m

PPPL-TRANS-133 - PPPL-TRANS-133

STATISTICS OF POINCARE RECURRENCES AND
THE STRUCTURE OF THE STOCHASTIC LAYER OF A NONLINEAR RESONANCE

Translated by:

M.M. Turitzin

\ FEBRUARY 1983

Translation of this work was supported by the U.S5.
Department of Energy Contract No. DE-AC02-76-CHO-
3073. Reproduction, translation, publication, use
and disposal, in whole or in part, by or for the
United States Government is permitted.

PLASMA ¥
PHYSICS S
LABORATORY &

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

PREPARED FOR THE U.5. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-ACD2-76-CHO-3073.

r“""""'“'"""""""-""'--'------------u-------------J



NOTICE

This report was prepared as an account
of work sponsored by the United States Gov-
ernment. Neither the United States nor the
Administration, nor any of their employees,
nor any of their contractors, subcontractors,
or their employees, makes any warranty, express
or implied, or assumes any legal liability or
responsibility for the accuracy, completeness
or usefulness of any information, apparatus,
product or process disclosed, or represents
that its use would not infringe privately
owned rights.



Muclear Physicse Institute

CO AN USSR

Statistics of Pnincaré Recurrences
and

The Structure of the Stochastic Layer of a Nonlinear Resonance

B.V. Chirikov and D.L. Shepelyansky

Institute of Nuclear Physics
Siherian Division
USSR Academy of Sciences

Wovosibirsk 90, USSR

Preprint INP 81-69



Statistics of Pﬂincaré Recurrences
and

The Structure of the Stochastic Layer of a Nonlinear Resonance

B.V. Chirikov and D.L. Shepelyansky

Presented at the IX International Conference of

Nonlinear Oscillations (Kiev 1981)

Abstract
Motion in the stochastiec layer around the separatrix of a nonlinear
resonance was investigated. The integral distribution function F(g) of
trajectory recurrence times ¢ to the center of the layer was numerically
determined. It was found that the distribution F(q) = At P is a power
function, the exponent assuming two different values: for 1 < e P = 1/2 and
for 1t >> 15, P = 3/2 (time Ty is determined by the characteristics of the

layer).



1 Introduction

Under broad assumptions the rescnance of nonlinear oscillations in a
Hamiltonian system can be described and studied in a pendulum approximation

(see for example [1]):
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P
H (Pig,t) = oo + eV cos¢g + eV [cos( vy = B8) + cos (vg + 8) ] « (1.1)

The first two terms of this Hamiltonian resonance describe an isolated
nonlinear resonance, where the momentum P characterizes the deviation of
unperturbed variable actions from their resonance wvalues; the "mass" M is
related to the nonlinearity of oscillations and is expressed by the derivative
of the wunperturbed frequency wilth respect to the action; g is a small
perturbation parameter, and Vs and ¢ are the amplitude and phase respectively
of the resonant perturbation harmonic. The last term in (1.1) describes the
interaction of a given resonance with the rest. To simplify the presentation,
we will examine here the interaction of only with two resonances located
symmetrically with respect to the basic resonance. The perturbation phase is
8 = Dt + 8, and  characterizes the tuning away from the principal resonance;
v is an arbitary constant which, generally speaking, depends on the resonance
geometry. We will assume in what follows that M = V_ = 1 and gV = n ~ g <<
1+ Under these conditions the frequency of phase oscillations at rescnance Q¢
= JE- The basic small parameter of the resonance interaction i1is the
relationship 171 . Qﬁfn <¢ 1. The smallness of 1/} indicates that resonances

are well separated from one another.



The formal mathematical analysis of the "simple" system (1.1) encounters
significant and still insurmountable difficulties, which were already known to
Poincard. Namely, the resonance interaction results in "splitting" of the
unperturbed separatrix belonging to each of them and to the formation of a
highly complex homoclinic structure. These difficulties can, however, be
circumvented by constructing a roughly modified Polncaré mapping in ¢ = =
plane (elliptical point of the basic resonance) [1]. For system {1.1), the

mapping has the form:

w=w+ E sing; E = 8+ 3 1ln E%_ ' (1.2)

[wl

where w = Hrfg - 1 is the displacement with respect to the unperturbed

separatrix 0 is the perturbation phase in plane ¢ = n and

2y
S - e
E 2% < T2 ) exp(- 3 = ) (1.3)

is a new small perturbation parameter.

The mapping in the form (1.2) in addition to a general simplification of
analytical and numerical study of the system (1.1) solves two important
problems. First, it eliminates periodic perturbation effects, which cause
only deformation but not separatrix splitting; for detaills see [1]. Second, a
natural small parameter (1.3) appears, which can be used for asymptotic

expansion and, in particular, it can be used gquite effectively in an averaging




method [2]. Let us explain right away that an asymptotic expansion using the
original minor parameter g does not work because of the singularity of
expression (1.3) for g =+ 0. In order to overcome this difficulty, which
appeared at one time guite fundamental, it was found to be sufficient to
integrate the equations of motion of the continuous system (1.1) exactly over
a half period of phase oscillations rather than asymptotically. This was
orginally done by Mel'nikov [3], who evaluated to within an order of magnitude
the splintering of the separatrix produced by the small parameter F (1.3).
Introducing a new variable y = w/F and neglecting the constant phase

shift 6, we can write the mapping (1.2) as

y=y+s8ing; 8=06- A1n |yl . (1.4)

This canonical mapping, depending on a single parameter } >> 1 will be

investigated below.

2. Width of a Stochastic Layer

The most important characteristic of a homoclinical structure near the
separatrix of a nonlinear resonance is its total width. Because of the very
complex nature of this structure, a strict assessment of its width has not
been successfully made up to now. In what follows we will briefly present an
approximate solution of this problem [1] by linearization of the mapping (1.4)

in y and reducing it to the so-called standard mapping



P=P+Ksing; 6=0+P, (2.1)

where K = ?u"yr is a parameter characterizing, in our case, the local structure
of the stochastic layer in the neighborhood y = y, of the resonance ) lny, =
2qr (r an integer) and P = ) (y - ¥,)/¥, is the new momentum.

The dynamics of the standard mapping (2.1) have been explored numerically
and analytically guite thoroughly although still incompletely up to now; see
for example [1,4]. In particular it was reliably established that the
boundary of stochastic motion lies at K = 1 with an accuracy on the order of

several percent. It follows from this that the width of a stochastic layer

(lyl < y,) is approximately equal to

¥ ™ A W= AE g (2.2)

i.e., A= 0/0, = 0/VE times larger than the splitting of the separatrix. With

b
an additional condition n << g the accuracy of the last estimate &y /v, ~ 1/n
is essentially determined by the location of the extreme resonance with Yo = A
[1] - In the case of 5 > g, the assessment (2.2) is correct only within an
order of magnitude [1] as are all earlier estimates of the stochastic layer
width (see for example [5-7]). Mote that for n > eglh/v2, the configuration of
the stochastic layer significantly changes because of the appearance of a
stable region in the neighborhood of ¢ = 0 due to dynamic focusing which
2; 2
exists till n < e)r“/v*.

The stochastic layer in the separatrix region of nonlinear resonance

remains for any small perturbation (g + 0), although its width decreases



exponentially (1.3). The significance of such a stochastic component consists
in that, with a many-dimensional system (with a number of degrees of freedom
n > 2), the stochastic layers of nonlinear resonances intersect each other and
form a system of channels in which a trajectory can travel any distance from
its initial position. This process is known as Arncld diffusion and it was
already discussed in one of the international conferences on nonlinear
oscillations [8] (see also [1,9,10]). Arnold diffusion turns out to be a
universal stochastic instability in many-dimensional Hamiltonian systems
[11. At the same time, the stochastic layer of nonlinear resonances acts as a
"seed" for significantly stronger and more dangerous global stochastic
instability, which arises with the increase of the width of the resonances and
of their stochastic layers with inecreasing perturbation and their merging into

a continuous stochastic component.

3. Global Structure of a Stochastic Layer

According to [1] a stochastic layer of nonlinear resonance can be roughly

divided into two parts:

1. The central part |y| < ¥y/4 (2.2) where apparently a stable component
is completely absent (see also [11]) er, in any case, plays a very

small role.

2. The peripheral parts (y,/4 < ¥l < Yn) where a significant stable
component with a very complex hierarchical structure is present (see
[1] and section 4 below). It is precisely in this peripheral region
that the main difficulties of studying the motions in the stochastic

layer are found.




Figare 1 illustrates an equilibrium distribution function in a layer
f,(¥/A) averaged with respect to phase §. The egquilibrium distribution is
obtained for one trajectory after T = 107 iterations of mapping (1.4), the
dimension of one cell of the histogram was Aly/)) = 10"2 and A= 9. Figure 1
clearly shows that in the region |y/Al < 0.4, the distribution function is
practically constant fc,{}'f?\.} = 1.1. A small deviation from the value of fu is
found at the level of statistical fluctuations. For |v/)\| -4 0.4 the function
f,(y/)) decreases while in the interval 0.5 < lv/nl < ym.f}.,= 1.18, the
equilibrium function can be described on the average by the empirical formula

{see Figs. 1 and 2):

. {3.1)

A least squares fit gives <log C > = 0.089 and <§ = 0.48 = 1/2. Figure 2
presents the function f_(x) in the peripheral portion of the layer. The
straight line corresponds to the equations (3.1) for § = 1/2 and C = 1.2.
Oscillations of f, are determined by system resonances (1.4) (y, = exp(2mux/)\)
and they depend on ). However, the averaged distribution (3.1) apparently
remains unchanged.

The crude properties of f_(x) can be explained on the basis of the
following qualitative representations. The egquilibrium density of stochastic
trajectory in plane (y,8) differs from zero and is constant only in the
stochastic component, i.e., in the entire stochastic layer with the exception

of gtability islands ("holes"). The projection of the density on y axis



{averaging with respect to f) will lower the distribution function fﬂtgr,.-’).,} in
the hole region. A number of such dips are clearly seen in Fig. 1. Because a
stable component is practically absent in the central portion of the layer,
then in this region fotjr,-" 34) = const and in the peripheral portion, where the
degree of component stability grows with the increase of y, f  decreases.

Let us note that because of the changes in the distribution function
[f£,(y/A) # const], the Fokker-Planck-Kolmogorov (FPK) equation describing the

diffusion along y at ) »>> 1, contains also a nondiffusion term [13]:

of . _ g - of . A
at oy H q D(y) Ay + O(y) £ (3.2)
The function Q(y) can be expressed through f_(y) [12]: Qly) = (D/f,)

{dfﬂ,-"dy}. In our case it follows from the equilibrium property of the
distribution function £, that Q = 0 in the central portion of the stochastic

layer, while in the peripheral region

- AD sgn(y) (3.3)
2% "2, - IyD

[see (3.1)]. It must be noted that for Q # 0 detailed equilibrium is
disrupted, i.e., probabilities of forward and return passes are not equal.
This is caused by the presence of stable regions in the peripheral portion of
the layer and which causes the fraction of the stochastic component in the

interval dy to depend on y. If a new "eguilibrium® variable is introduced




p= fgfoiy'l dy' which is simply a normalized degree of a stochastic
component, then the flux g becomes purely diffusive [Q ~ df(p)/dp = 0]. 1In
the wvariable yu, the detailed equilibrium is re-established and the FPK

equation assumes a simple form

pf(y,t) _ _ 8 A (u,t) .
at o (D) o ) (3.4)

p(w = o(y) (3E)* = o») £2 (v .

For more details see [13].

4. Peripheral Portion of a Stochastic Layer

We will use Poincarg statistics of returns to further investigate the
structure of the peripheral portion of a stochastic layer.* This method was
suggested by Ref. [14] which treated practically the same problem, although
the authors do not mention it directly. The method consists of a numerical
determination of the distribution of recurrence times (1)} of a trajectory of
the mapping (1.4) to return to the center of the stochastic layer (y = 0, @
arbitrary). To simplify the data processing a joint statistic of recurrences
was examined in both halves of the stochastic layer (y > 0 and v < 0) in which

the motion differed only by a shift in phase (8 + 8 + 5). The recurrence time

&

Let us note the quasiperiodicity of motion does not follow from Polincard
recurrence theorem as it is sometimes assumed. In the present case, for
instance, the spectrum of the motion is continucus.
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was taken as equal to the full number of mapping iterations (1.4) between the
two successive passes through the layer center y = 0. The integral
distribution function F(1) was determined from a single trajectory as a ratio
of the number of recurrences N with time > 1 to the total number of
recurrences N_ during the total motion time T.

A histogram of the distribution F(<) for A =1, 3, 5, 7, 10, 30, 100 with
T = 1ﬂ? is shown in Fig. 3. It is seen that for sufficiently small ¢ < 10{3}
the distribution F({) can be well described by the function 1,’5; (r » 1)
(straight line in Fig. 3) in agreement with results in [14]. However, for
larger ¢, the function F(g) decreases at a more rapid rate and can be roughly

approximated by the expression

i wdill ¢ 2 (A . (4.1)

The average wvalue from all the numerical data gives <p> = 1.45 + 0.05 = 3/2,
although individual p values are noticeably different, particularly for ) = 1
{1.64); A = 30 (1.26); A = 100 (1.27). The empirical dependence A{)}) is shown
in Fig. 4 and it can be described by A ()\) =~ 3.5) (straight line in Fig. 4).
It must be mentioned that the actual distribution is significantly more
complex than (4.1) and in particular, curves for different ) intersect at
several points (Fig. 3) as though they were drawn together. A small plateau
at the very end of some curves is due to low statistics {“t ~ 1)

The initial dependence F(1) = 1//1 is gimply explained by the free
diffusion at the central layer before the final layer width is reached (see

for example [15]), i.e., for T < 12. In fact, numerical data show that the



1"

boundary of the region is Tg ™~ 0.3 12 . If the relationship F = 1}#;-13
preserved for all 1, then the average <¢> would diverge [14]. However, for
T

T > T, the exponent p > 1, so that < is finite: <¢> ~ = f < F'iqg) T
o

dt = ¢ ~ % « MNumerical experiments give <> = 3.2) (with the exception of
when ) = 1).

Let us note that although <t> is finite, <12> diverges for p = 3/2. This
increases the fluctuations which were apparently ocbserved in [14]. For
example, the fluctuations of the numerical wvalue <1> along a single trajectory

are

<12> = (1)2 3 [ A ]4f3

T2f3 <>

5 3 (4.2)
NG<T>

Let us explain that the decrease in fluctuations with T is related to the fact

that <t « /1_ « n,'7/3
m

increases slower than N,. The maximum growth time
is found from the condition Flt,) ~ NG"1. The estimate (4.2) is confirmed by
numerical data.

The distribution shape F(1) makes possible certain considerations about
the structure of the stochastic layer. In particular, it is possible to
attempt to relate dependence (4.1) to the diffusion speed near the edge of a
stochastic layer.

Local properties of mapping (1.4) and in particular the diffusion
coefficient along y are characterized by the parameter K = 3y = 1/({1-x)
[see (2.1)], which depends only on x. Let us assume that = + 0 , QY{X} =

Dxfx}hz ~ x% so that the diffusion speed drops toward the edge of the

layer. It is then possible to accept, as a first rough approximation, that



12

the return time ¢ (for 1 + =) is found to be, within an order of magnitude,
the average diffusion time from the region x + 0 to the center of the layer.
This is 1 ~ xz_{'Dx ~ :gzxz_a. Thus the recurrence with time > 1 are related to
the entry of the trajectory into the region x < (22/1) 1”"’_2}. On the other
hand, the extent of this region is related to the distribution F(<¢) by means

of

H t(x) N
T xt F ot

Bl & e e~ {4e3)
o
as result of ergodic motion. The function p(x) is obtained from (3.1)
x
plx) = J' fD{xj dx ~ x1+'5 .
o
We finally find (for o > 2)
K
F[T]"L:p'1+i“+—é;x=2p—l. (4.4)

I.e., the distribution F(t) at ¢ + « is a power function and not exponential
as it is usually considered (see for example [14]). This is related to the
fact that for g > 2 the trajectory does not reach the edge of the layer
(x = 0) during a finite time. For g < 2 the diffusion time across the layer
is finite and then, as it is known, the distribution F{(¢) decreases

exponentially due to diffusion statistics. It is possible to show that at



e
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a = 2 the function F(g) is also exponential, although the average diffusion
time from the layer edge is infinite.

Using the empirical expressions mentioned above p = 3/2, § = 1/2, we find
that ¢ = 5, ¢ = 2. The value of g exceeds significantly the wvalue g = 2.6
found in [1] by direct measurements of diffusion speed, however, large
fluctuations make this walue unreliable. On the other hand, the wvalue § = 1/2
cannot be considered as final, particularly for x » 0. 1In addition, it is
possible to conclude from the data of [1] that foix} + 0.5 for x + 0. This
does not contradict Fig. 1, with the exception of the region lv/2] » 1.1 where
the function f_(x) ~ /x can be explained, for example, by the curvature of the
layer edge. Then § = 0 and g = 4.

The wvalue x = 2 differs from the empirical ¢ = 1 , although this
difference cannot be considered firmly established because of points scatter
in Fig. 4. Furthermore, if we neglect cases where ) = 1 (too few} and } = 30,
100 [insufficient count time for asymptotic exit (4.1)), then the four

1.76, This problem therefore reguires further

remaining cases give A = }
study.

In sgpite of a certain indeterminacy in the numerical results and the
calculations, it can be considered established, it appears to us, that the
statistics of trajectory recurrence times into the stochastic layer decrease
nonexponentially. This result apparently remains correct alse for two other
boundary types between stochastic and stable components. 1In particular, the
numerical experiments presented by us with mapping (1.4) substituting lzlel

for Aln|ly| show that the distribution F(1) has the form {(4.1) with exponent

> = 1.71 £ 0.11.
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Figure Captions

Equilibrium distribution function in a stochastic layer for ) = 9;
broken line - 107 iterations; circles - 4 x 105; curve (3.12) with

&=1/2, Cc=1.3.

Same as in Fig. 1, but at a different scale, straight line
corresponds to the curve of Fig. 1. Logarithms here and further on

have a decimal base.

Distribution of trajectory recurrences in a stochastic layer; J = 1
t+]f 3 {‘}; 5 {u}r 7 {*]; 10 {x}r 30 {ﬂjr 100 {[ ]}; Btraight line -

F(t) = 1//1

Function A(})), dots - numerical count, straight line - matching (A =

3'511¢061‘
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Fig, 3
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