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The interaction of three-level atoms with a two-mode classical electromagnetic field is considered
in the case when transitions between all levels are allowed. It is found that for exact resonance with
field frequencies the dynamics is chaotic in the rotating-wave approximation, i.e., for an arbitrarily
small atomic density. The possibility of experimental observation of this phenomenon for Rydberg

atoms is discussed.

PACS numbers: 05.45.+b, 31.60.+b, 42.50.—p

After the pioneering work of Jaynes and Cum-
mings,! the problem of a collection of two-level atoms
interacting with a self-consistent field in a resonator at-
tracted the attention of many physicists (see, e.g., Al-
len and co-workers? and references therein). To an-
alyze the interaction the well-known rotating-wave ap-
proximation (RWA) is usually used. The validity of
the RWA is based on the fact that for ordinary density
of atoms p the dimensionless coupling constant is
small,

A= (16mpd/iw)? << 1, (1)

and the nonresonant terms may be neglected (here dis
the dipole moment and w is the transition frequency).
In this case the motion is integrable.!"> For A ~ 1 the
influence of nonresonant terms becomes significant
and leads to the failure of the RWA and chaos.>~> The
review of works in this direction is given by Ackerhalt,
Milonni, and Shin.® However, it is important to note
that the realization of this interesting regime for optic
frequencies requires extremely high density, p ~ 102!
cm~3, which makes its experimental observation very

difficult. |

€+ wle, =4mwipd(CI Cy+ C,C5 + C3C3+ C,C1),

fC1= - (GldC2+€2d1C3),
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iC2=wC2-€1d(Cl+C3),

In this paper, on the basis of the RWA, we consider
a model of an atom in which chaos exists for A — 0.
In the model the atom has three approximately
equidistant levels. The transition matrix elements
between all three levels are different from zero and we
assume that Vi;= V,3=d, Vi3=d;#0. Such a system
may be considered as a model of the hydrogen atom
excited in the states with magnetic and parabolic quan-
tum numbers m =0 and n; >> n, ~ 1. As these states
are very extended along the field direction we obtain a
one-dimensional atom.” If the main quantum number
n >> 1, then the spectrum is close to equidistant and
its three levels give the suggested model with
d=~0.325n* and d;/d=~0.344. Here we use atomic
units and numerical factors taken from Shepelyansky’
and Goreslavsky, Delone, and Krainov.® The essential
new element is the possibility of direct transition 1 — 3
which is comparable with the transitions 1— 2 and
2— 3. This leads to an effective excitation of two
modes of the field if the resonator frequencies are
close to the transition frequencies.

The interaction of three-level atoms with a two-
mode electric field in the RWA is described by the
equations*®

'€'2+w%€2=47'rw%pd1(C1*C3+ CIC; ),
. 2)
iC3= (2w+Aw)C3— (61dC2+€2d1C1),
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where €, ; and w; , are the field strengths and the frequencies of the modes in a resonator, C| ; 3 are the probabili-
ty amplitudes of the levels. The frequencies of transitions 1 — 2 and 2 — 3 are accordingly equal to w and v + Aw,
fi=1. The equations (2) are obtained for the case when Aw << w and A << 1. These equations may be written in

the Hamiltonian form. To do this it is convenient to introduce action-phase variables:

C=QI)V2e", ¢ /o, +ieg=(16mpw ) V2e®*; j=1,2,3, k=1,2.
J J

Then in the RWA we obtain the Hamiltonian
H=5L+Q2+8);+vJ,+vyJ;

— AL L)Y 2 sin(gy —0,+0,) + (J1 1) V2 sin(¢p; —05+0,) + D(J, [ 1) 2sin(b,— 0, +6,)1,  (3)

where 8 =Aw/w, v, =wi/w, D= (wyw,)"*d,/dand dimensionless time ' =wt The system (3) has two additional
integrals of motion: Hy=1,+2I3+Ji+2J,and I, + ,+ 3= ;— The last one corresponds to the probability con-
servation. After introduction of three new linearly independent phases ¥=¢,—0,+6;, ¥V,=¢,—20,+26,,
X3=63;—260,+6,, conjugate to actions J;, J,, I3, and new time 7= — A+’ we obtain the Hamiltonian

K=Kg+AL+A"(vi=1D)J;+ (wy—2)J,],

Kp=/\(3+ L+2J,+J,— Hy) (Hy—213— J; — 2J,) 12 sin¥,

+ (W (Hy— 21— J; = 2J)12sin(W — X3) + DU/ I3( 5 + 3+ 2J,+ J; — Hy) 1V2sin(W, — X3),  (4)

where A= —38/A. For exact resonance (A=0, v,
=2v,=2) the dynamical behavior of system (4) is
determined by the resonance Hamiltonian Kg and
does not depend on the small coupling constant (1).
Therefore, if the motion of this system is chaotic then
chaos exists in (2) for arbitrarily small A. This beauti-
ful phenomenon has been discovered and examined by
Ford and Lunsford® for the problem of three interact-
ing waves. The same effect arises for the interaction
of homogeneous classical massive Yang-Mills fields.!”
Notice that the Kolmogorov-Arnol’d-Moser theorem
is inapplicable to this case because of isochronism of
system (3) at A=0.!

The investigation of system (4) has been carried out
by numerical simulation for v,=2v;=2. At first we
consider the case of exact resonance with A=0. Nu-
merical experiments have shown the existence of the
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FIG. 1. The maximal Lyapunov exponent Ay for the case
of exact resonance in (4) with Kzx=0. Solid line corre-

sponds to Hy=0.985 and dashed line to Hy=0.464. For
the dashed line A is multiplied by 10.
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chaotic component which is characterized by the maxi-
mal positive Lyapunov exponent Ag. Its value
depends on the integrals of motion Hy and K and
determines the maximal exponent A = A\ in system

L2y Lo By (») (a)

FIG. 2. The normalized power spectrum of the dipole
moment d;3(7) for the trajectories of Fig. 1: Py(v)
=wAPW)/dE, dv=|v—20|/Aw; (@) Ag>0; (b) Ag=0.
The logarithm is decimal.
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FIG. 3. The histogram of the distribution of Az for the
system (4) with A=0, v,=2v,=2, D=4, and Kg=0
(J;=J,=0at 7=0). Ns is the number of trajectories with

Ag in the corresponding interval. Inset: The dependence of
Ag On Ho.

(2). The positivity of A involves the positivity of
Krylov-Kolmogorov-Sinai entropy A=A >0 and is
one of the most effective numerical criteria of chaos
(see, e.g., Lichtenberg and Lieberman!?). An exam-
ple of the calculation of Ag for chaotic (Ag > 0) and
stable (Ag=0) trajectories is shown in Fig. 1. The
field in a resonator initially was equal to zero (zero-
field state with J,=J,=0, Kx=0). The power spec-
trum P(v) of dipole moment dy;(1)=+d,(C}Cs
+ C,C5) for the trajectories of Fig. 1 is shown in Fig.
2. At Ap =0 the spectrum contains only discrete lines
but at Ag > 0 it becomes continuous. In the last case
the main part of power is concentrated in the frequen-
cy region &v = |v —2w|/Aw =1. The spectrum P(v)
was obtained by taking a 16 384 fast Fourier transform.

A share of the chaotic component S was determined
for the zero-field state in the following way. 100 tra-
Jectories with random values of /;,6; were taken on a
surface /; + I+ I;= 1 and for each of them the value
of Az was computed. Then the number of trajectories
with A g > 0 yields the share of chaos S in percent. For
the extended states of the hydrogen atom D =+/24,/
d= %. In this case S =56% was obtained. The distri-
bution of values of Ay is shown in Fig. 3. The average
value is (Ag) =0.016. The maximum A corresponds
to |C3/?=1 and Hy=1. The dependence of Az on
H, (see Fig. 3) was obtained by averaging over small
interval AH, for trajectories with A > 0. The rela-
tively small scatter of values Az from one interval A H,
(AMg/Ng ~ 77) indicates the absence of an additional
integral in (4). Qualitatively the same type of motion
takes place also for Kz~ Hy—~ 1. However for
Hy>>1 the dynamics become more stable because
here the field dependence on time may be considered
as a fixed one.
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FIG. 4. The dependence of the share of the chaotic com-
ponent on the parameter D=+/2d,/d in (4) at A=0, v,
=2v;=2, initially Jy=J,=0. The dependence of S on the
detuning A is shown in the inset for D= . S is measured
in percent.

The motion of system (4) depends on two external
parameters A and D(v,=2v;=2). For A=0 the
share of chaos S is significant even for as small a ratio
d)/d as 3 (see Fig. 4). From the numerical data ob-
tained it follows that a significant chaotic component
takes place only for A < A,=1. Using this value and
expression (1) we can determine a critical density of
highly excited atoms p. above which the interaction
with the self-consistent field leads to chaos. In the
case of exact resonance v,=2v; =2 the critical value
of the coupling constant is equal to A= —8=3/nand
for extended states we obtain

pc=4x10**/n’ cm~3. (5)

For such a density pc(agn?)® ~ n~> and therefore the
gas of atoms is dilute. For n~70 the density p.
~10%® cm~3. Here we need to note that for exact
determination of pc for atoms with n >> 1 it is neces-
sary to take into account the interaction with other
nearby levels which are also close to the resonance.
The allowance for these levels apparently will lead to a
decrease of pc and one needs a separate investigation.
Another interesting question is the quantization of an
electromagnetic field in the region of chaos as has
been done for the two-level model with A ~ 1 by Gra-
ham and Héhnerbach.!?

The present high level of experiments with Rydberg
atoms'#-1® allows one to excite extended states'* and
makes it quite possible to observe the described
phenomenon in laboratory.

The author expresses his deep gratitude to B. V.
Chirikov for attention to this work and valuable com-
ments.
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