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INTRODUCTION

The Yang-Mills (YM) gauge fields were introduced’
for an isotopic-invariant deseription of strong interac-
tions. Currently they find wider application in elemen-
tary particle theory. Therefore investigation of their
properties and in particular their dvnamics remains an
interesting and important problem. The study of clas-
sical YM fields, apart from general knowledge of their
properties and applications in several problems of
quantization,® is of special interest in connection with
the fact that essentially nonlinear processes in these
fields lie in the quasi-classical domain of usual (pseu-
do-Euclidean) or Euclidean (imaginary time) space-
time. In the latter case classical solutions descrihe
strong vacuum fluctuations of the YM flelds™™™. The es-
sential nonlinearity of these fields leads to very inter-
esting and unusual dynamics but at the same time signi-
ficantly hinders its study. In the circumstances it is
natural to turn to simple models which can clarify those
or other properties of YM fields.

An important class of models was introduced and
studied by Matinyan and collaborators.*® In these mod-
els the field depends only on time, and we will call
them homogeneous models (HM). A considerable sim-
plification of the problem is attained here owing to the
finite dimensions of the model, the number of degrees
of freedom of which ¥=3(n*=1) is determined by the
symmetry group 5U{x). The number of different fields
{colors) in a multiplet (n* = 1) determines the dimen-
sions of the internal space of YM fields. HM provide in
“pure form" the internal dynamics of YM fields. In the
general case this dynamics turns out to be chaotic (sto-
chastic) or random (for classical YM fields).”™ The
present work is basically devoted to the study of it.
Below we restrict ourselves to the simplest but non-
trivial case of the group S012) and will consider almost
exclusively free (without sources) YM fields.

1. HOMOGENEOUS MODELS OF YM FIELDS

It is of course possible to consider a homogeneous
model simply as a very special limiting case of YM
fields. It is useful, however, in such situations to
imagine that the HM approximately correspond to more
realistic inhomogeneous fields. For the group 50(2) the
internal space of the field is three-dimensional and
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every external'’ component of the field (potential) is
represented by the internal vector & (1=0,1,2,3) or
egquivalently every internal component is described by
an external (usual) 4-vector A*(a=1,2,3). Correspond.
ingly every external component of the tensor field (in-
tensity) is an internal vector (F=c=1)

Fo=a A=A, T A XA, (1.1)

Let us write the YM Lagrangian field density with a
source in the form'®

FL=E A~ (B +B) )+ A=A, C, (1.2)

where the Latin indices run over the values 1,2, 3.
Here the “electric” fields

EemA i A+ A0 A, (1.3)

play the role of canonical momenta conjugate to the co-

ordinates A,; the "magnetic” field is B,= z¢,,,F,,. and
the vector C is
C=0,E+jy=dEvt A XE + =0 (1.4)

The last equality follows, for example, from the fact
that the term A, C can be removed by a gauge transfor-
mation (A,=0). The equation C =0 expresses (general-
ized to YM fields) the Coulomg law, which does not
have the character of equations of motion for the field.
It is possible to consider the equation C=0 as a con-
straint.'” However, for our purposes it is convenient
(and natural) to interpret equation (1.4) as a conserva-
tion law differing from the usual ones only in that the
value of this integral of motion is {ixed (a restriction on
the initial conditions),* Explicit elimination of an inte-
gral of the equations of motion is not obligatory and is
even undesirable (in any case in so far as this concerns
classical fields), since reduced phase space (the inte-
gral manifold), as well as the Hamiltonian on it, can
prove to be exceedingly complicated.'™'* In addition,
the symmetry of the original system would be lost,
which would hinder the qualitative analysis of its dy-
namics.

In the following it will be convenient for us to use 2
gauge where A =0, Then E,=A, (1.3), and the Hamil-
tonian density (j_ =0) is
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H{Ey A ="1,E0 +, Elﬁﬂ.ﬁr—ﬂ.ﬂu} FAKALY,
Wl

(1.5)
.re we have made the substitutions #?H-H and /g

‘or &,~0, the Hamiltonian {1.5) describes a linear
item of plane waves, weakly coupled by the nonlinear
‘turbation A, *A,. In the opposite case (9,=0) we get
HM, which describes, in this way, the internal non-
ear dynamics locally with respect to external space.
e approximation of HM corresponds to long waves (A)
d strong fields: AA=1 or in 2 more descriptive

‘m

raglel, (1.6)

ere #, is the density of the (massless) quanta of YM
lds. ‘

Che Hamiltonian of the HM has the form®’

Hrm"1a80 1A = (B 1 L AT AN, (1.7)
| the basis of isotropy of both external and internal
ace (the potential energy depends only on the angles
tween the vectors A® or A,) two “moments” are con-
rved:

M=A"%E =const, M,=A,%E, =0 1.8)
1e last expression is a special case of the general re-
tion (1.4) for j,=0 and 8,=0. We notice that for a YM
:ld with sources, M,=-j,#0. U, in addition, j,=0,
en the Hamiltonian (1.7) and consequently the equa-
ons of motion are not changed. We note that HM do

it describe charged states of free YM fields for which
%0 [see (1.4)].

The Hamiltonian (1.7) is symmetric also with respect
) the transposition of the matrices A}, i.e., relative to
ternal and external subspaces of the field. In so far

3 the Hamiltonian is an even function of the quantities
1. there exist (particular) symmetric and antisymmet-
ie solutions (fields). In the first case A7=Al Le., the
iatrix is symmetric and by a rotation of the coordinate
xes it is possible to bring it to diagonal form. For a
ree YM field M =M, =0 in this case, [rom which it fol-
yws that the principal axes of the matrix A} are {ixed
nd the Hamiltonian (1.7) takes on the simple form

B B+ B Ea () () B L ad 1] (1.9)

“his system has a total of three degrees of freedom.

[n the antisymmetric case (A}= -A}), it is possible by

rotation of coordinate axes to eliminate two of the
hree independent elements of the matrix AL, For ex-
imple, let A'= —A%= A; then the Hamiltonian (1.7) takes
he form

H=Er+0 A0, (1.10)
.e., only one degree of freedom remains.

Another class of HM, also introduced and investigated
n Ref. 8, is obtained by calculation of the gauge inter-
iction of the YM field with a Higgs field. In the last
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case there arise in the Hamiltonian (1.7) (mass) terms
guadratic in A:

TR PO STl I (1,11}

It is essential that on the basis of the isotropy of in-
ternal space the additional potential energy is also
spherically symmetric. Therefore, as before, M,=0
and the transposition symmetry of the matrix A} is con-
served. Generally speaking, in addition, there arises
an additional degree of [reedom corresponding to the
dynamics of the Higgs field itsell. Below we restrict
ourselves only to models (1.11) which desecribe the in-
teraction of YM fields with a Higgs vacuum.

2. LOCAL INSTABILITY OF MOTION AND CHAOS

Among the “simple” HM mentioned in the previous
section only the dynamics of the system (1.10) turns out
actually to be simple, even simpler than could be ex-
pected in the case of a strongly nonlinear equation of
motion, namely*?

(2.1)

AT A e =10L90 cos sl +2~" oos St ..,

ie., the oscillations are almost harmonic although
their frequency w=0.804_,, depends substantially on the
amplitude. Such a solution of the motion for YM [lelds
was considered in Refs, 6 and 7.

The dynamies of the remaining HM with more than
one degree of freedom turn out, generally speaking, to
be very complicated and in some sense extremely com -
plicated. The mechanism of this complexity is connec-
ted with the strong local instability of the trajectories,
characteristic of nonlinear oscillations in general and
of classical YM fields in particular. Let us illustrate
this using the example of model (1.9) in the particular
case where A, =0. The eguations of motion have the
form

A==, (2.2)

. 1
Ay=—=alyils.

Let AJ(t) be some solution of this system. Let us con-
sider the behavior of the nearby trajectories in the lin-
ear approximation. Assuming A, =A7(f) +a, we obtain
the linearized equation for a(f):

dym— Ay (8] Para=2A5 (8- Ay (2] -y,
(2.3)

We introduce the “"distance” between nearby trajector-
ies in phase space

dymmem [ A7 (1) Paa=241 (1) - Ag (80 2y

pr=a: tay Hibs iy (2.4
and consider the guantity
Inlpie)/pl0) ]
o iy ===, (2.5)

which is called the Liapunov exponent and generalizes
the corresponding conecept for periodic trajectories
ANY). On the basis of the ergodic theorem of Birkhoff
and Khinchine {see, [or example, Ref. 14) this limit al-
ways exists but depends, in general, on initial condi-
tions both in phase space (4,4, and in the tangent
space La,,:i{:l. From the linearity of Eqs. (2.3) it fol-
lows that there are 2N Liapunov exponents (A;) and their
corresponding characteristic directions in the tangent
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space. From conservation of phase volume 7 4,=0, but
from time reversal it follows that all the &, are divided
into pairs A'* | such that for each pair, A% + A™ =0(k
=1,....4). For a closed system with only the energy
integral, the trajectory lies completely on a (2N - 1)-
dimensional energy surface. One of the characteristic
directions on this surface corresponds to a displace-
ment along a trajectory associated with A=0. In this
way, the number of positive A, >0 does not exceed N
=1, and ¥=2 is already sufficient for an exponential,
local instability of the motion. Example (2.2) has ex-
actly the minimum dimensions.

The quantity A does not depend on the inital conditions
in the basic phase space in the range of each of the er-
godic components of motion into which all phase space
is divided for any dynamical system with an integral
invariant. An ergodic component can envelope both the
whole energy shell (for a closed system)—this is er-
godicity in the usual sense from which comes the
term —and (in the other extreme case) only, for exam-
ple, a periodic trajectory. In any case the trajectory
(chaotic or regular) is uniformly distributed over the
whole ergodic component, i.e., the average time of oc-
cupation of 2 system in any element of an ergodic com-
ponent is proportional to the invariant (conserved during
the motion) measure of that element (ergodic theorem
of Birkhoff and Khinchine). For Hamiltonian systems
the phase volume is an invariant measure (Liouville’s
theorem) and in the presence of integrals of motion ([,)
the induced (on the integral shell) measure is

dp= H-ﬁ (h=iydr, {2.8)

where the [} are the values of the integrals fixing the
integral shell, and dI is the total phase-volume ele-
ment. We note that 4 is proportional to the volume of a
narrow ‘tube” in phase space given by dl,.

The Liapunov exponent determines one of the most
important characteristics of motion, the metric en-
tropy'*: h=ZA, (A, >0). In numerical modeling it is
simplest when the maximum exponent occurs because
the initial tangent vector (a,,a,) can be chosen arbitrar-
ily without bothering to search among the characteristic
directions. For A_, >0 in practice any initial vector
will quickly approach the characteristic direction with
A=A_,,. Onthe other hand the knowledge of A_,, is suf-
ficient because it is essentially not the exact value &,
but the fact that k=a_, >0, i.e., the fact that the tra-
jectories have an exponential, local, instability. For
the example (2.2) considered, h=h_,,.

The significance of the quantity k lies, above all, in
the fact that according to the modern theory of dynami-
cal systems the condition k>0 is necessary and suffi-
cient to have a probability of almost all trajectories."*
Obviously this is related to the fact that the concept of
a trajectory loses meaning in the conditions of strong,
local instability of motion; thus we speak of the absence
of unstable equilibrium states. [ the point of view is
ralsed to a more formal level, then it is possible to
understand more deeply the nature of this curious phe-
nomena of dynamic probability., Namely, we will as-
sume that the system moves strictly according to the
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determined trajectory completely given by the initial
conditions. Then, with exponential, local instability,
the trajectory will, in the course of time, essentially
depend more and more on the fine details of the exactly
given initial conditions, details of which for stable mao.
tion can be completely neglected. Consequently, the
source of randomness is imbedded in the initial condi-
tions of motion, while the role of a strietly dynamical
system is only to guarantee local instability. In such a
capacity a dynamical system can be very simple, a fact
appearing paradoxical even to the present day. The
argument here that almost all initial conditions corre.
spond precisely to random motion is nontrivial. Cleap.
ly, it is possible to present this as follows: any regu-
larities of a trajectory seldom shrink in size from the
corresponding initial conditions. A popular exposition
of these questions can be found in Ref, 16,

Besides the fundamental meaning for the dynamics of
systems, local instability appears to be the most con.
venient criterion of dynamical chaos (or its absence)
for numerical models. Namely, there was the discov-
ery'” of the so-called Toda lattice, a strongly nonlinear
multidimensional svstem of coupled oseillators.

A practical caleulations of A,  is carried out by
means of & combined numerical integration of the fun-
damental Eq. (2.2) and the linearized Eq. (2.3). In order
to avold too large values of p it is necessary periodical-
ly to shorten the length of the tangent vector without
changing its direction. A different method consists of
integrating directly two very nearby trajectories of the
system (2.2) also with a periodic reduction of the dis-
tance between them.

One should bear in mind that for quasi-periodic mo-
tion (a completely integrable system) local instability
still arises at the expense of a dependence of frequen-
cies on the initial conditions although at the same time
p=t{on the average) (see, for example, Ref. 18). In
the limit {== Ax=h=0, but it is necessary to continue
a numerical calculation sufficiently long in time to dis-
tinguish. with confidence, an exponential from a linear
dependence. From this it also follows that the conclu-
sion that chaos of motion is present is more reliable
than that it is absent (h can turn out to be too small).

3. MASSLESS YM FIELDS

We shall begin with the model (1.9) with &= 3 (degrees
of freedom), in which chaos turns out to be simpler
than in the particular case® A =0 (N¥=2). On the basis
of the homogeneity of the potential energy a change of
the quantity # results in a change of the time scale, !
= H™/* in particular A= H'/%, In the given case the
energy shell A = const is five-dimensional [both mo-
menta (1.8) are exactly equal to zero], so that h can
exceed the maximum Liapunov exponent,

Numerical modeling shows® that the limit in (2.5) I8
attained suificiently fast (after times ~10°), and the
spread of values of AH ™/ for individual trajectories 18
relatively small: (WH /%) =0.38£0.04 (for 22 trajector-
ies with randomly chosen initial conditions), so that
this argues for the existence of a single chaotic compod-
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pent of motion on every energj; shell.

Let ug consider some special trajectories. Let, for
example, A,=A,=A.=A,=0. Such initial conditions
cocrespond to uniform motion along the A, axis and
constant £..” Let us consider the nearby trajectory 4,2
= A+ A =A% The Hamiltonian (1.9) agsumes the
form

Ha\ (B HEI+AIAD) = LBl + 4] .. (3.1}

The last expression is correct in the adiabatic approx-
imation when the transverse action J, = H /A, = const
(the longitudinal coordinate A, plays the role here of
the variable irequency of transverse motion). From
(3.1} it is clear that for any « >0 a reflection of the
trajectory occurs when A, =4 =H/J,, After a reflec-
tion 4, = A, —J,¢*/2 and the adiabatic condition |A|= A*
is violated when 4, = (4,4 )2~ 4% As a conse-
quence of that, J, substantially changes, and the trajec-
tory is found to be chaotic. In this way, uniform motion
along any of the axes turns out to be unstable, although
the development time of the instability (T=VA_/J,~1/
A)) grows indefinitely as 4, = 0.

Cophasal oscillations A (f)= A ¢) = A1) form another
particular trajectory.®’ As shown in Ref. 8, these os-
cillations are stable, the mechanism of stability turning
out to be extremely peculiar, Small transverse oscilla-
tions in a neighborhood of a periodic solution are
strongly nonlinear, and their {requency tends to zero
with a decrease of their amplitude. The region of sta-
bility is very small and has, apparently, a complicated
form.

Let us turn now to the case N=2 (A, =20). Just this
model was studied numerically in Ref. 7, where the
first data were obtained indicating chaotic motion (see
also Ref. 8). According to our data,’ the motion here is
also locally unstable; however, we [ailed to obtain a
definite numerical value of the entropy = because of
strong fluctuations and the poor convergence of the ex-
pression (2.5). This is explained by the fact that the in-
variant measure (2.6) diverges on the energy shell. In
fact

pa=2n j&iE*—EH‘+A.'.'i.'JEdE dd, dd,

__.IJ’

EPENEEE

dA, dA, = BaV 2H° |n A == (3.2)

The divergence of the measure shows that for an over-
whelming fraction of time a chaotic trajectory lies in
regions with |4, —=. Any distribution function will
“recede” in the course of time further and further along
the 4, and A, axes, and its density decreases indefi-
nitely at any point on the energy shell.

On the other hand for a sufficiently large (or small)
ratio |A,/A,| there is, as in the case N=3, an addi-
tional integral of motion, which is the action J,=H,/A,,
where 2H,= E,* +(4,4,)%, and we have assumed for def-
initeness that A,> |A,|. Therefore in these regions the
motion is regular and, in particular, exponential, local
instability is absent. The latter occurs only in the non-
adiabatic region |4, |= H'Y*, the measure of which y,
~H'Y? s finite. From this for (==
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; ™ HY H%

S S

e (3.3)

Here the connection between A and { is obtained from an
estimate of the rate of diffusion with respect to A: D,

= aA)®/t~AVH, from which A~ VAL

Although with respect to A the motion considered is
infinite, the field intensities B, =A,4,, E,=A,, and E,
=A, remain finite from conservation of energy. More-
over, the successive magnitudes 8, ~ E,~ E, even if,
say, A,==. However, at the same time, the frequency
of oscillations of 4, and B, grows indefinitely, and the
frequency of A, decreases in such a way that the prod-
uct of the frequencies remains unchanged, - ¥

For N =3 the invariant measure of the energy shell is
finite, although the shell is not closed, iLe., its “size"
with respect to 4, is not bounded. To be convinced of
this we shall calculate the measure on one of the six
“tubes" running off to infinity (A,*= A,®):

- =4
pldyAd) = I.’if el = I—A—,I——" 1]

for A==_ Therefore a1 the given case there is the usu-
al relaxation to the equilibrium distribution with a non-
zero density.

There is still one curious feature of the model (1.9)
for N=2 related to the initial conditions of motion. For
a complete determination of the trajectory it is neces-
sary to give the four quantities 4,, 4,, A,, and 4,. Al-
though in the problem there are four components of the
stress tensor, the sum of two of them is exactly equal
to zero in view of the antisymmetry of the tensor: F,
= -F,,=8,. Consequently, in contrast to linear fields,
specifying the tensor F_,, generally speaking, still
does not determine completely either the state of the
nonlinear field or its dynamics. The first example of a
similar nonunigueness was constructed in Ref. 19 (see
also Ref. 20). In our case it is necessary in addition to
give the ratio A4,/4,. A change of this ratio results in
different dynamics not equivalent to a gauge transfor-
mation. W, for example, A,=A, and E,=E,=0, the mo-
tion will be periodic (although unstable), while for A,
#A4, with B, =4, 4, the motion becomes chaotic. [nstead
of the ratio A,/A, it is possible to give E, or £, or fi-
nally their ratio E,/E,, If B, i5 given then, generally
speaking, either two values or no value of A,/A, is ob-
tained.

There is a curious feature of the initial conditions in
the case N=3 as well. Let us assume B,=4,4,, B,
=AA,, and B,=A A, from which (5, # 0) we have

ara B e BBe  al BB

E, B, o (3.4)

For given 8, the field can be found in two states differ-
ing by a change of sign of all the A,. If, in addition, E,
=A, #0, then the motion of the two initial states will be
different (one trajectory is obtained from the other by

f= —tand A,— -A,]. On the other hand the components
B, cannot be given arbitrarily but must satisiy the con-
dition B, B, B, = 0 from (3.4), whereupon in the case of

equality at least two components B, must be zero. It is
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possible to show that a similar restriction survives in
the case of arbitrary vectors B,

4. MASSIVE YM FIELDS

Let us consider an HM of a YM field with mass in the
simplest nontrivial case ¥=2 degrees of freedom.” The
Hamiltonian (1.9) with the addition (1.11) has the form
(w=1)

He=t/ (EX+EI AT +AT +47141). 4.1)

It is clear that for A,> 1 the guadratic terms are un-
important (at least in the first approximation; see be-
low), and we return to the case of a massless field,
ie., to chaotic motion (Seec. 3). For 4,<1 it would ap-
pear possible to neglect the weak nonlinear coupling and
to expect stable, regular oscillations. These simple
considerations were expressed and verified by a nu-
merical modeling of the system (4.1) in Ref. 8. Below
we shall consider the dynamics of this model in more
detail. Let us begin with the case f/<<1. Let us pass
to an alternative action, the phase of the nonperturbed
system (linear oscillations):

Ay=VEL coall, Ey==VIF, sinth, k=1, 2.

The Hamiltonian (4.1) assumes the form
He=l 1400 0 [ 1+ o0s 20, 4+cos 20,
4/, cos (20,+28,) +; cos 2(8,—8,) ], (4.2)

Perturbation terms depending on the phases are divided
into two groups: high-frequency (w= 2) or nonreso-
nance (the first three terms) and low -frequency or res-
aonance (the last term, the unperturbed frequency of
which is zero). It is clear that just the resonance per-
turbation will mainly determine the dynamics of the
system. Therefore in the first approximation we shall
discard all nonresonance terms (the so-called averag-
ing method®). Inthe averaged system there remains a
single resonance term of the perturbation, or briefly,
a single resonance, In this case the system is always
completely integrable, and its motion is quasi-periodic
{see, for example, Ref. 13). This is related to the or-
iginal resonance integral because one resonance always
depends on a specific combination of phases which re-
sults in a symmetry of the perturbation. In the given
case, for example, the Hamiltonian does not depend on
a displacement of the two phases, and as a result of
that the unperturbed energy %=1, + I, is conserved.
Since the total Hamiltonian is also conserved, their
difference is also conserved, i.e., the perturbation V
= -H"

We shall introduce a canonical transformation which
leads to the variables J,=H° and ¢,=2(8,-48,). Then
w,=8,, J,=1,/2, and the averaged or resonance Ham-
iltonian is

Homd LU0 =20 (14 cos qud. (4.3)

Since o, = const. the phase-space curves are determined
by the ratio

g av
P{1-P) {1+ nmw:—w-v- (4.4)

where P=2J,/H" and 0= P=1. Typical phase-space
curves are displayed in Fig. 1. In the original vari-
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FIG. 1. Typlical phase-space curves of model (4.3): 1—
stable periodic trajectory, 2—unstable periodic trajectory,
J—quasi-pericdic trajectories inside a resonance (oscillation
of the phase @), 4—rotation of the phase; the dashed line ig
the separatrix bounding the resonance region.

ables they turn into the curves in Fig. 1 of Ref. 8. Per.
iodic trajectories of the system correspond to ¢=0, ¢
(for this @, =8 =H"). The first of them is stable (the
frequency of small oscillations is w,= vV3/BH =0, 61HY,
but the second is unstable and determines the separa-
trix of the resonance on which the oscillations J, are
maximum (J3%/J 2% =(1+v273)/(1 -v2/3)=10). This
last ratio shows that the effect of a weak nonlinear per-
turbation (exchange of energies between degrees of
freedom) is always large and does not depend on H=0,
This iz related to the isochronism of unperturbed osell-
lations {for linear coupling the exchange of energy
would be total).

The effect of the discarded nonresonance harmonics
of the perturbation is twofold. On the one hand they
cause high-frequency oscillations of the integrals of the
averaged system J,, V. The amplitude of these oscilla-
tions |aV/V|~H"=0; they do not change the character
of the motion and could be eliminated in principle,
since they do not depend on the time of change of vari-
ables (see, for example, Ref. 13).

On the other hand a “nonresonant” interaction can
cause resonances with high harmonics of the frequency
wy, The amplitude of the latter grows with approach
to the separatrix (Fig. 1). As a result a stochastic lay-
er forms around the separatrix, the relative width of
which is ~exp( -t/ w,), where b~ 1 (for a detailed inves-
tigation of this phenomenon in a similar model see Ref.
13). With an inerease of w, the width of the stochastic
layer grows fast and for w,= 1 (4= 1) the chaotic com-
ponent of motion spreads to a large part of the energy
shell. The critical value ., = 6.7 introduced in Ref. 8
corresponds to a resonance with a fourth harmonic of
unperturbed oscillations [the term cos(26, + 26,)
=cos(g +48,)= lg cos(48, — wt+a)]. In any case the
quantity #,, is a matter of convention, since the size of
the chaotic component depends continuously on A.

For H>»1 the motion is chaotic, as it is for massleﬁlﬁ-
YM fields.” However, there are interesting perculiari-
ties. First of all the energy shells are closed and have
finite measure, and this means an entropy h>0 (see
Sec. 3). An estimate of its dependence on energy can
be obtained for H>>1 in the following way. From (4.1)
the maximum value of the field is A, =v2H, Substitut-
ing this value into (3.3), we find

(4.5)
h~f"/1n H.
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Further, the motion along each of the axes will now
pe periodie: A,=4A,cost. The stability of this solution
in the linear approximation is determined by the Math-
jeu equation A=A

(4.6

for # 1 the stable and unstable intervals of f have
agpproximately the same width (see, for example, Ref.
23). The centers of the intervals are given by the ap-
proximate relations

A+ {15+ cos 21 A =11

oo =0t (a4 =1, Hynes =" =1,

where n>1 is an integer.

In this way, the mass terms in the Hamiltonian [1.11)
| actually stabilize the motion, so that for # -0 the cha-
| gtic component is preserved only in an exponentially

| parrow layer around the separatrix. However, the sit-
| pation changes fundamentally with an increase in the
pember of degrees of freedom. Let us consider, for
gxample, the model (1.9) with the mass addition (1.11}
put for N=3,

Passing to the action-angle variable as for the case
N=2, we arrive at the averaged Hamiltonian

H.=1+L+f+4V,
V=t [ 14, cos 208, =0y} |+ 5[ 14" eos 200,=1,] ]

: (4.7)
F0E (14 cos 200,841 ],

The principal peculiarity of this model is the presence
of, not one [as in (4.2)], but three resonances which are
preserved for H—0. For complete integrability of the
gystem two additional integrals are now needed. Nev-
ertheless, (4.7) contains two linearly independent com-
" binations of phases, so that there is only one cyclie
combination of phases and correspondingly only one ad-
ditional integral H°=], +I,+I,. Inthese conditions one
. can expect a sizeable chaotie component of motion for
any H—=0, Moreover, as for N=2, the structure of the
phase space generally does not depend on the quantity
H, which determines only the time scale. Actually,
thanks to the integral #°=const the system can be re-
duced to two degrees of freedom. Then if we carry the
seale transformation of time H% -t and pass to the can-
onical variables

- pe=200, =0, =20 =8,),

(4.8)
Ji=I 0 J=f 0B
the Hamiltonian of the reduced system assumes the
i form
Hup=d (=0 —d:) (14" cas )
ol (= d =0} (115 com ) HAS (14 cos Cp—ipa) )

and does not depend on the energy of the initial system
H=f" T1f the motion of this system is chaotic, then
wniversal chaos in the initial system will be preserved
for any weak nonlinear perturbation. This beautiful
phenomenon was discovered and investigated in Ref. 23
ina similar model. We remark that the KAM (Kolomo-
gorov-Arnold-Moser) theory is inapplicable in this
tase, since the unperturbed system (linear oscillator)
i8 ispehronous, ™

(4.9)

The investigation of the dynamics of the system (4.8}
Was carried out by means of numerical modeling. The
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accuracy of the conservation of the integral Hy Is in the
interval from 107 to 107 and does not influence the
characteristica of the system.

In the process of the numerical solution of the egua-
tions of motion (over the interval ¢~ 10% by the method
of two nearby trajectories (See. 2) we determined the
entropy hp, which is related to the entropy of the initial
system by h=hzH. Numerical experiments showed that
in the system there is a chaoite component, but the
quantity ki characterizing depends on the value of the
integral H,. The maximum value AF**= 0,15 is attained
for Hp=0.3. It is possible for the quantity Ay to as-
sume & value in the interval 0= A=, which follows
from (4.9) and the positivity of the action I,

For the approach of H to its extreme values, hj de-
creases. For example, hi,=0.082 for H,=0.18 and hy
=0.026 for H,=0.40,

For a graphic representation of the picture of motion
it is possible to draw a two-dimensional Poinearé cross
section of the three dimensional energy shell of the
system (4.9) if some additional condition is imposed on
the dynamical variables {see, for example Ref. 23)., We
used the condition ¢, = ¢, for which the picture of mo-
tion will by symmetrical relative to J, and J,. In these
variables the surface of the cross section is repre-
sented by an equilateral triangle, since H=1 +[,+1,
=¢const and [,>0. Let us change to the rectangular co-
ordinates

X=fy 1+ di=d), Y= 03(1—d— 1), (4.10)

The energetically accessible region of motion is rep-
resented by the intersection of the region inside the
circle

r_.:rl—

N

L

FIG. 2. Surface of the Poincare cross section for the aystem
14,9); Hp=0.404. The pleture of motion is symmetric rela-
tive to a vertical line., The center of the triangle coincides
with the center of the circle, which bounds the energetically
allowable region of motion. The irregularly distributed polnts
belong to one chaotic trajectory; k= 0. 026,
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(x-5) +(r-5) =13 =Ly
and the region outside the ellipse
() (e 2y (4.12)

(see Fig. 3}.

In Fig. 2 the example of the picture of motion for Hy
=0.404 is produced. The continuous eircle corresponds
to (4.11), but the points are from a numerical calcula-
tion of four different trajectories. Three of these for
which the points lie on a smooth curve correspond to
quasi-periodic motion, i.e,, there exists yet one addi-
tional integral for them. The remaining irregularly
distributed points belong to the chaotie trajectory which
approximately envelopes the whole chaotic component of
motion (%= 0.026).

Let us turn our attention to the considerable variation
of the density of points of the chaotic trajectory. This
shows the strong nonuniformity of the invariant mea-
sure on the surface of the cross section.

Another example of a picture of motion is given in
Fig. 3. The relative area of the chaotic component
reaches a maximum for H,=0.3 (as does k) and de-
creases for Hy—1/2 and H;— 0. Inthe latter case the
possible region of motion is divided into three portions
near the angles of the triangle which are not connected
among themselves.

Some average statistical characteristics of the cha-
otic component of the initial model (1.9) and (1.11) for
H=10 can be obtained in the following way. Let us take
the group of trajectories, the initial conditions of which
are distributed randomly and uniformly in a layer of
phase space of thickness AaH with an average value #°
<<1. We calculate the entropy for each of these trajec-
tories. Then let 5 be the ratio of the number of trajec-
tories with >0 to the total number of trajectories,
which is equal (approximately) to the relative size of

L

FIG. 3. Same as in Fig. 2; Hg=0.324, hg=

i
=
i
i
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-

7 hy O.1F

FIG. 4, Histogram of distribution of entropy hg=h/H for the
model of {1.9) and (1,11) with H< 1; n {8 the number of tra-
jectories with kg in the corresponding interval.

the chaotic component on the energy shell (#—0),

Special measurements showed that for H it is suffi-
cient to take H,=0.25 (AH=0.1). An inspection was
carried out of the dependence on A of the dimensionless
entropy h/H—hk, (H-0). Then, for an increase of H
from 0.07 to 0.29 the ratio &/H remains constant to
within several percent. From surveying 100 trajector-
ies we obtain 5= 65%,

Besides this, the distribution of different values of
the entropy hy=h/H was obtained, the histogram of
which is produced in Fig. 4. The average value of the
entropy on the energy shell is {hy'=0.093. The sharp
cutoff of the distribution at small values of hy indicates
a good separation of the stable and chaotic components
of motion under the conditions of the numerical model-
ing, The near-maximum values of iy for the original
system (0.143) and the reduced system (0.151), in addi-
tion, confirm that the assumed value H,=0.25 reflects
rather well the limiting behavior of the original system
for H=0. A significant decrease of #, is undesirable
since that increases the caleulation time,

The significant chaotic component discovered for H
~0 is related to the degeneration of the nonperturbed
system [all three frequencies of the linear vscillator
(masses) are identical]. Only in this case are all reso-
nances preserved for =0, If for some reason the lin-
ear frequencies prove to be different there arises, as
for N=2, a critical energy H,,~ |aw|,,,, the maximum
difference of linear { requencles {|aw| =< w). Inparticu-
lar, H,.>0 even if two frequencies coincide. In this
case for =0 only one resonance remains.

An analogous situation can arise for identical fre-
quencies if the moment M#0 in (1.8). Let us consider
the following model. Let the YM field have the follow-
ing components: Al=A,, A}=A, and Aj=A, Then M,
=AE, - AE =const (M, = IIJ] The Hamiltonian has the
furm

H=Y B4 Ef+E +A] + A +A] +45 (AT +4)]. (4.13)

In view of the axial symmetry, the symmetry can be
reduced to two degrees of freedom. Let us set A, *=A,’
+A,% Then the Hamiltonian of the reduced system can

be written in the form
H—- _L.u;.‘ +E M FA AR A0 (4.14)
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My = 0, the problem reduces to the case (4.1} consid-
jred above with one resonance and a critical energy.
gor M;#0, the energy has a minimum H,= | M, | with
A4=An=Y M,I and A,=0. Denoting 4 -A_ =4, we ob-
jin & decompos ition of the Hamiltonian (4,14) near the
pinimum;

g Ml LD+ (M) AT +E 442V M IAAT +4747 ], (4.15)

frequencies of small oscillations are equal to w,
1+ IM,] and w=2 (for A, and A respectively). The
pnditions of resonance are w=2w, (the perturbation
arm AA,") and w=w, [the term (A A,)*]. Therefore,
yen one resonance is possible only for [M,|=0,3. In
e opposite case, the motion of the system (4.15) will
;eeven more stablethan (4.1) inthe sense that the oscilla-
ions of the unperturbed actions will be small: [, I= const
compare Fig. 1), We note that there exists a symmetric
olution A,~ A%, M =0,and ME #0) correspondingtoa
onTero source density.

In conclusion we return once again to the previous
wodel with =3 and consider the case H= 1. As for N
-, the chaotic component of motion envelopes, in this
age, almost the whole energy shell with the exception
i small regions along the coordinate axes, le., when,
or example, 4,*>A4.2+A.% In this region it is possible
1 neglect the term (A,4,)* in the Hamiltonian [see
1.9)], so that the motions in A, and A, become indepen-
ient, and each of them is deseribed by the Mathieu
‘quation (4.6) as in the case N=2. Correspondingly the
sption will be stable or unstable (chaotie) depending on
e value of H.

Mumerical modeling cm‘t[irm.g; that, for example, for
=51 (stable interval, n=6) there actually exists a fi-
ite reglon of regular motion the size of which is

.y:t:'l-.di."ﬂ.ﬂ--'&Xtﬂ-*.

. CONCLUSION

In this way, the dynamics of HM of YM fields is found
1 the general case to be chaotic. Chaos is intensified
/ith an increase in the number of degrees of freedom of
22 model. Therefore for nonhomogeneous YM fields
/ith an infinite number of {external) degrees of freedom
ne expects complete chaos of motion if and only if

ere are internal degrees of freedom. For one inter-
il degree of freedom the guestion remains open, since
1the approximation of HM the motion in this case is
eriodic [see (1.10) and (2.1)]. Such a system was in-
estigated numerically in Ref. 25, However, the inves-
ization failed to obtain a definite result about chaos of
e motion, We note that it is possible for chaos in

uch a system to be local and not reduce to an equal
istribution of energy over many modes™ (the latter

a8 the eriterion of chaotic motion in Ref. 25),
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Note added in proof (26 December 1982), Recently
(Pis'ma Zh. Eksp. Teor. Fiz., 36, 176 (1982)) [JETP
Lett. 36, 215 ({1982)] the local nonintegrability of a
YM model was established from a splitting of the
separatrix, which, generally speaking, is unimportant
for the dynamics of a system.

''1,e,, in the usual space-time with pseudo-Euclidean metric.
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