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Abstract

A fairly generel phenomenon of the modulation diffusion
in a many-dimensional nonlinear oscillator system is cdemonstra-
ted numerically and treated analytically using a simple model
of two tveakly coupled nonlinear oscillators one of which iz _
driven by a quasiperiodic frequency modulated perturbation. The
modulation splits up the driv&ng resonance into a multijlec
which forms, under appropriate conditions, a narrow stochastic
layer. A far-reaching diffusion is spreading along this La,cr
due to the coupling between oscillatorse.

The modulation diffusion is similar in mechaniem tc the
Ar™nold diffusion elons the stochastic layer of a single nonline-
ar resonancc. Both are comparable in rate and exvected to te
dangerous for the motion stability of heavy particlec in colli-
ding bean facilities.

Report at the 9th International Conference on .onlinear
Oscillations, Kiev, 1981.



1« Introduction

As is well established by now the behaviour of classical
(non-quantal) dynamical systems may exhibit, under appropriate
conditions, a broad variety of statistical nroperties up to the
true randomness (see, e.g. Refs. /1'5/). In the latter limiting
case the motion admits a simple statistical description, and
is essentisally the relaxation to the microcanonical distributi-
on, for a closed (conservative) gystem, or some unbounded dif-
fusion in phase snace for the Hamiltonian system under an ex-
ternal regular perturbation. This sort of intrinsic stochasti-
city may be contrasted with the opposite limitiﬁg case of dyna-
mical evolution - the quasiperiodic (regular) motion - whose
structure i=s alsgo fairly simple.

In practical applications, however, one encounters, as a
rule, a much more complicated intermediate situation of the
so-called divided phase space /5/ which is generally a highly
intricate mosaic of regions with both the regular as well as
stochastic motions. A striking example is the so-called Arnold
diffusion which propagates over an everywhere dense set of very
narrow stochastic layers of rnonlinear resonances (Fig. 1). This
pecu.i:x example of a subtle Hamiltonian dynamics was already
discussed at one of the previous International Conference on
Honlinear Oscillations /6/ (see also Refs. /5,10,11/.

Here we are going to discuss another diffusion mechenism
in a meny-dimensional oscillator system /7,8/ which has been
called the modulation diffusion, and which is somewhat similar
to the Arnold diffusion. Particularly, both require more than
two degrees of freedom from topological arguments. The princi-
pal difference between the two mechanisms lies in the nature of
stochastic layers supporting the diffusion. In case of Arnold
diffusion the layers are formed on place of the unperturbed se-
paratrices of nonlinear resonances (Fig. 1) and, typically, are
exponentially narrow but inherent, or universal in that they
persigt under arbitrarily weak perturbation /5,9/.

The modulation stochastic layer, on the other hand, is the
result of resonance overlap within a multiplet produced by any
low frequency modulation in the system, either internal or



external. The layer width depends in this case not so much on
the perturbation but rather on the modulation factor and is
typically much broader as compared to a separatrix stochastic
layer (Fig. 1)« On the other hand, a finite perturbation is
now required to provide the overlap of multiplet resonances.
The rate of diffusion within a layer turns out to be comparab-
le in both cases, yet due to a substantially bigger width of
modulation stochastic layers the latter seem to be much more
dangerouse.

Both the modulation as well as Arnold diffusion may nlay
an important role in some applications to the dynamicael sys-
tems with negligible dissipation. An important exemple, which
is actually the main motivation for the present work, is the
nsroblem of particle motion stability in a storage ring of the
proton-antiproton colliding beam facility, a huge project which
ils sufficiently expensive to justify extensive studies of even
such neculiar and subtle effects as the Arnold and modulation
diffusion.

2. Motion spectrum in a modulation
' stochastic layer '

The spectral vroperties of motion in a stochastic layer
is the central problem in evaluation of the diffusion rate as
we shall see below. For a sufficiently narrow separatrix sto-
chastic layer (Aw’sv <K AW, see Fig. 1) this problem turns out
to be suprisingly simple since the motion within such a layer
is close to that along the unperturbed separatrix. Yet, for a
modulation stochastic layer that simplification is no longer
the case, and we are confronted with an interesting problem in
nonlinear dynanicse.

We have studied into this problem /8/ via numerical simu-
lation on a simnle model specified by the Hamiltonian:

H(¢,p,¢)= -%£+ k- Cos:(cp+l'(bstt) (2.1)

Here a%“ is the modulation frequency while modulation factor
Jb determinesg effective number of lines in the multiplet.

Under condition (see Refs. /5,12/):
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}{'Mz 2.5'5‘2~23m >1 (2.2)

where § is the resonance overlap parasmeter, a solid stochag-
tic component, or modulation stochastic layer, of width

Lawxn ZA W 5y (sg .A,) is formed within the multiplet-
For diffusion in the layer to be fast one more condition has
to be met /12/ ‘. 2

;wr, A'C‘)M 1 (243)
= 9% < >
$

The physical meaning of this condition relates to a different
representation of the perturbation in Eq. (2.1), namely, we
may consider not a multiplef of stationary resonances 95-.-. F =
= n wM (Izl integer) but rath:ar a single slowly moving
resonance Qo =, ft}::).wM-Sm wﬂt with phase oscilla-
tion frequency .Q.¢=\/E~ o Then multiple crosging of this reso-
nance takes place, and for diffusion to be fast the crossing
needs to be fast also which depends on dimensionless speed of
erossing- V.., In case of the slow crossing (V<1) the aiffu-
sion rate drops repidly with V, and the time interval Zp re-
quired for trajectory to reach across the layer (the layer
fill-up tiéne) becomes too large. Normally (V > 1 )y

Z, n(aw) k€ 112/,

We consider now an auxiliary dynamical variably Z repre-
senting another degree of freedom and obeying the evolution
equation

z =& Sen(p-wt) (2.4)
where (P(f) is determined by the motion of system (2.1);
¢ is'a perturbation parameter and W the frequency detune
between the two degrees of freedom. For a random ;p( z), due
%o stochastic motion in the layer, the variable Z (%) des-
cribes also a random process with the diffusion rate

£ t ,
D(w) = lin %?—)‘- i (az),=€ SSm(r(tfj-wt’)Jt (2.5)

t+oo 2

Note that .D(fd) is proportional to a Fourier component of
the correlation function for Sin ((¢) .
A numerical example of the dependence D(w) within g
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fairly big range of almost 30 (!) orders of magnitude is
shovm in FPige 2 in dimansionless varisbles & /4@

and DR= D-aw /é-:'2 « There are 1wo gualitatively diffe-
rent diffusion regions:

i) a resonance "nlateau" (|W]< 4w)with the highest and
roughly constant diffusion rate due to resonance at l;.): (&%

{ fy'?l < )swmwithin the layer);

11) the "non-resonant® region (|W|2Aa®) of exnonentially
slow diffusion. In the latter case the exact first order reso-
nance <p':: & is never reached, and the diffusion 1is caused
her: by second order resonances due to the motion high frequen-
cy "tail" in modulation stochastic layere In many applications
that slow diffusion under a high frequency »erturbation can
be comnletely neclected, as follows also from the simple ave-
raging method (see, cegey/13/)e Pige 2 shows that the accura-
cy of this method is fairly high. However, we are concerned
here just with those exceptional cases when even such tiny
effects may be of importance.

The diffusion rate in question can be roughly described
by the expressions /8/: '

%- W) < AW & AWy

’

Di® 9\ tus, -<(11-1)
20

(2.6)
; jwl] > A0

The constent rate (/2 ) on the pla*eau is readily obtained
from the normalization condition /8/

g .
\ D ()48 =7
R\Aaw/ A®

- 0o
assuming that main contribution to DR. comes from the resonan-
ce domain @ ¥ W . A n0re interesting second expression in
Eq. (2.6), shown in Fig. 2 by straight line, is semiempirical.
The average numerical value of the factor in exponent {KY =
= 6.21 £ 0.17 % LA . Liote, that the exponent in Eq. (2.6)
is close to that for the Arnold diffusion if in the latter
case one understands {AW as the width of the resonance in
frequency (see Fige 1) that is the width of frequency band
occupied by the resonance.



The coefficient (b s/g))in Eq. (2.6) hes been obtained
from the assumption that the rate)of correlation decay R ( z)
is asymptotically proportional to the KS-entropy h in modula-
tion stochastic layer .

R(?)-—* e i =c-kzc-_"ig_l”5 (2.7)

The last exprees:.on for }b was well confirmed by numerical
experiments, and numericel value of the factor e 472
(see Ref. /8/ for details).

As seen in Fige. 2 the estimate (2.6) does agree with nu-
merical data in order of magnitude, although one may notice
that, besides big fluctuations, the true dependence D (w)
is actually more complicated (see also Flg. 4 in Ref. /8/).

Since the dynamice of phase (%) is very compliceted and
largely unknown (especially at the layer edge, see Ref, /9/)
it is very important {o observe the diffusion in Z on g
l time-~scale much in excees of the layer fill-up time f (see
above, " is gection). Por data in Fig. 2 the ratio Z /L‘ ~ 3008

3_ s Numerical techni_guea

The main technical difficulty encountered in numerical
experiments was related to a very low diffusion rate to be com-
puted (see Fig. 2). To suppress the "background" (mainly due to
blg oscillations of freguency A W ) we applied a special ave-

reging of the diffusing quantity v (t}(=Z(t) for Eq.(2.5)k.

| t+ 4
v(t)—> "l'r:-.: S v(t)- g(—7——)t i 7 (3.1
t-F

Here T is the averaging period (typicelly 0.01 through O.1 of
the total motion time‘t,)and g (T) (il 1) a normalized weigh-
ting function. In the simplest case of g(e') - i/2 the numeri-
cal teclniques for computing a low diffusion rate was described
in detail in Refs. /5,11/. Since the suppresgion factor for an
oscillation in V(#) at frequenoy ¢o , that is a relative de~



crease in amplitude of this oecillation as a result of avera-
ring, is proportional to the Fourier cornonent of g(T), =2
sugotner 9'('0‘) seems to be more pref.rable. i convinient ty-

ne of %(’C’) s used in the oresent work, is as follows

o
gz (in*{).. oy, [ An+3 £n+3) ~oH* (3.2
(T)= 2:14-( y ({ ) N 2ae L+l a

®

»cculting in the suppregoion Taetor

Wl vl
,ﬁJﬂ""ﬁ % "h*r( ) 4”4"6.
(wT)™%
Hore r, jv ore ~amma ond Pesrel Tunctions, reapectivelys
TeT1 eee, and the laust euprescion in Ege (2e3) givas
R a ~ f ~ « . £
assyxntotiz bsheviour of S Tom wT ?_, nw while in tihe
ite 1itit (WT S4ve) 7extor S a2 1. The lutier ensu-
rouo thz:.‘u sverazinsg cocs not diostort the true difTugion widch
ctermined by a low frejuency band w1/l < Gy /T .
Zuriously, the apnroximaﬁc exnrescions in Eqee (7e2) and (2e3)

-

hold to the accurasy of a {ow »er cent even Tor R = Qe

Thug, a 'smooth! avera:iines does greatly inprove supressi-
on of the background although it increasczs, at the saue tine,
the boundary Tweguency of efficient sunnression ( w1l X # )
The numerical data in Pig. 2 have baen obtained using weighting
function {3.2) with M = obe. Residual background in this case
{3 lowest noints in Pige 2) ie determined by round-off errory
(56 bit mantissa).

Let us mention also that well above the background the
mcasured diffusion rate is only weakly dependent (within a fac-
tor of 2) on either averaging period or the total motion time.
e keep using that check-up to be sure of a diffusive nature
of the motion.

Another peculiarity of our numerical technigues is a spe-
cial procedure for numerical integration of motion equations
/6511/ which may bz called a Hamiltonian, or canonical procedu-
re since, being approximate to the Hamiltonien equations, it
eXactlx congerves, neverthelegs, the phese‘density, and decrea-
se, in this way, the accumulation of numerical errors.



Lo A oimple example of modulation
diffusion

For initial studies of the modulation diffusion we have
chosen a simple model described by the Haniltonian

2 4 2 4
H: (%+54-)+(%. -i—_)‘ff-)-/ux, Xo=€X, CbsC(Zt-bl:Sérz. &)Mt) (4.1)

The model represents two nonlinear ogcillators counled by a
small linezcr (in force) nerturbation with parameter /w<< CZ-‘-

( @, the oscillation amplitudes, ¢ = 1,2) and driven by a fre-
~uency modulated novturbati_gn with the mean frequency ..Q and
a small parameter € << @, . Without modulation ( A = 0) the
Gynamics of a closc model was studied in some detail in Refs.
/945511/, mainly, in respect to Arnold diffusion in the stochas-
tic layer of coupling resonance W, = &g ( W, = fa,

(,34: 0.85) are the unverturbed frequencies ( M=€=0)). Here
we congider a different nroblem, nsmely, diffusion in a modula-
tion stc¢ astic layer of driving resonance W, = Q.

The unpeﬂturbed motion is described by (see, e«ge, Ref. /5/)

X, (t) C’os[(z?«"“'f)fd Z]

a, (osf. (4.2

The driving perturbation (€ ) results in formation of a modula-
tion stochasgtic layer with a short fill-up time provided (comp.
EO_,B— (202) and (203)3

~ 2 E‘_—
KM”ﬁP,/}Ca- z > 1

+ “Om

(4.3)
vz& }uaqw:x ,’332——“ >i |
x,

ﬁ"’ &
The coupling term (a) leads then to a diffusion along the
driving resonance 5

Evaluation of this diffusion rate in a,_e(or G,) can be
performed (see Ref. /8/) using the equation

.
e el o



- _ 1 dw £
Wy = I"a—i z-,g-/u.g:i. Sin (6,- w,t) (4443

where we have set, approximately, 63 ~ Cdzt , taken only the
first term in series (4.2) for Xz (see below) and neglected
the nonresonant tern Sci (9,+co2t). Now, if we put

6, v 6t + P the latter Eq. (4.4) becomes of the form of

Eq. (2.4) with the detune &V = QWg= &, while 50(#} is determi-
ned by the motion in mcdulation stochastic layer arouné reso-
nance 6),:.(2. Provided /u ig sufficiently small

(/V\<< E/CZZ ) the latter motion is nearly independent from
the diffusion in w s and we apply the results of Section 2
(see Eq. (2.6)) to arrive at

Du)~ -'f— (w‘) ;1@ @] < Awy
W,
A l" ( )2 2?‘{“ (4-—_ 1], | ) > A @,

where the superscr;\.pt indicates that only the first term in
(4.2) is kept.

(4.5)

The diffusion along resonance &J, = _Q. driven by the cou-

pling can be regarded also as the "stochasticity pumping" from
one degree of freedom into another. That graphic picture of the
diffusion in a stochastic layer has been developed in Ref. /10/,
and had been mentioned briefly in Ref. /14/. The so-called
"thick layer diffusion'" studied in Ref. /10/ is similar in
mechanism to the modulation diffusion on the plateau (first
expression in Ege. (4.5)).

An example of the dependence DU (w.g/wz) as revealed
by a series of preliminary numerical experiments is shown

in Fige. 3 (circles). The first 3 numerical points do resemble
the exponential dependence in Eq. (4.5). Yet, for a larger

)y, /w,g_ the diffusion rate behaves in a much more complica-
ted way. We have guessed that it can be explained by the influ-
ence of higher coupling resonances (W,=mw,; M= 2q,+ {4 )
corresponding to harmonics of the unperturbed motion (4.2) even

10



though they appean, at the first glance, negligible.

The diffusion rate caused by m-th harmonic is readily
obtained from Eqs. (4.2) and (4.5)

(m) (1) 4
D ) ( ) m (446)
M’ 93"
Assuming the effect of dlfferent coupling resonances to be
independent and summing up DQ we arrive at the theoreti-

cal dependence Dw (w,/ wg) plotted in Fige 3 by solid
line. The firat 3 resonances are clearly seen with their
plateaus and exponential "tails". Accordance between theory
end numerical data remains fairly good up to W,/ Wg 9 ,
and still persists, in order of magnitude, even up to

W,/ we 22 {5 « Here, apparently, the approximation
Xe o Ay Cos g% » used ebove, does no longer hold since

WALA _//.q. _534_)3~ 0.3
az, /4 al AN ~ U.

The nature of a would-be plateum at (w,/wz)ﬂfremains thus
far unknown, and requires further studies. Let us mention,
however, that in this region the measured diffusion rate off
the layer (co,-Q. ~ 3.XCJM ) drops by, at least, 4 or-
ders of magnitude. It would mean that the background level is
much lower as compared to the diffusion rate even at
(Wi /W) > 15 . For a typical f.' = 10® the rattio

f,,,/ £y ~ 30 is fairly big (see Section 2), and over the
whole range 1 € (©,/@W3)< 24 the diffusion rate is nearly
independent (within a factor of 2) on either '’ or t," « On
the other hand, the change of CO4/C«-’2 due to diffusion is
less than 0.05 for t = 106, go Fige. 3 represents a truely
local dependence (04/6\))-

In conclusion we would like. to emphasize importance of
the modulation diffusion for the dynamics of many-dimensional
Hamiltonian systems.

11
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Fig. 1. Qutline of a resonance structure: W, W, ave the basic unperturbed frequencies;

A1, @y << Gy,¢ modulation factor and frequency. M is enlarged section
of a driving resonahce without modulation: AW and AW, ~ AW: eXP(~TwW/AQ )
the width of the resonance and its stochastic layer (shaded), «w being detune
(see text); M 1is the same for a driving resonance split up into multiplet under
modulation.



Figo
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o, Diffueion rate D(®W) along a modulation stochas-

tic layer for model (2.1): =D-Aw/e® ;
A= 10; Wu, = 0015 AW = 0413 (empirical);
k=5zx10""% ¢, = 10°; S®_4; K240 VN 2.
The averaging period T = 1093 n = 6 (3.2)e
The logarithm here and below is decimal.
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Pig. 3. An example of modulation giffusion in model (4.1): owaowmm are numerical data;
;) €
?

solid line shows the theory (4.5,6); @y = 0e2; = 10~
A = 10; Wy = 0.002; E = 10658 % 3.5; K Ruo:\m\\

- 10-5; SL = 0.169;
™" M s T = 107 n =4 (3.2).



