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QUANTUM DIFFUSION LIMITATION AT EXCITATION

l OF RYDBERG ATOM IN VARIABLE FIELD

D. L. Shepelyansky

Institute of Nuclear Physics
630090, Novesibirsk 90, USSR

Abstract

A computer simulation method is used to investigate excitation
of a hydrogen-like atom in the field of an electromagnetic wave from
the states with n ~ 50 and parabolic quantum numbers ny >> ny (or
n; << nz}. It is shown that diffusion over levels is much slower
than in the classical case. A significant part in atom excitation
is played by multiphoton resonances with the number of photons k 3
% 10.

1. INTRODUCTION

For the last few years a number of interesting experiments was
carried out on ionization and excitation of hydrogen atoms by the
microwave field from the states with the main quantum number n ~ 50
[1-3]. The first of these experiments showed at the frequency of
w/2n = 9.9 GHz, & strong ionization of atoms with m = 65 at the
electric field € % 0.06 n~" and adiabatic tunneling parameter y =
=wfe n =7 [4] (W= 0.43 n~3)*. To explain the results of the
experiment a diffusion mechanism of atom ionization was offered in
[5]. The cause of electron diffusion arising in an atom due to the
purely monochromatic field effect can be understood in the following
way. It is quite possible to assume [6] that at n = 50 >> 1 the
quasiclassical approximation is good enough and to pass on to investi-
gation of the classical system. The latter is substantially non-
linear and at field ¢ > €.r there arises a stochasticity leading to

* Here and below we use atomic units; n,f,m are principal, orbital
and magnetic quantum numbers.

187



a diffusion excitation of an electron [7]. In case of linear apg
circular polarizations and w = 0 = n~? the estimation for Ecr Was
obtained in [7,8] on the grounds of the overlap criterium Egﬁ. !
Dependences of eritical field and diffusion rate on frequency are
given in [10,11]. Despite all attractiveness of this classical
approach, its only justification is the coincidence of the relatiy
portion of ionized atoms at € n = 0.06 [1] with the probability of |
ionization obtained through computer simulation of classical syste
dynamics [6]. The accuracy of coincidence is about 30Z.

At the same time a number of numerical experiments with simple
quantum systems [12,13] have shown that statistical properties of

quantum dynamics are much weaker than those of classical ones,
Moreover, in the course of time the effect of gquantum correctionsg
increases [14] and leads to diffusion's slowing down and its fina)
almost complete stopping. First this effect of quantum diffusion
limitation was observed in the model of quantum rotator [12]. The
same phenomenon can take place at diffusion ionization of atoms
with n »>» 1. Preliminary estimates [11] show that relative magnity;
of the quantum corrections can be compared to unity and so there
may be a significant distinction between quantum dynamics of atem
excitation and classical ones.

2. THE MODEL OF SURFACE-STATE ELECTRONS

When investigating guantum and classical dynamics we employed
the computer simulation method. We chose an external field linear
polarized along the axis z. The atom was initially excited into
states with quantum numbers which satisfied the following conditiens
nv 50, m=0, nj > ny {(or 1 £ £ << n2f3). For these states the
ratio of cross—size to longitudinal one is small and that is why it
is possible to describe the dynamics of excitation in this case by

the one-dimensional Hamiltonian

2
H-%—--Tij—+ezcosmt (1)

with the boundary condition ¥(0) = 0, which corresponds to an
infinite potential wall at z = 0. This Hamiltonian also describes
the exitation of states pf atom with £ = 0 in the external field
with the potential V = £|r|cosut. Consequently for Equation (1)
matrix elements z__1 = T n'- To prove the fact that such a modi-
fication of the initial Hamiltonian will not lead to any significant
change of the dynamics we can present the following arguments:

1. When 1 € £ << n?/? the matrix elements z§£$] do not depend
on £ [15], as a result of which their sum z_ that determines the
probability of transition from one shell into another in dipele
approximation to within several per cent is equal to r v+ (n, n' "
% 50), S0, for m = 40, n' = 41, £ = 2, the ratio z_fr ;v = -0.9%
(here we use for z. its quasiclassical value).
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2. Due te Coulomb degeneration the transition frequency
petween adjoining sublevels of ome and the same shell prove much
gmaller than Kepler frequency: 3en/20 % 0.1 << 1 for Ey = en® £ 0.06.
g0, despite the fact that the width of Stark multiplet exceeds the
distance between the shells 4% < &, the motion of sublevels proves
evnchronized and it is possible to substitute the whole shell for
one level. A proof of such approximation is given by the experiments
[2,3], where the observed resonant picture of excitation in the
field with £, = 0.06 corresponded to the unperturbed spectrum of
atom levels.

3. In the classical system when £ << n the dependence of €.,
and the rate of diffusion on I proves insignificant [11]. The
Hamiltonian (1) describes precisely the motion for the orbits with
eccentricity e = 1 stretched along the field. In the guantum system
the states with parabolic quantum numbers mj} = n = 1, ng =0 (or
vice versa) and close to them (nj e n,) correspond to such classi-
cal orbits. Let us see if this condition will be violated in the
course of time. To do this we shall consider unperturbed (e = 0)
phase—action variables corresponding to parabolic quantum numbers.
For these variables

Z=3n(n-ny + o T, Bagmy®Xli (@131 +mp)5)]
1 (2)
Bm]mz - —m1+lﬂ2 [].Jz:lr m {]Jl':ml + mg}}j ];12 (UQ{MI +m2}j -

' l-ll:iI 1;:1{“1(‘“1 'l'Illz})':.lfmZ{uz(ml + mz})],

b1,2 = [my 2(9-—ng,1){n2]1f2; A1s Ay - phases conjugated to my,ny;

where the derivative is taken over the argument of Bessel functionm.

According to the correspondence principle, the wvalues Em1m2 determine
ninj

matrix elements % of the transition between the unperturbed

levels withm; 5 = nj 5 = m 9. When n; >> ny (m = 0) matrix
elements for the transitions with the change of ny contain a supple-
mentary small parameter ny/n. The change magnitude of n; can be
estimated in the course of time in the following way. For w = @t and
€ > g, there starts a diffusion electron excitation. According to
the tﬁenretical estimates [11] the rate of diffusion over n and the
value of g., are:

- dn)? -1 ,
n dt 3
When € > e__ the phase }; changes randomly in the course of time,
which makes it possible to estimate the rate of diffusion over nj :
x Dn2 " (nzfn}znn_ From the above we see that in the course of a

7. = _l__
* Ser T Bank

D n (3)

numerical experiment T = wt/2r 5 50 at en” = 0.04, ny % 1 the change
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ins % 1 and so the one- dimensicnal approxlmatlon is not violated.
It is interesting to note that when en’ ngy << 1 the dynamics over
the second degree of freedom (“2- Ag) prove substantially quantyy,
since in this case the perturhatlun theory can be used [16]:
/it << 1 (m, # 0). Let us point out the fact that when m + m e
= const "~ 1 the matrix elements B my with m; - my >* 1 are expo-
nentially small. This proves Btlli more rigorously the effect
observed in the experiments where the shell shows itself as one
level [2,3].

To determine in quantative terms how good is the selected pre-
dimension approximation, we made a comparison with the results ot
numerical experiments for a real atom in a linear polarized field
carried out by F. M. Izrailev. The initial condition was given by
parabelic quantum numbers n, = n, = 1 ny = 0. The comparison was
made for n, = 10, 9 and showed a good agreement with the results
obtained in a one-dimensional approximaton. So, for instance, the
probabilities of excitation Hn}na into states with n > n, coincide
with the accuracy of 10 - 20%.

Hence, proceeding from the above arguments we can conclude

that the system (1) will describe in qualitative and quantitative q
terms the dynamics of Rydberg atom excitation from states np >> m
or ny << n, (and qualitatively from 1 % £ << nzfsj. Besides, this
model describes exactly the dynamics of surface-state electrons
excitation [17] in a variable field, directed perpendicular to the
surface of liquid helium and that is why its investigation is of
interest in itself. 1Tt was offered to carry out an experiment witi
such a system in reference [18]+.

3. NUMERICAL EXPERIMENTS

Simulation of gquantum dynamics of system (1) was carried out
in the following way. At the initial moment of time one level of
the unperturbed system with ny ~ 50 was excited. The fleld frequen:
was close to the Kepler one: mng =w, v 1 and the field sn =g
"~ 0.06. Further on we carried out & numerical integration cf
equations for amplitudes C, of the unperturbed Hamiltonian's states,

8 1
iC. = = o [0 4 L vun'cn" (4]

Thus, levels with ny; <n ﬁfnmax were only involved in the dynamics.
Since at the cited values of parameters € and w diffusion in the
classical system moves up along n [11], levels with n < n, are weakl:

* We note that the functional dependence eoplw) in [18] was not
found correctly (there is a mistake in f.(8)). See for a correct
answer [11]. I
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excited and that is why the accepted n

= ng:o < 10 proved sufficient.
puring all the time the probability H“min =

TE . |2 was at the
Dmin

level 107", and a further decrease of Opip did not influence the
dyvnamics of excitation. The working value of Dpax ©qual to ¥ 2n,
was selected in most cases. At the same time a number of control
experiments with ng.. = 2.7n, was carried out. A good agreement of
working and control points (see below) shows that in order to
investigate electron excitation into states of the discrete spectrum
within the time T = 40 periods of an external field, we can restrict
ourselves to a finite number of levels with Dpay & 2“?' At values
fgax = 2Ngs Ny = 50 and w = (I to come out inte a continuous spectrum
it is necessary to absorb five photons more as compared to states

n ™ Npay+ That is why it is quite natural to expect that the proba-
bility of multiphoton ionization will be relatively small. Besides,
the main aim of the experiments was to investigate the diffusion
mechanism of excitation, occurring for discrete states only.

In the process of numerical integration probabilities W, =
= |C,|? were found, accordin% to which the first My = <n - n_>/n,
and the second My = <(n-n,) >fng moments of distribution were
determined as well as Wnsng+4 ~ the probability of excitation in

states with n > n, + 4 and hnjail.innl - in states with n = [1.5n01

where brackets indicate an integer part. The step of integration
At was determined from the condition ¢ 4t 5 0.3 and it was
t condition ezp  n . AL & t wa

usually = 200 times less than an external field period. When it was
reduced two times the relative change of cited values and proba-
bilities W, > 1072 during the time T = 40 was less than 1% (for

1077 < Wy < 1072 the change reached 10%). The accuracy of conser-
vation of the complete probability W= I, W, = 1 was not worse than
0.1%. The caleculation of matrix elements z,,+ = ry,' was done
numerically according te the foermules given in [19], At n = 40
their agreement with classical values was 2 - 3%. The time of inte-
gration of one period of external field at Dy = 30, Dy = 63, €5 =
= 0.04, wy = 1 was = 15 seconds of computer ES-1060.

Together with the quantum dynamics simulation a numerical
investigation of the classical system was carried out. To exclude
the peculiarity at the point z = 0, it turned out to be suitable to
pass on from unperturbed phase-action variables (n,)) to new vari-
ables (n,£) and to a new "time" n, where the equations of motion
are:

¢ SR encoswtsing, de = ] =-cosE

dn dn (5)

%% = - % + 2encoswt(l —cosE), A = E-gin £.
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The initial distribution of classical trajectories in the phase
space was a line: n = nyp and equipartition distribution along the
phase wvariable ), which corresponded exactly to the initial con-
ditions in the quantum case (one level with m = n). The complete
number of trajectories was N = 1000. In view of the fact that ip
the classical system there was a finite number of levels a refleg;
boundary conditien at the corresponding np . was introduced in th
classical model., However, this had a weak effect on the values

= 1 = 00, =
Hnbno+& and wn3¥[l.5nu] So, for instance for g, i we =1,

T = 40 when reflection was replaced by absorption, their change
proved less than one standard deviation. The walue of the latter
was found by four groups, consisting of 250 classical trajectories
equally distributed along *. At the selected integration step the
accuracy of conservation of energy in a constant field, i.e., at
w =0, t €80 wng, Eq = 0.06 was better than 10, It should be
mentioned that the classical dynamics depend on scale variables
only e, = En;, W, = mng and at fixed values of the latter omes,
they do not depend on n, [6,20].

4. THE BRESULTS OF THE EXPERIMENTS

4) Une-Frequency Excitation

The main proup of experiments was conducted for values ng = 3,
45, 66 in the range of parameters Egs W, where a strong stochas-
ticity occurs, which leads to a diffusion excitation of a classieal
electron. However, despite the fact Ny >> 1 the obtained results
show that the exitation of an atom is of a fundamentally quantum
nature. In fact, as one can see in Figure 1, quantum averages are
close to classical ones only for a very short time T < T% = 5 peried
of an external field. When T > 1% a quantum diffusion limitation
is observed, because of which the excitation of a quantum atom prove
much weaker than that of a classical one. We note that the given
effect is not related to the finite number of selected levels.
Indeed, for n, = 45 when npgy = n, is reduced one time and a half
(to npzx = 80), the relative change My increases from 4% when 1 =
= 10 to 24% wvhen T = 40 and the ratio of the classical value My to
the quantum one changes from 2 to 6. Besides, the effective width
of distribution An = 5%<< ng . = = 52 and the probability on
levels with n = npy, = 97 is v 10-6. The classical value (An)?2
agrees well with the theoretical estimate (3) (&n)2 = Eagngt, But
to check it in a more detailed way, it is necessary to calculate
the local ceoefficient D, which goes beyond our paper.

It should be noted, however, that the proximity of the first
and the second moments of quantum distribution to their classical
values does not at all mean that the excitation occurs due to dif-
fusion. An example of this is the excitation from'n, = 30 at
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Fig. 1. Dependence of the moments of distribution on time for
classical (1) and quantum (2) atoms with g, = En; = 0.04,
Wy = mng =1, ng = 43, ng,. = 97.

=

£p = 0.04, wy = 1. In this case for 1 € 30 the difference between
gquantum moments and classical ones is smaller than 202 (except the
values T = 4,5,6,7 where it comes up to 1007 for HI). Nevertheless,
in the quantum case the dependence of excitation probabilities

un>n0+&’ wn¥=[1.5no] on frequency uw, is of a pronounced resonance

character and differs fundamentally from the classical one (Figure
2a,c). For w, = 0.9975, 7 = 30, n > 34 maximus of probability dis-
tribution fall on levels with n = 36,37,39,41,44,47,49,52,58 and 66.
These values (n # 36) approximately correspond to unperturbed reson-
ant transitions from the initial level n, = 30. For the last three
values of n the necessary number of photons k is equal correspondingly
to 10,11, and 12 (see Figure 2). For wy, = 1.002, 1t = 30 the main

contribution (63Z) into the probability W comes from levels
n*n,+4

with o = 35 (33%), 36 (18%) and 37 (12%). Despite the fact that

cl -
ose to the resonance wn;*[l.in ] makes up about 207 of the com

Plete probability, control experiments have shown that when ng,, -
= increased one time and a half, the change of probabilities of
excitation proves insignificant (see Figure 2a,c).
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Fig. 2. Dependence of probabilities of atom excitation W and

n:-no-i-.ﬁ
wn?[l.inﬂ,] on frequency wy, in the quantum (®} and classica

(a) case. For (a),(e): g, = 0.04, n, = 30, Opaw = 03 (¢
control points for the quantum system with ng,, = 80);
(b),(d): e, = 0.04, n, = 45, nge, = 97 ((+) - Ny, = 122);
(#) - quantum and (x) - classical values for €, = 0.04, n, =
= 66, ng,, = 143 (for “uam S0, classical values (&) are

given in Figure Zc); the values of probabilities are taken
at the moment of time 7 = wt/2n = 30. For (e),(f): g, =
= 0.06, n, = 45, T =12, n .. = 97 ((+) - the control point
with ng.. = 122). Arrows polnt to the position of reson-
ances and figures alongside to the number of photons and
the number of a resonant level. The curves are given to
complete a graphic picture.

Thus, in the investigated case the mechanism of excitation
proves not a diffusion but a multiphoton one. At that, up to k =10
photons can be effectively absorbed. For w, = 0.9%75, n, = 30,
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; = 30, 0.03 € g, 0.037 the experimental value k = 9.973 £ 0.006.

For n, = 45, €, = 0.04 excitation also is of a pronounced
resonant character (Figure 2b,d). However, we cannot connect the
ohserved resonances with multiphoton transitions between unperturbed
levels. For w, = 0,974, n > 49, 7 = 30 levels with n = 50-55,57,59,
$3,67,72,86 and 93 are the most excited. Even in resonance, absolute
values of probabilities of excitation happen to be much smaller than
their classical walues (Figure 2). However, so far as the field ¢,
grows, this difference decreases and at e, = 0.06 the probabilities
become comparable (Figure 3). Nevertheless, as is seen in Figure
2e,f, even if e, = 0.06, the mechanism of excitation is of a resonant
nature and resulrs in a more effective excitation than classiecal
diffusion does.

The dependence of the probability of excitation on the frequency
of an external field proves rather strong. 5o, for n, = 45, Ey =
= 0. = . = =103
0.03, wy =1, 1.3 for T = 40, the value wn3[1.5%1<2 107 and

the probability of excitation is two orders of magnitude higher for

s 04 o  ofe

Fig. 3. Dependence of the probability of atom excitation on field
EE for w, = lé n, = 45, T = 30, ??4x’= 97. Symbols (),
(*) correspond to quantum probabilities wu?fl.Enﬂ]'

i * i
wn>no+ﬁ and (&)}, (#) to classical ones.
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= = = - i
e 1¥2 0.707, 1 30 In the classical system wn?[l.l’mo]

changes in order of magnitude from 0.016 at wy = 1, T = 40 to 0,17
at w, = 0,707, T = 30. However, despite the fact that at we ™ 0.707
the probabilities of excitation and the moments of distribution y
and M, are close to their classical values (for M;, M; at 1 £
the difference = 30%), the dependence W ng+4” wnﬁ[l.f:nn] on the

frequency w, differs greatly from the class:.cal one. As it is
evident in Figure 4 the excitation of levels with n # 67 occurs ip
a resonant way, levels with n = 69,76,78,79,80,81 and 82 for uw, =
= 0.707 being the most excited., All nf them except n = 76 (W =

= 0.03) have about the same probability W, = 0.014. For the freque,
wy, = 0.697 the probabilities of EJEL‘ltBtlﬂl‘l of these levels are ome
nrder less and do not correspond to the positions of maximums H

An emergence of such a group of strongly excited close states {'.an be
qualitatively explained in the following way. After a small number
of periods (t = 5) the initial distribution spreads quickly. The
width of spreading is equal An = 7, and <n> = 49. As when neigh-
boring levels are nearly equidistant for all of them a simultanegus

0 g ,
7 073 07 05

Fig. 4. Dependence of probabilities of atom excitation on the
frequency wy when ng = 45, nggy = 97. Points (®) are
quantum values for e¢; = 0.03, 1 = 30, (A)-classical values.
The control point (+) corresponds to Npay = 122. Quantum
(*) and classical (*) values correspond to €, = 0.04, 1 = 15
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multiphoton excitation can take place. However, it should be noted
that the number of photons necessary for that is rather great: k =

= (EBO_EﬁE‘}fﬂJ = 20,

As the field increases up to e, = 0.04 the probability of exci-
ration wn?ﬁ[l.SnD] grows sharply from 0.062 to 0.26 (wg = 0.707,

1 = 15). When the frequency changes the values W are close to
n>ng+d

- f 1 & .
classical ones, but for quﬁfl.Eno] a resconance dependence on w, is

still observed, and the difference from the classical value of
probability is 100% (Figure 4).

As the frequency grows, the probability of quantum system exci-
tation becomes smaller than in the c¢lassical case. 8So, when Oy = 43,
= 0.04, wy = 1.3, 1 = 50 in the classical system Hn}no+a = D.3594

0.136 = 0.003 and in the quantum one (ny,, =

Lo

ke W o
= 97) - 0.18]l and 0.05]1 correspondingly. Quantum moments of distri-
bution My and M; are 2.5 times smaller than classical ones. The
same is valid for wg, = 1.25,

The growth of the number of initially excited levels up to
n, = 66 does not lead to a qualitative change of dynamics. So, for
En = 0.04, wy = 1.01, T = 35 the moments of quantum distribution are
rather (= 4 times) smaller than the classical ones. Besides, the
quantum distribution breaks sharply at n > 76, This is its funda-
mental distinction from the classical one, which diminishes wvery

1 1
slowly at great m. As a result the classical value of hné EI.SnDJ

is about 5 times greater than the quantum one (Figure 2d) and W,.7¢=
= 0.23 is 5.4 times greater. The dependence of the probability of
excitation on frequency also differs from the classical one (Figure
2b,d}. A significant role belongs here to the multiphoton mechanism
of excitation. 8o, for wy, = 1, 7T = 20 maximums of distribution Wn

at n = 60,76 and B9 approximately correspond to k = 7,8 and 15-photon
transitions from initial lewel (Figure 3).

b} Two-Frequency Excitation

4 number of experiments was carried out for the case when an
external field has two harmonies: £{t) = e(coswt + cosvwt). One fre-
quency has been fixed mng = w, = 1 and the second was being changed
in a small range near the values wj = vnJ = 0.7, 1.3. For the former
one a visible excitation of the classical system occurs at g, = eng 2
2 0.015. For smaller values spreading of the classical packet during
the time 1T = wt/2r € 40 proves insignificant (Figure 6a). But at
Eg = 0.02, 1 = 20 there appears already a developed stochastisity,
leading to a substantial excitation of the system (Figure 6b,c).

In the quantum case when £ grows the width of distribution grows as
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o Wn

o

(Y.

66 6 13 96 15 116

=

Fig. 5. Distribution over levels in the classical and quantum case:
when e, = 0.04, vy, = 1, ng = 66, T = 20, x ™ 143, The
broken line is the quantum distribution; points correspond
to cells of histogram of classical distribution with &n/n .
= 0.05, the smooth curve is given to complete a graphic
picture.

well (Figure 6) which agrees qualitatively with the idea of the _
diffusion mechanism of excitation. The probability of excitation of

levels close to n, {“n>nﬂ+ﬁ) is close to the classical one (see

Figure 7a), and the probability of excitation of high levels of
iﬂl}[l a1 iz much greater than that and is of a marked resonance

nature (Figure 7c¢). The latter points to the fact that multiphoton
excitation may also be rather substantial in the case of a wide dis-
tribution over levels (Figure 6b). In all the investigated cases
the quantum distribution turned out to be more cutting than the
classical one, peaks W, in a weak field correspond to resonance
transitions (e.g., in Figure 6a the peak at n = 51 corresponds to
S-photon resonance with ng, = 45).

For w; * 1.3, n, = 45, €, = 0.02 the quantum system is less
excited than the classical one (Figure 7b,d). So, for instance, for
wy = 1.27, n, = 45, €, = 0.02 the classical value M; is 3 times less
than the classical one, and M; is 300 times less. When n, comes up
to 66 probabilities of excitation are close to classical ones (see
Figure 7b,d for w; = 1.31, 1 = 40), but the first moment of quantum
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008 by

45 5% 69 15 85 &

Fig. 6. The same as In Figure 5 but in case of the two-frequency
excitation for n, = 45, wy, =1, T = wt/27 = 20, ng.. = 97.
(a) €5 = 0.01, wy = 0.70711; (b) g, = 0.02, w; = 0.735;
(c) €5 = 0.02, w; = 0.70711.

distribution at T » 10 differs 2 or 4 times from the classical ones
and at 10 < 1 < 15 has another sign. Sharp peaks (0.08 < W, < 0.12
for n = 61,67,70 and 71) about 1.5-3 times exceeding the classical
value W, are observed in distribution for 7 = 40. So, despite the
fact that in the quantum case a substantial spreadiﬂg of the packet
occurs (the excited number of levels &n = 20, Hi!HF = 0.8) quan-
tative characteristics of distribution somehow differ from classical
ones.,
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Fig. 7.
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Dependence of the probability of atom excitation on frequer
in case of two-frequency excitation when n, = 45, wy, =1, |
Opax = 97. (a),(c): for e, = 0.015 with quantum (*) and
classical (*) values; for €, = 0.02 correspondingly (®) and
{4), T = 20; (b),{(d): the same as (a),(c) but for T = 40.
Symbols (®), (x) correspond to the quantum and classical
systems when n, = 66, €, = 0.02, T = 40, ng., = 143. For

i is (&
W5 e1.50,3 e clasnical value 1s (4).

5. DISCUSSION

Thus the carried out experiments have shown that the diffusion
excitation of atoms in a field of the monochromatic wave from states
with n * 50 is rather suppressed.
starting with that which on the diffusion excitation will be close
to the classical one, can be obtained in the following way [13].
According to Equation (3) the number of diffusively excited levels I
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A simple estimate of wvalues n,




an grows with the number of periods 7 (w = Q) according to the law
() = D1 ™ 2(€Dnu)21. At the same time An determines an effective
number of lines in the spectrum of the wave function Ny * 4n. The
gpectrum can be considered continuous as far as Np # 1. As diffusion
needs a continuous spectrum the time of quantum diffusion limitation
is determined by the condition Ny (1*) ~ 1t* which gives

T* % 2(egn )2 ~ D, ' (6)

At €5 " Eop this time v* = ng, which agrees with the estimate given

: : > > =5

in [11]). Sinece © 2 Y. s 3 Eor a5 well as g5, > 1/n, (or e > n™7)

are the necessary conditions for diffusion, which corresponds to
going beyend the perturbation theory and exceeding the guantum
border of stability [16]1. Thus, for the diffusion to go over a large
time interval t* >> 1 in the field e, (at wy; = 1) the following
values are needed

n, *> lfe,. (7)
At £, = 0.03 this condition is satisfied by n, >> 30. Let us note
that the number of levels in one non-linear resonance 1is (ﬁn}r s

for € 3 n~® [11]. For g = 0.04, n, = 45 the value 1* v 6 agrees

well with the resulrs of a numerical experiment (Figure 1). But for
1* to become comparable with the characteristic diffusion time 1

u n%fﬂu & 1!2[5, we need to satisfy thie condition and it is necessary
to 1lncrease either the number of lewvel N, OF £4. At n, = 45, the
necessary value g, " (an}—lfz n 0.1. Computer experiments really
point to the fact that with the growth of the field, the probabilities
of excitation in the classical and quantum cases become comparable.
But with the growth of e the probability of various multiphoton
transitions grows also and can lead to a quicker atom excitation
(Figure 2e,f). A marked difference of the moments M;, M; from the
classical wvalues also points to the quantum nature of excitation in
the field with e, = 0.06. Thus for n, = 45, ¢, = 0.06, T = 12,

ws = 1 the quantum moments are greater than the classical ones (H% 2!

o

IHEEE = 1.8, 1.7) and for w, = 1.025 smaller than the classical onds

{H% zfﬁ%gz = 0.41, 0.56). The given estimates belonged to the case
whed a one-dimensional approximation can be used, i.e.; m >> ny "~ 1.
If n; , % ny the number of lines in the spectrum Ny % Anjlny "~ (ggng)
)?1. ’from which it is clear that the necessary condition of dif-
fusion excitation is g4 7 1/n,. However when e > e, the fulfilment
of this condition does not at all denote that there will be no quan—
tum diffusion limitation in the system (although the condition Np >
> 1 is fulfilled). This involves the fact that due to Kepler degen-
eration Np contains groups of very close lines, corresponding to one
ghell, which decreases its efficient value. That is why to find

the conditions of diffusion in the range n; , v mn, € > W Y Epr
(i.e., for n 2 50) we will need further investigation.
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When the frequency of excitation goes up the rate of diffusig,
slows down [11], which leads to a decrease of 1* ~ D (u)/u (n; <<
The marked growth of the probability of excitation at the decrease
of frequency can be qualitatively explained in the following way,
At €5 = 0.04, w, = 0.7 the value n = n, is in resonance, the centy
of which is at n, = num;1 5. This leads to an efficient increase
of the field ey + £4(n,/ny )" = equg’/? = 1.6c, and a more fast
classical diffuvsion. This effect was observed for the classical
atom in [20). This sort of explanation is suitable for the dif-
fusion mechanism of excitation only, since in case of the multi-
photon mechanism the probability of excitation should decrease with
the lowering of frequency. So, the resonance dependence on Wey
observed in the experiment (Figure 4) is still being obscure. A
further theoretical explanaticn is alsoc needed for the results on
excitation from the states n, = 30,45 and 66 at w, * 1. So, for
instance, the theoretical formula, obtained in [21,11], gives value
W 10 orders less than the experimental one (n, = 30,

n=[1.5n,]

Figure 2¢).

In case of the two-frequency excitation a substantial spreading
of the initial distribution occurs (Figure 6), which corresponds
qualitatively to the picture of diffusion excitation. However, in
this case as well, & qualitative agreement with classics is observed

for the probabilities W only, while the dependence on frequency
nen,+ :

for HnE=[1.5nﬂ] is of a marked resonance nature (Figure 7). Since

the quantum diffusion limitation for gquasiperiodical excitation
shows much weaker than for the periodical ome [22], the most optimm
case for the diffusion mechanism is the one of two-frequency exci-
tation. But in this case as well, at £, = 0.02, w,,w; ~ 1 the values
n, = 66 are still in the quantum range (M; differs greatly from the
classical one). The reason for this difference is evidently con-
nected with the fact that even for n, = 66 the exceeding of the
quantum border of stability e, >> €, = 1/ng at €, = 0.02 proves
rather small. According to the results obtained for simple models
[22], it should be expected that when n, increases the time of
quantum diffusion limitation will grow exponentially. This question,
however, needs further investigation.

For one-frequency excitation quantum corrections lead to a
substantial difference of distribution characteristics from the
classical ones. This result testifies to the fact that the coinci-
dence of the ionization probability of the classical system [6] with
the one obtained in the experiment [1] is evidently accidental. 1In
fact computer experiments have shown that for n, = 66, w, = 0.4327,
Ep = 0.061 already at T = 3 quantum moments are 1.7(M;), 1.8(Mj)
times smaller than the classical ones, and therefore the classical
description of ionization is not applicable in this case. The
probabilities of excitation ‘are alsc smaller than the classical ones
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(for T = 3 the probabilities W = (0.23 and

neng+4 2[1.5n,]

corresponding quantum values are equal to 0.29, 0.1).

= 0.45, W
n

6. SUMMARY

The investigations carried out have shown that the excitation
of atom from states with n £ 66 by a2 monochromatic field with the
frequency close to the Kepler one (w = n~3?) and amplitude € ~ 0.04n™"
ic of a fundamentally quantum character. The reason for this lies
in the fact that on the one hand quantum corrections lead to a
quantum diffusion limitation [12,13], and on the other hand there
may be strong multiphoton transitions in the atom, that result in
many cases in a stronger excitation than the classical diffusion.
When €5 % 0.04, wy, = 1 the probability of excitation out of the
resonance may be one order of magnitude smaller tham the classical
one. 5o far as the field grows the probabilities become comparable,
but differ 2-3 times from each other depending on the frequency ug.
A more efficient atom excitation is observed in the case when the
frequency w, < 1. BSo, when g5 = 0.03, n, = 45 the decrease of the
frequency from wy = 1 to w, = 0.7 involves an increase of the proba-
bility wnE’[l.Sn ] by 2 orders of magnitude. At an increase of the

there is no such effect.

In the case of the two-frequency excitation in the range of
stochasticity there occurs a significant spreading of the packet
over unperturbed levels. But, in these conditions as well, when
up to 20 levels are excited efficiently, the probability of exci-
tation may have a resonant dependence from the frequeney. GQuanti-
tative characteristics of quantum distribution differ from the
classical ones.

Thus, quantum diffusion limitation leads to the localization
of the distribution over a relatively small group of unperturbed
levels, from which strong multiphoton transitions start later on.
The probability of the latter is significant and cannot be explained
by available theoretical estimates. The investigation of the
dynamics of excitation in the region where the quantum diffusion
limitation takes place can be conducted in experiments similar to
[1-3]. Conditions of the one-dimensional approximation will be
satisfied if the states with strongly different parabolic gquantum
numbers (n; “7<< nj) are excited. Modern experiment methods make
it possible to perform this with a high accuracy [231.

The author expresses his sincere gratitude to B. V. Chirikov

for his attention to ;his work and valuable comments, and to N. B.
Delone, F. M. Izrailev and V. P. Krainov for helpful discussions.
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