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Numerical studies are made of simple one- and two-dimensional quantum models which are stochastic in the classical 
limit. It is shown that the correlation properties of the quantum and corresponding classical motions are only similar for 
very short time intervals ts, and that the evolution of the quantum system, unlike the classical one, is stable. The diffusive 
excitation of the quantum system under a periodic perturbation is limited to a specific time interval t*~> ts, during which 
the diffusion rate is similar to the corresponding classical diffusion rate. For the two-dimensional model, a continuous 
component in the correlation spectrum survives for an indefinite period tw ~, t*. It is shown that when the perturbation 
is quasiperiodic the interval t* increases sharply. 

1. Introduction 

There is currently a growing interest in the 
dynamics of nonlinear quantum systems which are 
stochastic in the classical limit h = 0 (see, for 
example, refs. 1-9. A study of such systems is 
important for understanding the statistical proper- 
ties of quantum systems in the stochasticity do- 
main (for example, the behavior of molecules and 
atoms in the field of a strong electromagnetic Wave 
[10, 11]), as well as the peculiarities of intra- 
molecular dynamics [17]. A theoretical study of 
such problems, even in the quasiclassical regime, 
faces significant difficulties [2-7]. These are due 
both to the local instability of the classical tra- 
jectories, which leads to an exponentially fast 
spreading of the classical packet, and to an increase 
of the quantum corrections with time. To study the 
properties of classically stochastic quantum sys- 
tems (SQS), numerical experiments have been pre- 
formed on a simple model, the quantum rotator 
with a periodic perturbation [1]. The main result is 
that the motion of an SQS is similar, under certain 
conditions, to the stochastic motion of the classical 
system. For example, a diffusive growth of the 

rotator energy with time has been observed. Yet, 
the rate of diffusion decreases substantiaUy with 
time. 

In the present work a number of numerical 
experiments with simple SQS models is described. 
The studies presented in section 2 indicate that the 
correlations in the quantum rotator, unlike the 
classical one (when the measure of the islands of 
stability is sufficiently small), do not decay ex- 
ponentially with time, confirming the theoretical 
result of ref. 12. Note here that classical cor- 
relations may decay in nonexponential way in the 
systems with large stable component [18]. In sec- 
tion 3, studies of a quantum system with two 
degrees of freedom are presented. A regime has 
been found in which the leading degree of freedom, 
which cannot be excited above a certain level (the 
quantum limitation of diffusion [1]), affects the 
second degree of freedom in such a way that the 
diffusive excitation of the latter lasts much longer 
than that of the leading degree of freedom (in fact, 
appears to be unlimited). In section 4 the excitation 
of the quantum rotator by a quasiperiodic external 
perturbation (two or three non-commensurable 
frequencies) is analyzed. The numerical experi- 
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ments indicate that this case differs qualitatively 
from the case of a periodic perturbation in that 
there is no quantum limitation of diffusion, and the 
growth in energy seems to be unlimited in time. 

h g ln(xrT/2) (at k~7 ~ > 4) is the KS-entropy [9, 13]. 
Such a local instability of the motion causes the 
phase 0 to become a random variable and the 
rotator energy E to grow according to the diffusion 
law, 

2. Correlations in the quantum rotator E(t) = (P2(t)) 7~2 2 ,~ ~ t + E(t = 0). (2.4) 

Let us consider a rotator in an external field with 
the Hamiltonian 

h 2 02 
= - 2--~ ~30-- ~ + # cos 0 • 6/,(~), (2.1) 

where ff is a parameter characterizing the mag- 
nitude of  the perturbation, 6~,(z) = ~:,~=_® 6(T 
- n T )  is the periodic delta-function (or periodic 
kick), J is the moment of inertia of  the rotator, and 
0 is the angular variable. It is assumed below that 
J = l .  

The corresponding classical problem is described 
by the Hamiltonian 

p2 
H = -~- + ~'cos 0 .6¢(r) .  (2.2) 

The presence of  the periodic delta-function makes 
it convenient to describe the motion of the classical 
rotator by the mapping 

,6 = p  + ~:sin 0 ,  

0 =  0 + 7 ̀ 6, 
(2.3) 

where `6 and 0 are the values of the variables 
immediately following a kick. 

The mapping (2.3) has been investigated in detail 
in ref. 9, where the value ~'7 ~ ~ 1 is shown to be the 
border of stability. At if7 ~ < 1 the motion is stable 
and the variation of the quantity p is limited 
(lAp[ <~ ~ ) .  If E7 ~ ~> 1, the motion is stochastic. 
In this case, for almost any initial conditions 
(excluding those in the small islands of stability), 
nearby trajectories diverge exponentially; 
d = do exp(ht) where d = x/(TAp) 2 + (A0) 2, and 

In this case the momentum-distribution function 
has the Gaussian form 

, 
f (p ,  t) = ~ exp - k2~_ t . (2.5) 

Here and below, t is the dimensionless time, mea- 
sured by the number of  kicks. The brackets ( ) 
imply the average over a large number of tra- 
jectories corresponding to different initial condi- 
tions. 

It is also convenient to describe the motion of 
the quantum system (2.1) with a mapping for the 
wave function ~, [1], 

1 
q,(0, t + 1) = e - i * ~ ° s ° -  

. Tn2"~ 
× i,O-,T) 

where 

, (2.6) 

2~ 

A , ( t ) = ~  ~O(O,t)e-"°dO, k = ~ ,  T = h T .  

0 

It follows from (2.6) that one kick couples, with 
exponential accuracy, ,,~2k levels ot" the un- 
perturbed system. This feature has been used in a 
previous numerical study [1] of  the model (2.1). 
The mapping (2.6) contains two independent pa- 
rameters k and T. We set h = 1, and then, to get 
the quasiclassical limit, let k --*oo and T--*0 in such 
a way that kT = const. Numerical experiments [1] 
have shown that when k T > l  and k~>l ,  the 
energy of  the quantum rotator system (2.1) grows 
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diffusively at approximately the classical rate for 
times less than a certain period t*. But for t > t*, 
the rate of diffusion drops off and at t ,> t*, the 
increase in energy practically stops [1, 7]. The time 
t* increases as the parameter k increases. 

Additional numerical experiments [4] have 
shown that the t*-dependence on k may be ap- 
proximated by the power law t* = Ck ~ (see fig. 1). 
In this case, t* is taken as the time t at which the 
energy of  the quantum system differs from the 
classical value by more than 25~. The root-mean- 
square values of the parameters C and ~ are 
approximately: (log C > = - 0 . 4 4  and ( ~ > =  1.5. 
The theoretical dependence 

t* = Ck 2 (2.7) 

obtained in refs. 4 and 7 turns out to be within the 
spread of the experimental data with 
( logC> = - 1 . 1 9  (see fig. 1). Hence, when k >> 1 
the quantum rotator energy grows, as it does in the 
classical case, in a diffusive manner during a long 
period of  time. 

The theoretical results of ref. 12 predict that 
correlations in the quantum system after a time 

In k 
t~ ~ In k T  (2.8) 

// 
1 2 

Fig. 1. The dependence of  the time t* of  quantum limitation 
of  diffusion on the parameter k. The points stand for experi- 
mental values, the two straight lines correspond to a linear 
interpolation (slope a = 1.5) and to the theoretical formula (2.7) 
(slope ~ = 2); logs are base 10. 

do not decrease more rapidly than the inverse of 
the square root of  time (T - ~/2). In the classical case 
these correlations decay exponentially with t when 
k T  ~> 1 (when the measure of the islands of  sta- 
bility is quite small). Thus, for k T  ~ 1, the quan- 
tum and classical correlations should be com- 
pletely different when t >~ t~ (although, since the 
absolute magnitude of the correlations proves to 
be small (ocf9(k-Z)), they only affect the rotator 
energy for times t >~ t* ~> t~). 

To verify these predictions [12], a numerical 
study of the quantum model (2.1) was made to 
calculate the correlations 

R,(r) = <01cos O,cos 0,+, + cos 0,+,cos 0,10>, (2.9) 

where cos 0, = U + cos OU, is the Heisenberg oper- 
ator at the moment of  time t, Ut is the operator of  
evolution of the Hamiltonian (2.1) and (01 . . .  10> 
stands for the expectation value with respect initial 
state. In principle, one can consider other cor- 
relations, for example, the correlations of  sin 0. 
These correlations behave in qualitatively the same 
manner as those of cos 0, except with respect to 
one specific feature which is analyzed below (see 
section 3). 

The numerical algorithm for computing the cor- 
relations was to define the wave functions 

[ i~ )=  U,]0),l~0,+,)= U, cos01i , )  and I~0,+,)= 
U,+,I0 ) by means of eq. (2.6) (using the method 
described in refs. 1 and 4, and then to calculate the 
average over 0 : 2  Re((i,+,]cos 0lq~,+, )) = R,(r). 

The results of these numerical experiments are 
listed in table I. The classical correlations 
R~l = (I/rt) ~02~ cos 00cos 0, dO are compared to the 
quantum correlations Rq( = R,(z) in (2.9)) at t = 0 
and 0 ~< ~ ~< 7. The initial classical state is: p = 0, 
0 ~< 0 ~ 2n, and the corresponding quantum one is: 
if(0, 0) = (2r~) -1/2. It is seen from these data that at 
k T  = 5 and k T  = 5 + 2re, when the measure of the 
islands of stability is negligibly small [9], the classi- 
cal correlations for z ~< 7 decay quickly with time. 
The quantum correlations in this case are only 
close to the classical correlations when r ~< t s ~ 3. 
For r >~ ts the quantum correlations are a few times 



D.L. Shepelyansky / Simple classically stochastic quantum systems 211 

Table I 

Rq/Rd Rq/Rcl Rq/Rd Rq/R~I 
z R~I k = 5  k = 2 0  k = 4 0  k = 1 0 0  

0 I I I I I 

kT  = 2  

1 0.5767 0.9880 0.9993 0.9998 1.0000 
2 0.4986 0.9651 0.9976 0.9994 0.9998 
3 0.9614 0.9753 0.9982 0.9996 0.9999 
4 0.6794 1.1785 1.0745 1,0294 1.0053 
5 015688 1.5397 1.0742 0.9552 0.9754 
6 0.6504 0.9371 0.9294 1.1233 1.0152 
7 0.7648 0.8375 1.0365 0.9678 0.9946 

k T = 5  

1 -0 .1310  0.8313 0.9908 0.9977 1.0000 
2 0.01229 14.9880 7.4768 2.7307 0.9723 
3 0.3384 2.0254 0.8543 1.0774 0.9069 
4 0.08002 5.4849 2.7656 1.4921 1.3884 
5 0.09999 1.0701 2.3252 1.5372 0.1946 
6 0.09167 2.5472 1.9941 2.4490 0.3505 
7 0.00965 82.404 -3 .8520  12.615 11.703 

k T  = 5 + 2n 

1 -0 .03770  -0 .6053  0.8963 0.9756 0.9960 
2 0.08725 -4 .0183  0.045d4 1.0256 0.9012 
3 0.1389 1.7423 1.4104 1.1857 0.2191 
4 0.01641 -5 .6684  0.4188 4.4308 0.2732 
5 0.01945 -9 .3060  -9 .4807  4.9851 2.0925 
6 0.02184 0.6062 2.1323 8.0998 -3 .0714  
7 0.00752 33.524 8.7181 19.6676 - 1.1330 

larger than the classical. This is consistent with the 
theoretical value of t s (2.8) which is also just a few 
kick periods in length. As mentioned above, the 
time t* at which these correlations begin to effect 
the energy is usually much larger than h. For 
example, when k = 40, kT  = 5, the quantum rota- 
tor energy differs from its classical value by less 
than 25~ for times r ~ (t* = 120) long compared 
to h "~ 3. Also, in the case k = 40, k T  = 2, where 
the measures of the stable and stochastic com- 
ponents are approximately the same, the classical 
correlations do not decay with time and the 
difference between R~ and Rq remains less than 
20~ for times T ~ 100 ( , > h ~ 3 ) .  Thus, those 
characteristics, which do not decrease ex- 
ponentially with time, for example, the rotator 
energy or the correlations at k T - - 2 ,  are close to 

their classical values for times t*>> ts. Note also 
that in the stability region, k T  = 0.5 (k = 20) the 
difference between the quantum and classical cor- 
relations is at the 0.1~ level for ~ ~ 20 (at k = 5, 
r ~ 20 it is about 10~). The typical behavior of the 
quantum correlations is shown in fig. 2. It is seen 
that there are some residual correlations that do 
not decrease with time. These correlations do 
decrease as k increases, but an explicit form of the 
dependence on k has not been found because of the 
sharp increase in the required memory and com- 
puting time with increasing k. 

The magnitude of the residual correlations may 
be evaluated as follows. Let r >> t*. Then the wave 
function Iq~ ) = e -+ ~°Uf e +- ~°U~]0) contains approxi- 
mately v/k2t * harmonics (at r >> t* the increase in 
energy practically stops). Since (q~)q~)= 1, the 
average amplitude Q of a typical harmonic is 
roughly determined from the condition 
Q2 kw/ki~-,~ 1. Then, from the relation 
R(r )~  (0[~b)~ O and (2.7) we get the estimate 

IRt(T,)[ r~, ( k 2 l * )  -1/4 ~ k--1, t ~- T >~> t * .  ( 2 . 1 0 )  

At t + z ,~ t* the number of harmonics in Irk) will 
be of the order of x/~5~ and hence, on this time 
scale, the correlations decay with growing z, 

[R,(z) ~ (k2r) -~/4 , t s < x t + r ~ t * .  (2.11) 

This decay is very slow and since the parameter 
(/,)|/4 is not very large, the non-decreasing-with- 
time residual correlations are observed in the nu- 
merical experiment practically immediately (see fig. 
2). 

It is worth noting that, according to the esti- 
mates (2.10), (2.11) and the results of ref. 12, 
quantum correlations also do not decay ex- 
ponentially in systems where the measure of the 
islands of  stability is strictly equal to zero (e.g., the 
system (2.1) with the perturbation potential 

02 
0-<o-<2, 

V(0)= (0 n)2 ~2 z 

V(O)= V(--0) ,  V(O)= V(O+2n) ,  k T > 4 .  
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Fig.  2. T h e  d e p e n d e n c e  o f  q u a n t u m  co r r e l a t i ons  R (see (2.9)) o n  z for  the sys tem (2.1) a t  k = 5, kT = 5, t = 100, z = 1024. 

This result is supported by numerical experiments 
which show that in such a quantum system, unlike 
its classical counterpart, there is no exponential 
decay of correlations. 

An interesting feature of  the quantum cor- 
relations of the operator cos 0 is that R,(z) > 0 for 
almost any ~. As a result, the frequency spectrum 
of the correlations is sharply peaked at~o -- 0. The 
properties of  this frequency spectrum are discussed 
in detail in section 3. It should be mentioned that 
in the quantum model, not only is the exponential 
decay of correlations absent but the KS-entropy h 
is zero as well [12] (in the classical system, 
h ,~ in(kT/2) > 0 at kT  > 4 [9]). In quantum case h 
is defined as KS-entropy for classical map obtained 
by C-number projection of Heisenberg equations 
on a quantum states basis [2]. Another definition 
used in [16] also gives h = 0  for systems with a 
discrete spectrum of motion. By virtue of this, the 
quantum system does not exhibit the local in- 
stability of motion which occurs in the classical 

model (2.2) when kT  > 1. The presence of the local 
instability (h > 0) causes the dynamics of a classi- 
cal system to be non-reversible. It is, of  course, 
true that the equations of motion of the system 
with the Hamiitonian (2.2) are reversible (the 
system's Hamiltonian is symmetric with respect to 
time-reversal at the moments of time T/2 + IT 
(where I is an integer), and therefore the substi- 
tution p --* - p at any of  the moments T/2 + IT will 
exactly reverse the configuration space trajectory). 
However, an arbitrarily small perturbation e will 
result in a significant change in the trajectory after 
a time period t, ~ Iln E {/h. 

In connection with this, in the numerical experi- 
ments where the rount-off errors are at the level 

~ 10 -~2 (BESM-6), the classical system is, in 
practice, irreversible (see fig. 3). At the same time, 
the dynamics of  the quantum system prove to be 
completely reversible (the accuracy of return is at 
the level computer accuracy ~ E). Moreover, re- 
versibility occurs even when a small random 
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Fig. 3. The time dependence o f  the energy o f  a classical rotator (2.2) when the mot ion is reversed at the moment  t = 150; the evolution 
of  the system is reversed at the moment  t = 150; the evolution o f  the system is irreversible (kT = 5). 

change A~p =0.1 is added to the phases of the 
Fourier-components A, of the wave function ~b at 
the moment of reversal (see fig. 4). 

The total number of energy levels used in these 
numerical experiments was N=2049  (-1024, 
1024). The initial conditions were varied: in one 
case, only the zero level was excited (no = 0, with 
a uniform distribution on over.0), in the second, 
many levels were excited corresponding to a 
Gaussian distribution [A,12 = (n(An)2) -1/~ 
exp( - n2/An ~) with width 4 ~< An <~ 20. Just as in 
refs. 1 and 4, no significant dependence of the 
motion of initial conditions was observed. 

3. Two-dimensional model 

The numerical experiments of the preceding 
section have shown that the statistical properties of 
a quantum system are much weaker than those of 

the corresponding classical system. Of further in- 
terest is the effect of such a system on a second 
degree of freedom to which it is weakly coupled. 

When the coupling is weak, the influence of the 
second degree of freedom on the first may be 
neglected and the excitation of the second degree 
of freedom is determined by the statistical proper- 
ties of the motion of the first degree of freedom. 

As an example, consider a system with the 
Hamiltonian 

= ~ + c o ~ 2 + ( k  cos 01 + E cos 01 cos 02)~r(~), 

(3.1) 

where 

0 0 
/~, = - i  0--~, /~2 = - i ~ 2 ,  h = l .  

By solving the Schroedinger equation with the 
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Fig. 4. The time dependence of  the quan tum rotator energy (2.1) when the mot ion is reversed and a random phase 0 < Atp < 0.1 
is added to each amplitude A, at the moment  of  time t = 150; the evolution of  the quan tum system is entirely reversible (k = 20, 
k T  = 5); the straight line corresponds to the classical diffusion (2.4), the vertical line corresponds to the moment  of  time reversal. 

Hamiltonian (3.1), one gets a mapping for the 
wave function over one period T: 

0(01, 02, t + 1) = exp( - i (k  cos 0j + E cos 0j cos 02)) 

1 ~ Anln2(t)  e i(nt°l + n2°2) e - i(Tn~/2 + ~oTn2) 
X ~ nl,R2 = --o0 

(3.2) 

Let us consider the case where E ,~ 1 and only the 
ground level of the second degree of freedom is 
initially excited (A,~,2 = A (nJ6,2.o). Then the num- 
ber of excited levels is determined by the statistical 
properties of the system (2.1). Indeed, from the 
equations for the Heisenberg operators we have 

t - I  
~2(t) =/~2(0) + e ~ cos/~l(tl) sin (g2 + toTt ,) .  (3.3) 

/1=1 

From (3.3) and (2.9) one can obtain the number of 

excited levels n2, 

( )] l 
, ,  = 0 \ ~  = o - -  ~ R t , ( 0 )  . 

(3.4) 

Due to the exponential decay of correlations in the 
classical case in the sums in (3.4), the main con- 
tribution was given by the terms with ~ = 0. There- 
fore the diffusive excitation occurs over both the 
first (2.4) and the second degrees of freedom. For 
the classical system then, the number of excited 
levels in the second degree of freedom is approxi- 
mately 

E 2 
( , ] )  ~ ~ t, (3.s) 

In the quantum system, the presence of residual 
correlations (see fig. 2) leads to a sharp restriction 
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of energy growth in the first degree of  freedom at 
t > t* (the influence of  the second degree of  free- 
dom may be neglected, since E ,~ I). The influence 
of  the residual correlations on the excitation of  the 
second degree of  freedom requires further in- 
vestigation. If  the frequency spectrum ~(v)  of  the 
correlations R(~) is purely discrete (this occurs 
when the quasienergy spectrum [14] of  the system 
(2.1) contains only discrete levels), then for those 
values of  the parameter toT which coincide with the 
discrete frequencies of  R(z), (n 2) will increase 
quadratically (n22) ,-, t 2. If  the spectrum/~(v) con- 
tains a continuous component (this may occur only 
if the spectrum of  quasienergies turns out to be 
continuous), (n22) grows diffusively with time 
((n~) =DE2t/4), with the diffusion factor 
O ~ ~ ( t o T ) .  

The motion of  the quantum system (3.1) was 
studied numerically by means of  the formula (3.2). 
The parameter E was chosen to be equal to 10-s 
(variations of  E within the interval l0 -3 to 10 -5 
resulted in the quantity (n2)/E 2 remaining un- 

changed to an accuracy of  up to 0.1%). A finite 
number of  levels - 400 ~< nl ~< 400, - 2  ~< n 2 ~< 2, 
were used in the run, and, because of  the smallness 
of  E, (n~) was determined only by the probability 
IV, 2 of  finding the system at the levels n2 = _+ 1. 
During the whole period of  running, 
W,~= _+2 < 10-14 and, in view of  this, it was as- 
sumed that the influence of  the nz = + 2 levels 
could be neglected. The excitation of  these levels 
was calculated to verify the validity of  this assump- 
tion. Another method for determining this validity 
was to check the conservation of  the probability 

W = Y~.,,n2= -0o 1.4,,n212= 1. In all cases, the error 
814," for the total probability did not exceed 10 -3 
and the dynamics of  excitation of  the first degree 
of  freedom (e.g., (n~)) coincided with the case 
E = 0 to an accuracy of  up to 0.1~o. 

The numerical experiments indicate that the 
excitation of  the second degree of  freedom depends 
substantially on the parameter toT. There are three 
different situations: 

1) For the second degree of  freedom, just as for 
the first the quantum limitation of  the diffusion is 

observed; at k = 5, T = I, this occurs for toT = 1, 
1.5, 1.87, 2.37, 2.42. 

2) For some values of  toT, resonant excitation 
of  the second degree of  freedom ((n22) ~ / 2 )  is 
observed. This takes place for t o t  = 0, 0.5, 1.27, 
1.71 if k = 5 ,  T = I .  

3) In still other cases (k = 4, T = 1; toT = 2.4, 
2.5, 2.52) diffusive excitation has been observed. It 
is worth noting that for t o T = 2 . 5 ,  (n~) grows 
practically linearly with time up to t = 2000 (see 
fig. 5), while the diffusion limitation on the first 
degree of  freedom occurs in a few kicks ( t * =  5). 
For  coT = 2.4, 2.52, a linear growth was observed 
during the total time of  computation (t = 750) with 
the average diffusion factors Dq/D a ,~ 0.7, 2 re- 
spectively, where Dd = E2/4. 

When the initial conditions were changed, sub- 
stantial variations in the motion were not observed 
(for example, resonances occured at the same 
values of  the parameter toT). However, changes in 
the parameters k and T (even at k T = c o n s t . )  
produced large variations in the dependence on toT 
(for example, at k = 10, T = 0 . 5 ,  t o T =  1.27, 
diffusion limitation was observed instead of  reso- 
nance). The only exception was the value toT = 0, 
for which (n 2) grew quadratically with time for all 
investigated values of  the parameters k and T in 
the regions k < 1, k > 1 at k T <  1 and k T >  1. In 
the classical stability region kT  < 1, k > 1, the de- 
pendence of  (n~) on t seemed to be close to the 
classical dependence, where resonant excitation 
also occurs due to the stability of  the classical 
motion. Hence, the resonant growth of  (n22) in the 
quantum system at kT > 1, toT = 0 can be inter- 
preted as an indication of  the presence of  a stable 
quantum component. Of course, this problem 
should be examined in more detail. 

It should be noted that if the Hamiltonian (3.1) 
contained sin 0~ instead of  cos 0j, the excitation of  
the second degree of  freedom would be determined 
by the correlations of  sin 0~. But since in this case 
(n~) ~ (n~) at o~ = 0, the quantum limitation of  
the diffusion should occur in both the first and 
second degrees of  freedom. The existence of  reso- 
nances for toT:,~O indicates the presence of  a 
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Fig. 5. The dependence of  (n22) on time for the system (3.1) with k = 5, T = 1, co t  = 2.5, E = 10 -5, t = 2000. The straight line 
corresponds to the classical diffusion (3.5). 

discrete component in the spectrum of  correlations 
R(z), and, as a consequence (see above), of  discrete 
levels in the spectrum of quasienergies 
(E, .-  ~ ,= co). On the other hand, a diffusive 
growth of (n~) at some value of  co t  indicates that 
there exist in the spectrum of  quasienergies a 
continuous zone of width AEz~>0.02 (k = 5 ,  
T = 1). However, the finiteness of  the computing 
time t c admits only the lines with AE >~ 1/Ttc, and 
therefore, strictly speaking, one can only affirm 
that in the zone of quasienergies AEz, the spectrum 
is either continuous or consists of closely-spaced 
discrete lines which are separated by a distance 
dELl< 5 × 10 -4. Summarizing, one can say that, 
besides the two time scales of the motion of the 
quantum system (2.1) t s and t* (see section 2 and 
ref. 7) there is another time scale tw on which some 
weak statistical properties are still conserved. It is 
on this time scale that the diffusive excitation of  the 
second degree of freedom in (3.1) occurs. It is 
significant that tw greatly exceeds t* and ts 
(t~ >> t* >> t~). In the case where k = 5, T = 1 we 

have t s ~ l ,  t* ,~5 ,  tw~2000 (see fig. 5). The 
question of  how to determine the time scale tw, 
whether it is finite or infinite, requires further 
examination. If  tw --- ~ ,  the spectrum of quantum 
correlations and the spectrum of  quasienergies will 
both contain continuous components. It is worth 
noting that continuity of the spectrum of quasi- 
energies does not necessarily imply continuity of  
the spectrum of correlations. For example, at 
T = 4n (the case of  a quantum resonance [1, 15]) 
the wave function is given by ~b(0, t ) =  e x p ( - i k t  
cos 0)~, (0) and according to (2.9), the spectrum of 
correlations consists of only one discrete line. On 
the other hand, the spectrum of quasienergies for 
this case is continuous [15]. 

4. A model with non-commensurable frequencies 

In addition to the case considered in the fore- 
going section, a situation can occur in which the 
motion over one degree of  freedom, during a 
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certain period of time, may be considered periodic 
and known. When this is the case, the motion over 
the other degree of  freedom is determined by a field 
of  known external forces. For  the system (3.1), 
such a situation arises when P2 ~> E. In this case, one 
can assume, as a first approximation, that the 
coordinate 02 varies periodically with time: 
02(z) = 02(0) + to0z(to0 = to). The dynamics of  the 

rst degree of  freedom are then described by the 
amiltonian (2.1) with the time-dependent para- 

meter k: k(T) = k + E cos to0z. Experiments show 
that the dynamics of  the quantum system with k(z) 
varying periodically in time differ substantially 
from the cases considered in refs. 1, 4 and 7, where 
k = const, and k ~ t~(0t < )). Therefore, a study of  
this system is important for understanding SQS 
properties. When the time-dependent parameter 
k(z) is introduced into the classical system (2.2), 
the motion becomes stochastic when (k + E)T ~> 1 
(as it does in the case of  constant k). The phase 0 
then varies randomly and the rotator energy grows 
diffusively with time 

E ( I ) = k °~r -~- t + E(0),  (4.1) 

where k2r ~ k 2 + E2/2. Thus, the dynamics of  classi- 
cal systems with constant and varying k have no 
principal distinctions. On the other hand, the 
dynamics of the quantum rotator are quite 
different for these two cases. 

One difference is that, with k constant, there is 
quantum limitation of the diffusion (see ref. 1 and 
section 2). This results in the fact that at t >> t* (see 
(2.7)) there is practically no growth of  the rotator 
energy. The numerical experiments carried out 
with the model (2.1) with k(z)=k+ecostoor 
have shown that, in the case where the frequencies 
too and f2 =2n/T are non-commensurable and 
E ~> 1, the quantum rotator energy grows 
diffusively with time, and the diffusion factor is 
close to the classical one. At k = 0, E = 7, ET = 7, 
tooT = 2, a diffusive growth of  the energy continues 
throughout the running period t = 1000 (see figs. 6 
and 7), and the distribution over energy levels is 

nearly Gaussian (2.5) with k = kef. In the case 
where k = 7, T = 1, E = 0, the time of  diffusive 
growth is only t * ~  10. If  the frequencies are 
commensurable (tooT = 2rip~q, where p and q are 
integer non-commensurable numbers), quantum 
limitation of  diffusion is observed, and the length 
of time t* during which the diffusion slows down 
increases with increasing q; t*,~ 60 at tooT= n; 
t * ~ 4 0 0 ,  to0T=2n/3 ;  t * ~ 4 5 0 ,  to0T=2n/5 ;  
t* > 1000, to0T= 8n/13 for k = 0, E = 7, T =  1. 
The case tooT = 0.1 is interesting. Because the time 
necessary for a phase shift is tp,~2n/tooT,'~ 60 
> t * ~  10, the diffusion drops off when t reaches 
t* and the growth of energy practically ceases. 
However, after a time ~ tp the phase variation 
becomes significant and the energy grows again. 
Thus, a step-like diffusive growth of  energy with 
time occurs. 

A diffusive energy growth was also observed in 
the essentially quantum region at k = 0, E = 3.5, 
E T =  7, t o 0 T = 2  (see fig. 8). For small values, 
E ~< 4.5, the quantum limitation of  diffusion was 
observed, and as E was varied from 1 to 4.65, the 
time t* increased from t* ~ 1 to t* > 2500 (see fig. 
9). Within the interval I~<E ~<4.65, the de- 
pendence of  t* on E is nearly exponential. How- 
ever, experimental limitations prevent mea- 
surements of  this dependence when E >4.65.  
Apparently, t* will continue to increase ex- 
ponentially with increasing E (some estimates for t* 
(ka) are given at the end of  this section). However, 
the fact that t* increases sharply (by three orders 
of magnitude) with increasing c from 1 to 3.5, 
suggests that there is some Ecr ~ 3.5 above which a 
practically unlimited excitation of  the quantum 
rotator takes place, This value of  Ecr is only 
Sq = Ecr/Ei ~ 3.5 times higher than the quantity El ,~ 1 
which corresponds to the quantum border of sta- 
bility [10]. For  example with the parameter values 
k = 0, E = 1, T = 5.6, and toot  = 2, the ratio of  the 
quantum and classical diffusion coefficients at the 
time t =200  is approximately equal to 
Oq/Ocl ,~ 2.4 x 10-4 ,~ 1. 

At k > E ~> 2, the rotator is also diffusively ex- 
cited (with Dq ~Dd,  and a widening Gaussian 
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Fig. 6. The time dependence of the rotator energy for the system (2.1) with k( t )  = k + ~ cos co0t at k = 0, e = 7, ~T = 7, coot = 2. 
The straight line corresponds to the classical diffusion (4.1). 
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Fig. 8. The same as fig. 6 but  with k = 0, E = 3.5, ET = 7, cooT = 2. 
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Fig. 9. The dependence of  the time t • on  the parameter  E for 
the model (2.1) with k ( z ) = k + E c o s c o 0 z  at k=O, ET=7, 
cooT = 2; log is base 10. 

energy level distribution which is similar to the 
corresponding classical distribution). Note that for 
k = 10, T = 0.5, E = 0, the time at which quantum 
limitation of  diffusion occurs is t * ~  25, while at 
E =2 .5  (cooT= 1) the energy growth continues 
during the entire period of  computation, t = 1000. 
Fourier analysis shows that ~(v),  in contrast to the 
case where E --- 0, does not  contain clearly observed 
peaks. This implies a continuous spectrum of the 
motion for the quantum system (where the accu- 
racy of  experimental resolution is dto ~ 10-3). 

At E ~< 2 and k >> 1, the rate of  diffusive ex- 
citation of the quantum rotator coincides, for a 
period of  time, with the classical rate. It then 
decreases to a certain limiting value/)q and does 
not decrease further during the entire period of  
running (t = 300). The dependence of  the ratio 
Dq/Dcl on E is illustrated in fig. 10. For  comparison, 
this figure also presents the dependence o f / ~ q / D c l  

on E when k( t )  = k + E~(t), where ~(t) is randomly 



220 D.L. Shepelyansky / Simple classically stochastic quantum systems 

~3o r 

t.0 

a5 

o 

o 

Fig. 10. The dependence of  the limiting value of  the diffusion fac tor / )q  on  ( in the model with k(T) = k + ( cos to0z, t = 300, (o0T = 1; 
the circles "C)" give the dependence when k = 10, and × when k = 20. Also shown is this dependence in the model with the random 
perturbation: k(t)= k + ¢~(t), k T = 5; here the dots "." give the k = 10 dependence and plusses "+"  the k = 20 dependence. 

varied with time in the interval [ -  1, 1]. Just as in 
the case where k ( t )  varies periodically, when E >~ 2, 
Dq approximately equals Dc~. And when E < 2, 
there is a limiting coefficient /gq < De~ which de- 
creases with E. At the same values of  E, k, T(~ < 2), 
the diffusion rate /gq for the rotator model with 
randomly varying k ( t )  turns out to be larger than 
the value/gq in the model with periodically varying 
k( t )  (see fig. 10). However, the qualitative form of 
the E-dependence seems to be the same. 

To summarize, there is a quantum border of 
stability at E ~ 1. At E <~ 1 the diffusive excitation 
of the rotator is sharply reduced, and at E ~> 2, both 
for the periodic (with non-commensurable fre- 
quencies) and the random variation of k( t ) ,  the 
rotator energy grows diffusively during the entire 
period of  computation (t = 103) with the diffusion 
rate Dq,~D~. One should mention that the 
diffusive excitation observed at E > 1 occurs also in 
the essentially quantum region T > 1 (for example, 
for k = 10, E = 2.5, T = 4.6, og0T = 1). In the re- 
gion of classical stability, (k + E)T ,~ 1, the energy 
variation is limited just for the classical system. 

To conclude this section, some theoretical esti- 
mates are derived. Consider the case in which the 
two frequencies are commensurable, i.e. 
o~oT=2np/q.  Here the perturbation is periodic 
with period q. The time z * = t*/q is determined by 

the distance between the discrete levels of  the 
quasienergy ~* = t*/q ,~ 1/A (a similar method for 
estimating t* was used in [7]). The quantity A is 
determined by the number N~ of effectively excited 
levels of the quasienergy, where N~ is approxi- 
mately equal to the number of excited unperturbed 
levels N~ ,~ kerx/~. From these relations we obtain 
an estimate for t*, 

t* ~ k~fq 2 . (4.2) 

Now let o~0T = 2np/q + ~, where 6 is a small 
deviation. During the time t <~ tp ,~ ~ -  1 the system 
moves in approximately the same manner as when 
cooT = 2np/q.  If tp ~ 6-1 >~ t* ~ k2fq 2, quantum 

limitation of diffusion occurs, although when 
2tp > t > tp, a diffusive growth may begin again, as 
it does when k = 0 ,  E = 7 ,  E T = 7 ,  ~o0T=0.1. 
Hence, the quantum limitation of  diffusion will be 
observed (at least on some time scale) if 

l 
6(q) <<, q ~;-2'-2f" (4.3) 

The total measure of all deviations grows with 
increasing q, 

q- ~ In q~ 
Z 6 ( q )  ~ , . - : 7  ~ 1 

q=| p = !  kef  
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and becomes equal to 1 at qcr ~ eY@ From this, one 
can obtain an estimate for t* in the case of two 
non-commensurable frequencies, 

t * ~ '~ ~r,-l" 2 o2r,h , (4.4) 

where 7 is a certain numerical constant. The esti- 
mates (4.2) and (4.4) coincide qualitatively with the 
available experimental data (see fig. 9) but a more 
exact comparison fails because of a sharp increase 
in t* with increasing kef and q. In the case where 
there are three non-commensurable frequencies 
(e.g., k(z) = k -[-E COS O)027 COS (2]1~") where 
tooT = 2npo/qo + 80, and co I T = 2rrpl/ql + Si, the 
time t* is approximately (qoqlkef) 2, for 80=0,  
81 = 0. In order for diffusive limitation to occur it 
is required that t * < m i n ( 8 o l ,  Sl-l). It seems to 
follow that the measure of  such frequencies is small 
at large kef (~'~qO, PO. ql. Pl 8081 ~ kef4 '~ 1). Therefore, in 
this case of three or more non-commensurable 
frequencies, an unlimited diffusive excitation of the 
quantum rotator should occur for almost any too, 
tol. At k = 0, E - 3.5, ET = 7, toot = 2, colT = 2 TM, 
the experimental value of the time t* is greater 
than the run time t = 2000. 

Similar estimates may be made for nonlinear 
systems with two (or more) degrees of freedom that 
are similarly influenced by periodic perturbations. 
As an example let us consider the model (3.1) with 
the substitution tofi2-+tofi2/2. Since this model has 
two degrees of  freedom, the number of  excited 
quasienergy levels, N~, ,~ dnlAn2 ,~ kaEt* is larger 
than t* if kore ~ 1 and therefore t* = o0. Thus, it 
seems possible that in nonlinear quantum systems 
with N degrees of freedom (N i> 2) and periodic or 
quasiperiodic perturbations, the quantum lim- 
itation of diffusion is absent. 

5. Concluding remarks 

The studies described here show that the statisti- 
cal properties of  an SQS are much weaker than 
those of the corresponding classical stochastic sys- 
tem. For example, the quantum systems are ex- 

empt from the exponential decay of correlations 
(section 2 and ref. 12) which occurs in the classical 
systems when the measure of the islands of  stability 
is negligibly small. The statistical properties of the 
classical and quantum systems correspond only for 
short periods of time tsccln(l/h) (2.8). At t ~> ts the 
correlations in the quantum and classical systems 
become completely different (see table I and fig. 2). 
Likewise the KS-entropies of classical and quan- 
tum systems are quite different: in an SQS the 
KS-entropy is h = 0  [12, 16], while in the corre- 
sponding classical system, h > 0. Note also that in 
an SQS, h = 0 not only when the spectrum of the 
motion of the quantum system is discrete (this case 
was considered in [16]), but also when this spec- 
trum is continuous. For example, in the model 
(2.1) at T = 4np/q (the quantum resonance [1]), the 
quasienergy spectrum is continuous [15], but h is 
still equal to zero [12]. Note here that the influence 
of quantum resonances on the motion of the 
system is not significant for nonresonance values of 
T (except small regions near resonance values [15]). 
Indeed, according to numerical experiments the 
behavior of the system with unperturbed (non- 
resonance) spectrum E n = in x/~ is qualitatively the 
same as in the case of the main rotator model (2.1) 
with nonresonance value of T. The consequence of 
zero KS-entropy is the stable reversibility of the 
quantum evolution (see section 2, fig. 4), which is 
absent in classical stochastic systems (fig. 3). 

At the same time, the weaker statistical proper- 
ties, for example, diffusion, are conserved in an 
SQS for much longer times t*oc 1/h (t* ,> t~). For 
the system (2.1) with one degree of freedom and a 
periodic external force, the time t*. grows with an 
increase in the quasiclassical parameter according 
to (2.7). The numerical experiments show (section 
3) that a continuous component in the spectrum of 
correlations and a diffusive excitation of  the other 
degree of freedom at definite frequencies persist for 
long time tw >> t* >3, ts. At k = 5, tw exceeds t* by 
nearly three orders of magnitude (section 3). The 
question of what determines this third time scale, 
and whether it is finite or infinite, remains open. 

Numerical experiments with a one-dimensional 
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model and a two-frequencies external force (sec- 

tion 4) have shown that  in such a system the 

diffusive time scale t* increases very sharply 
(probably,  exponentially) as the quasiclassical pa- 

rameter kee increases (see fig. 9 and (4.4)). Appar-  
ently, if one exceeds the quan tum border  o f  sta- 
bility e~ by Sq ~ 3.5, the time scale t* increases by 

three orders o f  magnitude.  I f  there are three non-  

commensurable  frequencies (or more)  the diffusive 

time scale appears to be infinite (see the estimates 
o f  section 4). In this case, unlimited diffusive 

excitation o f  the quan tum rota tor  occurs and the 

quan tum correlations decay according to a power  
law (2.11). Hence, the quan tum system possesses 

the property o f  mixing. 
Because an external force with non- 

commensurable  frequencies may  always be ap- 
proximately represented by additional degrees o f  

freedom, the ultimited diffusive growth of  the 

energy at an almost  classical diffusion rate is 
possible in quan tum systems with two or more  

degrees o f  freedom and an external periodic 

driving force. This diffusive excitation takes place 
if the classical stochasticity criterion is satisfied and 

the quan tum border  o f  stability for the per- 

turbat ion is exceeded [10]. 
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