, is infinite (if we disregard the highly improba-
ble infinite degeneracy of a level). However, each particular state of
the system can be effectively represented by some finite number of
eigenfunctions N,.

An upper bound for N, can be estimated as follows. According to
the numerical data in Sec. 3.2 the diffusion drops sharply when
t = r*. Let us assume that the diffusion finally stops completely. This
means that the perturbation acting on the free rotator couples a finite
number of unperturbed states, namely the number of states that fall
in the interval of the diffusion Ap(1*) over the time ¢* (in order of
magnitude). It is clear that this will also be the order of magnitude of
the maximal number of eigenfunctions representing the state of the
system within this interval Ap. Whence

N, ~Ap(1*)~kit* (3.4.2)
Substituting this estimate in (3.4.1), we obtain:
2 el
t*~ ki~ D (34.3)

This estimate, apparently, does not contradict the numerical experi-
ment, according to which the average value {r*/k%) is =0.07 (cf.
Sec. 3.6).

The last estimate in (3.4.3) emphasizes the connection of the
statistical characteristics of the quantum motion (in this case the
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diffusion scale *) with stochasticity in the classical limit, where the
diffusion rate is D"~ k?/2.

Comparing the estimate for 1*~ T in (3.4.3) with that for the scale
of spreading #,~T, in (3.3.3), we see that in the quasiclassical region
(k 3 1) both scales actually have fairly different orders of magnitude,
indeed (T, < T,) in agreement with the numerical results (Sec. 3.2).
The question to what extent this conclusion is general for quantum
dynamics of course remains open.

A more serious question concerns the role of initial conditions in
this problem. Indeed, the very fact that the diffusion rate drops with
time shows that this rate, in general, depends on the initial state of the
system. On the other hand, among the several hundred initial states
that were actually used in the numerical experiments there was none
with an initial diffusion rate significantly less than the classical value.
This shows that initial states with a reduced diffusion rate are ex-
tremely specific. One can reach the same conclusion in a different
way. The estimate (3.4.2) gives the total number of states in the
interval Ap(r*). The fact that the observed value of the diffusion scale
t* always corresponds more or less to this estimate shows that for a
wide class of initial conditions most of the N, eigenfunctions are
actually excited. This means, in turn, that the eigenfunctions have a
property resembling ergodicity: The projections of almost any -
vector on each of the eigenfunctions are close in magnitude. It is clear
that this cannot be true for any quantum system. It is natural to
associate this ergodicity of the eigenfunctions with the stochastic
motion in the classical limit. This approach was apparently first used
in [51] (cf. also [56]).

These same considerations enable us to understand the character
and the peculiarities of the nondiffusing initial states in the stochastic
region (kT > 1). It is clear that such states must be a superposition of
a small number of eigenfunctions (in the limit, just one eigenfunc-
tion). It then also follows that such an initial state is a very special
superposition of a large number (~Ap(r*)~k?) of states of the free
rotator.

Our picture of the transient stochasticity may be checked by
changing the quantum model. In particular, we may pose the question
whether one could choose such a quantum (nonclosed) system to
eliminate the diffusion limitation (7* —> oo). It turns out that this is
possible indeed! In order to understand how one needs to change the
original quantum model, we call attention to the following peculiarity
of the mechanism of diffusion limitation. From a comparison of
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(3.4.1) and (3.4.2) it is clear that the limitation occurs because the
number of states in the diffusion interval Ap(f)~kyt increases more
slowly than the diffusion scale T,~t. So one naturally gets the idea of
making the perturbation parameter k variable, increasing with time in
such a way that Ap(r) would increase faster than 1. It is true that then
the perturbation of the rotator becomes aperiodic, and the concept of
quasienergy strictly speaking loses its meaning. However, we may
regard the model with variable k(¢) as a simplified version of a model
j.vith k(n), depending on the level number of the free rotator which
increases with time as the result of diffusion. Such a situation is
apparently typical for quantum systems, and is related to the decrease

in spacing between energy levels with increasing quantum numbers
(cf. Secs. 3.5 and 3.6).

Suppose, for example,
k(f)=ky“ (3.4.4)
where a is some constant. Then

Ap(t)~kqt®*1/2 (3.4.5)
and we can make the assumption that when a=! the diffusion
continues unbounded. When 0 < a <! the diffusion scale also in-
creases. From (3.4.5) and (3.4.1) we find analogously to the above:

kg (1/2-4 (3.4.6)

The results of preliminary computational experiments with variable
k(1), described below in Sec. 3.6, do indicate such an effect, indeed.

Another more general and more rigorous method for estimating the
diffusion scale T, is to use the quasiclassical approximation to calcu-
late the time evolution of the quantum state. Since the leading term of
this approximation does not explain the observed diffusion limitation
(Sec. 3.3) and, consequently, does not reflect the discreteness of the
quantum system, it is obvious that the effect we are interested in is
contained in the quantum corrections to the quasiclassical approxima-
tion, to whose estimate we now turn.

3.3.  Quantum Effects in the Quasiclassical Region.

Usilng the results of Maslov [49, 50], we determine the time scale over
which the quasiclassical approximation is applicable for quantum

systems that are stochastic in the classical limit. A detailed treatment
of this problem is given in [47].
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Suppose that the classical system is described by the Hamiltonian
H = HyI)+ eV(1,8,7), where [ and # are the action and phase of
the unperturbed problem, e< 1. In this case it is sufficient for
studying quantum corrections to take the expansion of H near the
initial I, up to the terms (AJ)’. When I;/h > 1 the standard quantiza-
tion [40, 52] gives the Hamiltonian:

H=wf +yi*+ e[ V(I 0,7) + %{fV.[ﬁ",-r}

+voni)+ ivieni| @5

2
where
g _lde
& Ly YT Ear e
dv d*v ; p 0
)y ., P=EZrl ., fe=t
L7 3 PP P TEE a0

Following [49, 50], we get the asymptotic quasiclassical expansion for
the wave function satisfying the Schrédinger equation with the Hamil-
tonian (3.5.1) and the initial condition (8,7 = 0) = (@ lexp(iS,(#)
/)

N ; i 9
0,1y = 1—11 ig ,T—'E
V(01 = 3 Il exp( 7 S1(0.1) — i 5 )
(352)

. { mﬁ;u[ﬁwﬂuﬂ aﬂ_mm}

where the summation in [ goes over all classical trajectories arriving at
the point # at time v and satisfying the initial conditions:

8.7y =85, Lo(8) = 7o

0 |fy= 91::
aﬂ(ﬂﬂ,f}

1 af,

= 8]

Here 5,(#,7) is the action along the classical trajectory joining #; and
#; p, is the Morse index, while the operator ﬁ, is defined by

Lpn(bo) = ih | ’{{v +5 Vz}l&el'”(‘:‘ri 'aign)l~ (141" o)

aF. ;
+ %1‘};1‘3-’?@5} 15;!_"'2*]93]] dr (3.5.3)
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The sum over m in (3.5.2) is actually an expansion in powers of . The
main quantum correction comes from the term with m = 1, i.e., from
the expression (3.5.3). To the accuracy of terms that do not increase
with time, it is sufficient, in calculating the quantum correction to
differentiate only the Jacobian §, (#;). We define the quantum correc-
tion 8{" by the equation: L, ~ 8/"p,. Then from (3.5.3) we find

.r 3§r 1 —333:
HV a4,
~ 3% 9 30 }dmcl (3.54)

The last inequality is the condition for applicability of the guasiclassi-
cal approximation. The integral over time in (3.5.4) should be under-
stood as the difference of the primitives at the time r and 0. Since at
an intermediate time §, may vanish (at crossing a caustic), the result
of the integration is not sign-definite. Since §, —~exp(h7), (3%, /08,)~
exp(2hr), (%%, /383)~exp(3hr), the correction 8, increases no faster
than 7, and thus the quasiclassical approximation is applicable over
the time scale 1, o< 1 /A,

Mow let us consider a special form of the perturbation: eV(J,8) -
g(7), where g(r) has the form of kicks which act over a time 7, and
follow each other in an interval T (T = T). Suppose that the change
of the action by a kick is A and that the criterion for stochasticity
K== yTAl 31 [18,41,53] is satisfied. Splitting the integral in (3.5.4)
into a sum of integrals over the intervals T+ T, and assuming the
terms in the sum to be statistically independent because of the
stochasticity of the classical system, while

YT+ To+ 1) ~H Tt + Tﬂ}~(| - K%);
5&% ~§" T+ Ty) - (i - K%}
we find that 8" increases on the average according to the law
I 2
1 ]
By ~H? (_— + 7! >T) 3.5.5
: E;. AT () ! (3=3)

where AT (/) = {((AL(;)*)"/? is the change in the action by a kick,
averaged over the random phase #. Since Af—e, the terms €V, in
(3.5.4) can be neglected.

Let us calculate, as an example, the quantum correction for the
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system (3.2.1), using (3.5.4). According to (3.2.2) and (3.2.3) we get

the expression for p(r),#(r) within the interval between successive
kicks (A= 1):

p(r)=p, + ksin8, _ (3.56)
8(7) =6, + p;7 + krsin#,

where p,, §, are the values of the variables immediately before the last
kick. From (3.2.3) we get the relation:

% = (kT) 'cos#, _,cosh,_,...cosly+O(1/kT)
L1}
according to which we have
daf(r) a8,
Rl A e i kT
39, agn[]+k'rmsﬂ,}+ﬂ{lf )
E’!zﬂ['r}

. _( ﬂ)zmsine, +0(1/kT)

il Gl

3
ﬁ;{ﬂ = -—( o ) krcos@, + 0(1/kT)
3 a6,
aﬂﬂ Li]

Splitting up the integral in (3.5.4) into a sum of integrals from ¢ to
r+ 1, we get:
(k{)zsinzﬁ}'l

i T 5
Lo R ik ol [ 8
i '*-ﬂj';' 4 (] + krcosﬂf :ﬁ

=
taw,

kT cos E?_r."
+

b =t

— 7 __ldr+ O(1/kT)
(1+ chmE!f}

After integrating we find the expression for 81

.t 3cos + 5sin’f)
somiy I
8 S 3kcos¥,
Because of the stochasticity of the classical trajectory, the sum over j
increases as ¢'/? and, consequently, on the average

8 ~it" 2k (3.5.8)

(3.5.7)
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Thus, for a time

1< tg~k? (359)
the quantum corrections are small and the characteristics of the
quam‘.lllm system agree with the classical ones to the accuracy of
Ok "),

For t~t, the correction §;~1 (the higher corrections in % are also
~1) and the quasiclassical approximation becomes completely map-
plicable. Thus it is natural to expect that for ¢ = 1, the characteristics
of the quantum problem, for example, the energy of the rotator, will
deviate significantly from their classical values. Consequently, we can
give an estimate for the time r*, after which the diffusion limitation
begins as was observed in [46]:

1* ~ty~k? (3.5.10)
This estimate agrees with the estimate (3.4.3) obtained above by a
different method.

We note that in the system (3.2.1) the parameters of the quasiclassi-
cal approximation k, T do not depend on the level number n, and
hence the diffusion upward over the levels does not improve the
quasiclassical approximation. Yet, in many systems this approxima-
tion does improve with increasing n (cf. below). We may therefore
expect that with sufficiently rapid diffusion the quantum corrections
in such systems will grow much more slowly than in (3.2.1).

As an example we consider a system with the Hamiltonian (3.2.1),
in which k has a power dependence on the time: k(r) = k™ (cf. Sec.
3.4). As a rule k is an increasing function of the action k& = k(J[), and
consequently of the time since under stochasticity I grows with time.
The latter is just represented in the model chosen which is also useful
for numerical study. Nevertheless we must note that in systems with
k = k(I) the situation turns out to be more complicated (cf. Sec. 3.6)
and that therefore this model should be regarded only as a crude
example.

When k,T > 1 the variable # after a few kicks already becomes
random, and the average change in p per kick is

ko

Ap(N)F = kg (sin® (1)) = —5

Whence, the diffusion law in energy ({4p> = 0) is:
2

e D
4T + 2a)

E(f)=~ A o {()] (3.5.11)
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The expression for §, is obtained in the same way as for (3.5.7), but
now with k = k(). On the average |5,|* increases as
i

1 f1 — o

Ty ==
I&iF2 Eo K(jy k31— 26)

(3.5.12)

It follows from (3.5.12) that when a >1 the corrections are always
small, and the dependence of the energy on time is described by
(3.5.11) for any time, which also agrees with the conclusion drawn in
Sec. 3.4. The value o = | is a boundary one. In this case the diffusion
scale t;~exp(ka). When 0 < a <1 the quasiclassical approximation is
valid for

t< 1o~ [ K3(1 = 2a)]"" T (3.5.13)
and during this time the energy grows according to the classical law.
This last estimate differs from the estimate (3.4.6) by a factor
(1 = 2a), which, however, is important only for a=1.

One can show that the relations (3% /88,)~§%; ("1 /98;)~3"*" do
hold also for a continuous classical system. Then the integral in (3.2.4)
can be split into a sum of integrals over time intervals Ar—1/#,
which are statistically independent, and thus we find

|3§“]|1~ﬁifT(T{’}fh}zh dr< 1 (3.5.14)
o

For y = const, (3.5.14) gives &, ~(hy/ k) hr)'/2. Thus, for example, if
H=y(I/2)+ k3" . _pcos(f + mlt + g,), where ¢, is a set of
random phases and M = 5 = (ky)"/2/Q =% |, then h~Qs*" [31] (cf.
also Sec. 2.3) and the diffusion scale to~h/h .

Thus, we managed to find out the conditions for applicability of the
quasiclassical approximation (3.3.1) to a broad class of systems. At
the same time the problem of the peculiarities of quantum dynamics
for a larger time requires further investigations.

16, Other Models.

To check the theoretical predictions made in Secs. 3.4 and 3.5, we
carried out a series of additional numerical experiments [47] for the
rotator model (3.2.1) with k = const and k() = k,r® as well as for the
model of a nonlinear oscillator under a driving perturbation, which
was studied theoretically in [41].

From the numerical data, we determined the time ¢* during which
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the diffusion is close to classical. We took for the value of #* the
moment in time starting from which the energy of the quantum
rotator differed by 25% from the energy in the classical limit.

To check the functional dependence (3.5.13), we calculated the

quantity
e
| k(1 - 2a)

The experimental results for the average value (8%, the root-mean-
square deviation oy and the ranges of the parameters are given in
Table 1. These results show that, in accordance with the theoretical
predictions, the time ¢* increases sharply with increasing both & and
a. Unfortunately a more precise check of the functional dependence
{3.5.13) could not be made because of the limited number of levels of
the model and due to the sharp increase in computation time with the
growth of & and «. We were able to observe clearly the diffusion
limitation only for & <2 035 (ef. Figs. 8 and 9). It is important to note
that, when a > (L35, not only does the diffusion law agree with the
classical one, but the distribution function over system levels is close
to the classical Gaussian distribution.

MNow let us consider a nonlinear oscillator acted upon by a driving
perturbation, described by the Hamiltonian:

H = wgft + v + gy(8* +ad)85() (3.6.1)
where # = &%4; 4% and 4 are the creation and annihilation operators,
with the commutator [4,4%]=Ah; y is the nonlinearity; &, is a
perturbation parameter. When [4,4%] =0, Eq. (3.6.1) describes a

classical oscillator, while a* and @ become classical canonical vari-

ables, whose dynamics can be given by the mapping:
“Tg — (3.6.2)

a=e"

where @ = w, + 2v1; I = |af’, a =1 &®. The criterion for stochasticity

Table 1
kT k o * 5 (85 0,/¢8)
5-36 5-80 0 5-320 0.14-0.50 0.27 032

5-10 5-10 0.1-035 40-500 053-1.7 1.1 031
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Figure 8. Dependence of rotator energy E on time for the svstem (3.2.1) for k()
= kyt™; @ =0.1; ky=5; T=1; t = 500, The solid curve corresponds to the classical
diffusion (3.5.11); the wiggly curve is the numerical result; O—the classical model of
quantum stochasticity (4.1.1).

has the form:
K =2yTiI, > 1 (3.6.3)
and then [41]:
Iy =1I,+ gh

(1 = Io)* = 28305t + 231

(3.6.4)

In the case of quantum system (3.6.1) it is convenient to describe its
dynamics in terms of the amplitude A, of the unperturbed states (cf.
Sec. 3.2):

id, = (won + hyn®)A, + go(Vn + T4, +Vn 4, \)8;(1) (3.6.5)

where g = g, /h and n = I /h is the level number in the unperturbed
system.
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Figure 9. Same as Fig. 8, for a = 0.35; ky=5; T'= 1; 1 = 500,
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Table 2. w,T=1000; yT=1

Euo g r* ﬁcr

1 0 29 245
1 15 30 1.32
1 31 35 1.22
| 63 51 87
1 83 70 —_

1.5 0 15 1.12
2 0 40 1.

The numerical experiments showed that qualitatively the dynamics
of the system (3.6.1) is similar to (3.2.1). As well as for the quantum
rotator, after a certain time /* a limitation of the diffusion in the
quantities [ and (f — Iﬂ}z begins. The values of +* for some param-
eters are given in Table 2.

Using (3.5.5) for gi< n, (n, is the initial level, A= 1) and the
relation AJ m!gnﬁ cos#, we find the rough estimate for r*:

t*~gany (3.6.6)

For a more accurate estimate we need to take account of AJ
dependence on I. Therefore in the computation of 8, along the
trajectory, using (3.5.5), we must take into account that a classical
particle, because of fluctuation, gets into the region / < [, where §,
increases considerably faster. Thus, for a check of (3.5.5) we consid-
ered the following classical model of the quantum system. We solved
the classical equations of motion (3.6.2) for N,= 1000 particles,
corresponding to the initial distribution of the quantum system (for
example, I = I, 0 < 8 < 2x). Along the trajectory of each particle the
quantum correction (3.5.5) was computed (with A7= goJ'/®), and
when 8" exceeded a certain §,~1, the particle was “frozen,” i.e., its
action [, was held constant from then on. The average action [ was
computed over all N, particles, including the “frozen” ones. The
“freezing” of particles in a classical system corresponds to the empiri-
cal fact that, when the quantum corrections are large, (8! = 1) the
diffusion rate drops sharply (we assumed that it drops to zero). The
possibility of representing a quantum motion as a beam of classical
trajectories arises from the smallness of the interference terms when
180 =1 (cf. Sec. 3.3).
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Figure 10. Dependence of action of a nonlinear oscillator on time for the system
(3.6.1) with my =15, go=1; w,T=1000; yT=1. The straight line corresponds 1o
classical diffusion (3.6.4), the wiggly line is the numerical result; +—the “frozen
particle” model; O—the classical model of quantum stochasticity (4.1.2).

The critical value 8§, was determined from the condition that the
action [, caleulated on the “frozen particle” model, be close to its
quantum value. It turned out that, by varying this only parameter (cf.
Table 2) over a small interval, one can achieve a good agreement
between the quantum characteristics and those of the “frozen parti-
cle” model (cf. Fig. 10) for a wide range of the parameters n,, g, (cf.
Table 2). This shows the validity of the estimate (3.5.5) and, also, that
by using the proposed classical model one can describe the quantum
dynamics of the system (3.6.1) over a time far in excess of r*,

4. Discreteness of Dynamical Space and Quantum Effects.

In the preceding sections we have found that, except for some special
cases, In a quantum system there can occur only transient, or tempo-
rary stochasticity of the motion, which has a natural explanation on
the basis of the discreteness of the quantum spectrum. One may,
however, approach this problem in a different way, and call attention
to a still more fundamental and also well known peculiarity of
quantum dynamics, namely the discreteness of the quantum phase
space. Particularly, in terms of action-angle vaniables this manifests
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itself in a discreteness of the action variables (with arbitrary phases).
Of course, all the peculiarities of quantum dynamics don’t reduce to
this discreteness alone, yet we may pose the question of its influence
on the motion of the dynamical system. More specifically, the ques-
tion may be formulated as follows: How does the stochastic motion of
a classical system change if the action variables take only discrete
values (with continuous phases)? Some results of a numerical investi-
gation of this question are presented in Sec. 4.1. To our great surprise,
the simple discretization of the action of a classical dynamical system
reproduces qualitatively the quantum limitations of the diffusion!

At first glance this does seem strange, since in the language of
computer mathematics discretization of the action is just a rounding
off of that quantity, which is usuvally regarded as a more or less
random computational error. It would therefore seem that the diffu-
sion can only increase. In order to understand qualitatively the effect
of diffusion, let us imagine that we round off not only the action
variables, but also the phases, ie., all the dynamical variables. Then
instead of the continuous classical trajectory we would get a sequence
of transitions on the finite lattice of rounded-off values. Whatever the
law for these transitions, soomer or later we get onto one of the
previously occupied nodes of the lattice, and then, because of the
deterministic nature of the system, all the succeeding points will
repeat exactly. But this means that all trajectories of any dynamical
system on a finite lattice are periodic, which of course completely
excludes any diffusion as r— co. And now we recall that in numerical
simulation of a dynamical system on a digital computer we always
have just this situation—a finite number lattice instead of the continu-
ous dynamical space of the simulated system. It then follows, in
particular, that numerical simulation can give only transient stochas-
ticity. Taking account of the large and ever increasing role of numeri-
cal experiments in the investigation of various dynamical systems, we
meet a serious problem: to what extent is such simulation adequate
for real physical systems? This problem is discussed in Sec. 4.2,

4.1, Classical Model of "Quantum Stochasticity™.

In this Section we shall present and discuss some results of numerical
simulation concerning the impact of discreteness of the phase space
on classical dynamics. As the simplest model of such a “discrete
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dynamics” we choose the mapping:

F=p+[ksinx] @.L.1)
T=x+Tp

where the square brackets denote taking the integer part. Without
that operation the system (4.1.1) would be equivalent to the standard
mapping with the parameter K = kT, whose properties were described
in Secs. 2.1 and 3.2, Taking the integer part in (4.1.1) lends to this
system some resemblance to the quantum standard mapping, namely
the action p then runs only over integer values (= 1), while the
parameter k& in {(4.1.1), just as for the quantum system (Sec. 3.2),
characterizes the maximal number of “quanta™ given to the system by
one “kick™ of the driving perturbation. We note that the system
(4.1.1) also has a stability border |k| < 1 (cf. Sec. 3.2), if the integer
part for negative numbers is taken by the rule: [¥]= —[|¥|] (» <0).

In Fig. 5 the circles show the time dependence of the energy of the
system (4.1.1} averaged over 400 trajectories with wvarious initial
conditions ( py, x,), where the distribution over phases x; was taken to
be uniform. One clearly sees a significant difference from the continu-
ous classical model. As a result one can draw the interesting conclu-
sion that the discreteness, introduced for the momentum p, leads to a
significant limitation of diffusion, although the quantum dynamics
proves to be somewhat more stable than “discrete” dynamics. A
similar result was also obtained for the time dependent k = ki (cf.
Secs. 3.6 and Figs. 8, 9).

For comparison we also considered the classical discrete model of a
quantum nonlinear oscillator, whose motion is described by the
mapping (3.6.2). Discreteness was introduced as in the previous case
by taking the integer part of the change in the action as the result of a
kick:

I=I1+[Al]=1+[(a+a")g+ gi] (4.1.2)

Then, from the integer value of I, we recalculated the quantities a,a ™,
and computed the rotation which leaves the action unchanged.

The results of the numerical experiments on this discrete model
showed in this case also (cf. Fig. 10} a noticeable limitation of the
diffusion compared to the classical model. It should be emphasized
that this property appears to be commeon to all discrete models, and
does not depend, in particular, on the choice of the initial distribution
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{ o> xg) for the packet of trajectories. Thus, for example, instead of a
uniform distribution in phase x,, we assigned a random distribu-
tion over the same interval (0 < x; < 2w). But the results remained
about the same (to within fluctuations). Similarly, the result did not
depend on the number N, of trajectories over which we deter-
mined the average energy, so long as N, was chosen sufficiently large
(N = 300).

4.2, Numerical Simulation of Dynamical Stochasticity.

In the preceding Section 4.1 it was shown that a simple discretization
of the action variable of a classical dynamical system reproduces
qualitatively the quantum effect of the diffusion limitation of this
system in the stochastic region. In our opinion, this result is of
importance in two ways. In quantum mechanics it opens the possibil-
ity of imitating certain quantum effects by means of “classical”
models, where analysis of the motion as well as numerical simulation
are much simpler. On the other hand, the above result poses a very
serious question concerning the adequacy of numerical simulation of
classical stochasticity. We proceed to a brief discussion of these
questions.

To be specific, we shall consider a two-dimensional mapping, for
example, the standard mapping (2.1.1) or its equivalent (3.2.3). Sup-
pose that the number of the mantissa digits in the computer is m.
Then on a unit interval any quantity can have M = 2" different
values, and a region of phase space with area 5 in this example
consists of sM? points. The maximum period of motion over this
region is obviously T, .. = sM? iterations of the mapping. But for a
“random walk™ over the lattice the average period of motion is much
less: { Ty~ My/s, since with increasing time of the motion along the
trajectory, there is an increasing probability of coming back to one of
its earlier points.* In analogy to the arguments in Sec. 3.4 we can
conclude that the quantity {7 also determines the largest time scale
over which the spectrum of the motion can still be considered
continuous, and over which, consequently, the diffusion still goes on.
As in quantum dynamics, it is natural to call the regime of motion
when = { T the discrete regime. Here the discreteness of the phase
space of the dynamical system manifests itself to the full, and the

*Our estimate for {7 differs from the result of [54], since it was assumed in that work
that the discrete mapping was cne-to-one, which generally is not the case.
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motion is periodic. The boundary of this interval for the two-
dimensional mapping can be written as

T,~MyS (42.1)

For a typical computer this scale is quite large (M~10"%) and can
be easily increased by many orders of magnitude if we go to double
precision. Thus the discrete regime does not generally present a
serious threat to numerical simulation. The exception may be those
special cases where for some reason s is very small, i.e., the motion
actually proceeds within a very small portion of the phase plane. This
could happen, for example, if over some region the diffusion rate were
quite small (cf. Sec. 2.1). In this case the actual area occupied by the
trajectory is s~|Ap|~+Dr, where ¢ is the time of motion. Then:
(Ty~Mys ~1"/*. M- D'"4=1¢. The last inequality is the condition
for the diffusion regime of motion. The restriction on the time of
motion now takes the form s < M*3D'/3 If the region with low
diffusion rate has a size ~Ap, < 1, the condition for crossing it can be
written as:

(8pg)*"?
M

D= (4.2.2)

The diffusion limitation because of transition into the discrete
regime of motion was apparently observed in some numerical experi-
ments [55,23] (cf. also Sec. 2.1).

The influence of discreteness of dynamical variables (“roundoff
errors”) is a characteristic example of a very small perturbation that
nevertheless completely changes the dynamics of the system after a
sufficiently long time, even if the system is structurally stable, say an
Anosov system. The reason why the general theorem on structural
stability is not applicable here is related to the singularity of the
perturbation.

For the classical model of quantum stochasticity (4.1.1) similar
estimates can be made as follows. Since the “quantum™ of momentum
is equal to 1, the number of different values of p over the time 7 is
simply equal to the diffusional change |Ap|~kyr (cf. Sec. 3.4). Al-
though the phase x can have any value, it also changes in “quanta”
~p. Hence, the number of different values of x over this same time
can be estimated very roughly as |Ax|/|p|~1, where |Ax|~]|p]|t is the
diffusional change in x during the time ¢. Then the scale of discrete-
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ness is Ty~|Ap| -  ~Vk £*/* = 1. The last inequality just determines
the order of magnitude of the time within which the diffusion occurs
in the model (4.1.1): t=< k?, which agrees with the estimates for the
quantum systems in Secs. 3.4 and 3.5. One can similarly also obtain
estimates for varying k{r).

A continuous spectrum and diffusion are important statistical prop-
erties of a dynamical system. Therefore the diffusion regime (when
1< T,) of quantum dynamics and of numerical simulation may be
regarded as a particular (special) case of stochastic motion. This is the
more justified that in this regime not only an average diffusion but
also fluctuations of the diffusion distributed according to Gauss' law
take place (cf., for example, [18,46] and Fig. 6), the latter being a
much more delicate statistical property. In probability theory this
property is the content of the central limit theorem. Yet, this is still
not all. An even stronger statistical property is the so-called Bernouilli
property related to the exponential instability of close trajectories. It is
just such an instability that causes the dynamical system to behave
like a random one.

In numerical simulation, the time scale ¢, over which there occurs
an exponential divergence of close trajectories is restricted by the
minimal initial separation between trajectories —~M ~', whence

o~ M (4.2.3)
where h is the entropy of the dynamical system. For a typical (good)
computer the number of digits is m~100 and cannot be significantly
increased. Thus the scale 7, is inadmissibly short. In this connection
the important question arises—which statistical properties are lost in
numerical simulation over a time 1% 1,7

There is no question that simulation over such an interval is not
completely adequate for a continuous system. For example, we can
follow a local instability only for t < ¢,. In calculating the KS-entropy
this difficulty can be avoided by the standard trick of averaging over
many short segments of different trajectories. But this is not the same
thing from the point of view of statistical properties of the motion.

For example, one of the simple consequences of the Bernouilli
property of a dynamical system is the completeness of its symbolic
trajectories (cf. Sec. 1). Even if we take the minimal partition of the
phase space into just two cells, the total number of symbolic trajecto-
ries over the time (number of iterations) ¢ would be N, = 2. But the
maximum number of different initial conditions is N.~M?, so that
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they can provide the completeness only over an interval 1,~
In M ~m. This scale is of the same order at 1, (4.2.3) and, in analogy
with quantum dynamics, it can be taken as the scale of randomness of
the motion:

T.~m (4.2.4)

Although for 1% T, the total number of trajectories in the com-
puter is much less than the total number of symbolic trajectories for
the simulated system, it is still so large (~ M ?~10%"1), that an obvious
incompleteness of the simulation is nearly unobservable. In this
connection the question posed above may be reformulated as follows:
do we really lose anything in simulation of stochasticity over the
whole diffusion interval (r < T )7

Similar questions also arise in quantum dynamics, since the scale of
randomness T,, which can be identified with the scale of packet
spreading ¢, (3.3.3), proves to be also relatively short;

In(k)
’.‘-H h
where k is the parameter of the quasiclassical approximation.

(4.2.5)
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