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The excitation of multi-level systems by a periodic field is considered in the regime of quasiclassical diffusion which takes
place in the region of classical dynamical chaos. It is shown that quantum effects lead to a limitation of diffusion and to the
localization of quasienergy eigenfunctions (QEE). The expression for the QEE localization length in terms of the classical
diffusion rate (/= D/2) is obtained and the analogy between this phenomenon and the Anderson localization in solid-state
problems is analyzed. The localization length for photon transitions in the energy spectrum is found.

1. Introduction

In recent years a number of experiments on the
ionization of Rydberg (highly excited) atoms and
dissociation of molecules by a strong monochro-
matic field have been carried out [1-5]. A char-
acteristic peculiarity of such processes is the large
number of absorbed photons N, ~ 100 and the
excitation of many unperturbed levels. Due to this
the dynamics of excitation may be described in
the first approximation by the classical equations
of motion. Such an approach was used for mole-
cules in ref. 6 and for Rydberg atoms in ref. 7.
The process of excitation obeys the diffusion law.
The appearance of diffusion in the absence of any
random forces is connected with the chaotic dy-
namics of the corresponding classical system. The
nature and the properties of such chaotic motion
in classical mechanics is now well understood
[8—10). At the same time an investigation of sim-
ple models has shown that the dynamics of classi-
cally chaotic quantum systems has a number of
peculiarities (see, e.g., refs. 9, 11 and 12). The
most interesting one being the quantum diffusion
limitation [11-16]. This limitation is due to the
localization of quasienergy eigenfunctions (QEE),

(QEE decay exponentially with the serial number
of unperturbed levels.)

We carried out an investigation of the QEE
localization mainly on the examples provided by
two models. The first one is the quantum rotator
model which has been investigated in refs. 11-13,
18, 20, 27-29, 32-34, The second one is the
Akulin-Dykhne model [17] which describes a gen-
eral picture of the excitation of a system with
irregular spectrum by a monochromatic field. It
has been introduced as a model for the molecular
excitation in a laser field. With the help of a
simple estimate based on the uncertainty relation
between frequency and time, which was first used
in ref. 12, we obtain a simple expression for the
QEE localization length in the rotator model (eqs.
(7) and (13)). The generalization of this result and
the estimate (7) is used to find the value of the
length in the Akulin—-Dykhne model (section 7).

We have checked and confirmed the theoretical
results for the quantum rotator by a special
numerical method. The advantage of this method
consists in the fact that it allows to evaluate the
value of the QEE localization length without the
computation of the exact QEE. Indeed, we show
that this evaluation can be reduced to a computa-
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tion of the Lyapunov exponents (LEX) in some
auxiliary classical Hamiltonian system. Due to the
linearity of the Schrodinger equation, the equa-
tions of motion for this system are linear, with the
coeflicients explicitly depending on the serial num-
ber of the unperturbed level, which plays the role
of a discrete ““time”. For one-dimensional systems
the number of equations is determined by the
number of unperturbed levels effectively coupled
after one period of the field. This approach for the
investigation of QEE was introduced in ref. 20.

There are two simple limiting cases for the
obtained system of linear equations. The first one
is the case in which the coefficients of the system
periodically depend on discrete “time” (the serial
number of the level). In that case the quasi-energy
spectrum is continuous and the QEE are delocal-
ized like the Bloch eigenfunctions in a perfect
crystal. The second case corresponds to a random
dependence of coefficients on “time”. This situa-
tion is analogous to the quantum motion in a
random potential. The analogy between these two
physical problems has been established in ref. 18.
In a one-dimensional random potential all eigen-
states are localized, which is the well-known
Anderson localization [19, 30]. This corresponds
to the localization of all QEE [18]. In this ap-
proach the serial number of the unperturbed level
plays the role of a spatial coordinate.

However, in spite of the usefulness of the anal-
ogy between the Anderson localization and the
localization of dynamical chaos we need to stress
two important differences between them. Firstly,
the absence of randomness in the dynamical sys-
tem, and secondly, the QEE localization occurs in
a quite different class of systems than those con-
sidered in solid-state problems. In this paper we
illustrate these differences mainly for the rotator
model and the Akylin-Dykhne model. Another
example is the diffusive photoeffect in a hydrogen
atom (see refs. 14-16).

The contents of the paper is as follows. In
section 2 we describe the rotator model and the
LEX method, find the corresponding solid-state
Hamiltonian, and give the estimate (7) for the

localization length /. In section 3 we obtain exact
expressions for / in the dynamical Lloyd model
and the quantum standard map, and compare
them with the numerical results. The localization
length for the steady-state distribution / (#/) is
obtained in section 4. The main results of sections
2-4 were briefly reported in ref. 20. In section 5
we discuss a simple variant of the Akulin-Dykhne
model which can be reduced to the Anderson
model. The conditions under which the excitation
of systems with many degrees of freedom may be
considered within the framework of one-dimen-
sional localization are obtained in section 6. In
section 7 we find the QEE length for the excitation
of typical multi-level systems by a monochromatic
field.

2. The quantum rotator model

In order to investigate the motion of quantum
systems which are chaotic in the classical limit we
chose the generalized model of a quantum rotator
with the Hamiltonian

ﬁ=H0(ﬁ)+V(0)8T(1), (1)

where 7= —id/38, 6,(¢) is the periodic delta-
function with 7 the dimensionless period, 8 the
phase variable, V(6) the external perturbation,
A =1[11-13, 18]. Here H,(n) determines the en-
ergies of unperturbed levels n. The dynamics of
the corresponding classical system is determined
by the equations of motion with the Hamiltonian
(1), where n, § are canonically conjugated action-
phase variables. After integration over a period T,
we obtain a map

dH,(7)

%
B (2)

71=I’1—a—0,

6=0+T

where 7 and @ are the values of the variables 7, 8
after a period 7. For strong perturbation the
resonances overlap [8] and then the action grows
beyond any limit according to the diffusion law:
{(An)*)y = D7, where 7 is the number of periods.
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Generally, the diffusion rate D is a complicated
function of the system parameters. However, in
the region of a strong chaos the phases 6(t) are
random and independent. This allows one to use
the quasilinear approximation in order to calcu-
lated D [10]. In this case the diffusion rate is equal
to

1 2q( AV \?
aﬂ=7;4 “ﬁ)d& (3)

The quasiclassical condition is satisfied if the
number of levels excited in one period is large:
D > 1, and if the dimensionless parameter 7 < 1
(Txh)[9, 11-13].

The main part of our investigations was carried
out for the quantum standard map

-2
ﬁ=%+kcos€8T(t). (4)

The motion of the corresponding classical system
is described by the standard map [8-10]:
p=p+Ksinf, 6=0+p, (5)
where p=Tn, K=kT. For K<K_=09716...
[24] the change of n is finite |An| < ‘/k/—T, but
for K> K_(An)?* grows according to the diffusion
law with the rate D = Dy(K)/T?, where Dy(K) is
the diffusion rate in p in the standard map (5).
Within the chaotic component the dependence of
the diffusion rate on K may be approximately
described by the following expression [25, 13]:

2
D, = §(1+25(K)+2E%K», K>4.5,
0
0.30(AK)’, K <45,
(6)

where J,(K) is a Bessel function, AK=K -~ K.
For K > 4.5 the dependence of D, on K has the
form of oscillations which decay as K grows. The
limit value Dy,= K?/2 corresponds to the quasi-
linear approximation (3), when the phases 8(7) in

(5) are random and independent. For K — K we
use in (6) the empirical formula which was ob-
tained from numerical experiments in ref. 13. The
value of the exponent 7 =3 in the power law
D, (AK)" is close to that given in ref. 26.

Numerical experiments [11-13, 27, 28] with the
quantum standard map have shown that in the
course of time (n?) stops growing. This means
that the external field effectively excites only a
finite number of unperturbed levels (An ~ /). An
analogous result was obtained in ref. 29 for the
dynamical Lloyd model with V/(8) = 2 arctan ( E —
2k cos 8), and H, = /#2/2 which was introduced in
ref. 18. It is natural to interpret this effect as the
result of the QEE localization which is analogous
to the Anderson localization in a one-dimensional
lattice [18, 13, 20]. For the number of excited
levels and the localization length of QEE, the
following theoretical estimate was obtained in refs.
12 and 13:

l=aD~An~np, (7)

where a is an undetermined numerical constant.
The derivation of (7) may be done in the following
way. Let one unperturbed state contain / QEE
with quasienergies ¢,. Since all these ¢; are distrib-
uted within the interval [0, 2#], its average spacing
is equal to Ae ~1// (here we consider the case
when the unperturbed levels are uniformly distrib-
uted in this interval). If initially we excite one
unperturbed state then the diffusion will continue
during the finite time 7, until the discreteness of
the QEE spectrum becomes effective. According to
the uncertainty relation, 7, ~ 1/Ae ~ I. After this
time the number of diffusively excited levels will
be equal to An ~ (D1,)'/2 ~ I. From this relation
we obtain eq. (7). The condition for its applicabil-
ity is D> 1. In the case of a d-dimensional
unperturbed system the number of excited levels
An~(D; --- D,)"/?7%/2 and hence in the absence
of a degeneration of levels the condition for the
quantum limitation of chaos takes the form

2
2 (Dy -+ D) g, (8)
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For d=1 we always have localization. For d > 3
the delocalization takes place if D, --- D,;>= 1.
This condition corresponds to the Anderson crite-
rion {30] (a small random potential provides fast
diffusion and large conductance). For d=2 the
estimate (8) gives the delocalization for D, D, > 1.
However, a more rigorous consideration shows
that in this case the localization always takes place
but for D, D, > 1 its length is exponentially large:
In/~ D,D, (see, for example, ref. 31 and refer-
ences therein). For any d it follows from (8) that
the localization always takes place if each D, < 1.
This case corresponds to the quantum stability
border [6].

Let us consider now the equation for the eigen-
function with quasienergy ¢ [18]:

i(e—THo(n)) ,+
no

Wt (8) =e VOu(9).
9)

u,=e

Here u7(#) are the values of the function u
before and after a kick 8(¢z) and uF are the
Fourier coefficients of u*(#). After simple trans-
formations eq. (9) may be rewritten in the form

A

. 14 e T 4 V 1. 4
Hu= {cosjtan(i - 7H0) cos5 — 7smV> u
=0, (10)
where u=e*"/2y* After the Fourier transfor-

mation e "2 =3 W el"¥*9) it is easy to see

that the Hamiltonian H_ corresponds to a one-di-
mensional lattice with interacting sites and energy
E=-X W W sing,cosp_,. In such an ap-
proach the quasienergy ¢ determines the potential
of interaction and the eigenvalue of energy E
plays the role of a parameter. Moreover, the num-
ber of unperturbed levels n in the model (1)
corresponds to a discrete spatial coordinate in the
lattice.

Since all eigenfunctions in a one-dimensional
random lattice are localized [19] it is natural to
expect an exponential localization of QEE in (1).
If cos(V/2) # 0 we may introduce u = cos(V/2)u
and divide eq. (10) by cos(V/2). After that we

reduce the problem to the case with Hamiltonian
H = tan[e/2 — (T/2)I-}O] —tan(V/2). This pro-
cedure was implicitly used in ref. 18. However, it
is necessary to stress that this approach leads to
the appearance of a nonphysical singularity which
does not allow for an analysis of the wide class of
potentials with | V(8)| > .

The form of eq. (10) is convenient for exploiting
the analogy with the solid-state problems. How-
ever, for numerical experiments it is more con-
venient to rewrite eq. (9) and (10) as follows. We
introduce u = e *1"?u* /g, where g(#) is an arbi-
trary real function (we will consider the case when
g and V are even functions of ). Then we obtain
from (9) the equation

Y, W,sin(x,+¢)=0, (11)

where
e Vg =Y Weit0te)  x = (e—THy(n))/2.

Let us assume that in (11) only W, with |r| <N
differ from zero. Then a column of 2N known
values of u, determines the value of QEE for an
arbitrary n. The recursive computation of u, from
(11) may be considered as the motion of a dy-
namical system in the discrete time n. The dy-
namics of the 2 N-component vector is determined
by a transfer matrix M,, the expression for which
may be easily obtained from eq. (11). It may be
shown that the product of matrices M, can be
transformed by a rotation into a simplistic matrix.
Therefore, the dynamics in » is Hamiltonian and
there are N positive and N negative Lyapunov
exponents (LEX) y* = —v, > 0 (see, for example,
ref. 10). Asymptotically, the localization length of
QEE is determined by the minimal positive LEX
v: = 1/1 [20-22]. The fact that vy, is different from
zero leads to an exponential localization of QEE
and to a discrete spectrum of quasienergies. The
numerical method of computation for all LEX is
described, for example, in ref. 10. This method
allows not only to find all y,, but also to determine
the dependence on n of the norm |jul"| =
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(22N, 1wl 1*)!/? of an eigenvector corresponding
to a given exponent. In solid-state physics the
LEX method is known as the transfer matrix
method. This method is extensively used for the
investigation of localization in two- and three-
dimensional solid-state systems [21, 22]. For dy-
namical models it was first applied in ref. 20, and

later in ref. 23.

3. Localization of QEE

Let us consider the rotator model with potential
V = 2arctan ( E — 2k cos ), which was introduced
in ref. 18. Taking g=1/cosV /2, we obtain
Wyel%o=1—1iE,W_,e'%+1 =ik and W,=0if |r|
> 1. Eq. (11) now takes the form

Eu,+ku,, ,+ku, ,=Eu,, (12)

where E, = tan x, and we dropped the bar on u,,
In the case when the phases x, are random and
independent in the interval [0, 7] eq. (12) corre-
sponds to the well-known Lloyd model [18, 19].
For this model the exact expression for the local-
ization length is known (see, e.g., refs. 18-20), and
for /> 1 it has the form /= y4k? — E*. This may
be used for the determination of the numerical
factor in eq. (7) {20]. Due to the randomness of
X ,» the phases 8(7) @ 9x,/dn in (2) are also ran-
dom and independent, and D = D,,. The calcula-
tion of the integral in (3) for D;,>1 and the
comparison with / gives a = 1.

The same method of calculation for / can also
be applied in a more complicated case when the
interaction connects 2N sites and the potential
has the form ¥V =2arctan(E — 2k¥LN_, cosm#).
According to (7), [ = D,,/2 = 2kN?, where the last
equality takes place when D ,> N. All values of
D, were obtained by numerical calculation of the
integral in (3). These values are in good agreement
with the experimental values obtained by the LEX
method (see fig. 3 in ref. 20).

Now we consider the dynamical Lloyd model
with Hy=n2/2 (N =1). Then the phases x, are

not random. Moreover, for the rational values of
T/d4nr=p/q, E, in (12) becomes a periodic func-
tion of n, which corresponds to the case of an
ideal crystal with delocalized eigenfunctions. In
such a case of quantum resonance [32] the quasi-
energy spectrum is continuous and consists of ¢
zones. It was shown in ref. 33 that the continuous
component exists also for the special irrational
values of T/4w which are very close to the ra-
tional numbers. However, we conjecture that for
any irrational numbers 7/47 (so that C,q ' ¢ <
|qT /47 — p| < C;q* for any & > 0), the measure
of which on the interval {0,1] is equal to one, an
exponential localization will always take place with
the same exponent as in the Lloyd model (12) with
random phases x,,.

This conjecture was confirmed by the numerical
experiments based on the LEX method. They re-
ally showed that the localization length is the
same as in the case of random phases x,. The
parameters of the model were changed in the
intervals 0.01 <k <1000,10 < T<1,0<E<2.
The value of y was determined in the interval
1<n<n_,=10% and it did not depend on & and
T. The relative accuracy of y was equal to
(Ay/v)*=2/yn_, (see below).

The recursively obtained values of u, may be
considered to give a QEE in some interval of
n— oo. For T < 1 the dependence of u, on n is
in steps of size An ~1/Tn. With the growth of n
these steps decrease in size and for Tn ~ 1 they
disappear. An estimate for An may be obtained
from the condition Ax,=3TnAn~1. It is im-
portant to note that in the model under discussion
the quasiclassical limit (k> 1) always corre-
sponds to the region of strong chaos where /=
D,,/2.

The LEX method has also been applied to the
calculation of / in the quantum standard map (4).
Taking g =1 we obtain in (11) W, =J,(k/2), ¢, =
—ar/2,x,=(e— Tn?/2)/2, where J(k/2) is a
Bessel function. Due to the fast decay of W, for
|r| > k/2 it is possible to use a finite number of
sites N ~ k /2. The further increase of N is related
only to exponents y ~ 1. Another check consisted
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in verifying the relation y,;" + v, = 0. For a large »
interval of the order ~ 10° levels the sum of
positive and negative exponents was small: (y;” +
YO/~ 1072

The results of numerical experiments {20] show
that in the quasiclassical region T<1; 5 <k <75;
1.5<K<29 (T/47 is a typical irrational num-
ber) the localization length is satisfactorily de-
scribed by the formula

[=Dy(K)/2T*. (13)

This relation holds not only in the region of strong
stochasticity, K 2 4.5, where the measure of the
stable component is negligibly small [8], but also
in the region with AK=K - K_ <1, where the
diffusion rate is determined by a complicated criti-
cal structure [26] and the stable component covers
approximately 50% of the whole phase space [8].
The numerical results obtained demonstrate a
satisfactory agreement with the formula (13) in a
range of four orders of magnitude for the diffusion
rate (fig 1). However, it is important to note that
the relation (13) holds only in the case when the
localization length is larger than the number of
interacting sites 2N =k. In the opposite case
D,/2T?* < k, the diffusion is too slow and does
not lead to the increase of the localization length
!~ k. Thus the condition for the applicability of
(13)is

kK?
D,

k>kcr=

2
~ XK1 k>k., (14)
(AK)
where k= 1.3 is determined from numerical ex-
periments. The inequality (14), first obtained in
ref. 13, gives the condition for the so-called ho-
mogeneous (exponential) localization. In the op-
posite case, k < k_,, the localization length /~ N
~ k is comparable with the period of the reso-
nance structure An = 27 /T and, like the diffusion
rate, it is inhomogeneous too [13]. Examples of
homogeneous and inhomogeneous localizations are

b Rug(?T')
1
0
-1
| g’f
v
-2'
7

Fig. 1. The dependence of the localization length on the diffu-
sion rate D, in the classical standard map (5). The circles
represent the numerical data of ref. 13 for the values of /
obtained from steady-state distributions (15). The dashed line
corresponds to the average value (a ) = 1.04. The points show
the localization length obtained from QEE by the LEX method.
The straight line shows the theoretical localization /= D/2. In
the inset the numerical data from ref. 13 are shown, giving the
dependence of D, on AK=K- K, K, =0.9716... . Here
and in fig. 5 the logarithm is decimal.

AN s
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0 1000

Fig. 2. The dependence on n of the averaged quantity [u(")|
= @2~ 1ut 152 in model (4): (a) the homogeneous lo-
calization at k = 20, K = 5; (b) the inhomogeneous localization
at k=20, K=1.3. Periodic oscillations with An=2u/T are
related to the resonance structure. The straight lines show

experimental values of / obtained in the interval n,, = 5 X 104,
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shown in fig. 2. In the latter case, the size of the
clearly observed steps is equal to 27 /7. In con-
trast to the dynamical Lloyd model these steps
persist for the arbitrarily large values of n as well.
For example, the dependence of ||[u{| on » in fig.
2 is given in the region n=3 X 10* The reason
for this difference is apparently related to the large
number of interacting sites in the model (4). In the
region of stability (k > 1, K <« 1) the localization
is almost homogeneous due to a small amount of
nonlinear resonances. Numerically, the localiza-
tion length in this case is comparable with the
number of interacting sites: / = k /4.

The dependence of the diffusion rate D on the
classical parameter of chaos K (see (6)) leads to a
significant change of the localization length with
the parameter T even for a fixed value of k. An
example of this effect is shown in fig. 3. According
to (13), the localization length repeats all oscilla-
tions of D,. These oscillations take place for K >
4.5 and are given by the formula (6) in which we
may use the asymptotics of the Bessel function.
The difference of D from the quasilinear value is
related to the influence of the correlations: D =
Dy,{1 + 47 C(7)]. Here the correlation function
is C(r1)={sinf(r)-sinf(0)) and the averaging is
performed over the homogeneous steady-state dis-
tribution [25]. For K =5, C(7) decays very fast
with r and the main contribution to D is given by
C(2) = — 3,( KX C(1) = 0). The remaining corre-
lations give only small corrections [25]:

C(4)=357(K)~K!
C(3) = 4[J(K) —JHK)] - K2

The same method of computation for the diffusion
rate may be also used in the quantum model with
T=1, k> 1. In this case, a few first correlations
C,(7) = $(0|sin () sin §(0) + sin §(0) sin §(+)|0)
give the quantum diffusion rate D, using which we
can determine the localization length and, in such
a way, can take into account the influence of the
residual correlations [28].

In order to calculatg C,(7) it is convenient to
write the operator sinf(7) in a normal form with

respect to the initial operators 7(0) and é(O), as
was done in ref. 34 (for example, all 7(0) will be
on the right and GA(O) on the left). Using the
expression for sinf(r) obtained in ref. 34 and
assuming that the distribution in the phase space
is approximately homogeneous and, therefore,

<0| eimlﬂ(O) eimzﬁ(0)|0> - 8’"1,08

my,0

we obtain that the first three correlations are the
same as in the classical case, upon the substitution
K — K, =2ksin(T/2). The expression for C,(4)
contains an additional term which is usually as
small as C(4):

W= 2(k)+ T 5K s -K)

m¥ —2

><J2m+4(2k sin(%(m + 2)))
_sz(Kq)sz+2(2k sin(%(m + 2)))]}

Therefore, for T'> 1 the quantum diffusion rate is
approximately given by the expression (6) with
K= K =2ksinT/2. The numerical data for the
localization length at k=30, 0 < T <27 demon-
strate satisfactory agreement with the theoretical
value /= D /2 (see fig. 3). In the region T > 1 the
average ratio (I/D,) = 0.6 is slightly larger than
1/2; this is apparently due to the not very small
value of the ratio k/I=0.1. From (6) it follows
that the period of oscillations in D(K) is equal to
OK, =2m (see fig. 3). Therefore, at fixed T the
period in the dependence of //D,, on k is equal to
8k = = /sin T /2. Such oscillations for T=1,2 have
been observed in ref. 23, with the period in satis-
factory agreement with the above value.

Up to now we have discussed the properties of
the minimal LEX which determine the asymptotic
behavior of QEE. However, there is a spectrum of
LEX v, in the system (4). A typical spectrum of
this type is shown in fig. 4 for both the stable and
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Fig. 3. The dependence of the localization length in the quan-
tum standard map on the quantum parameter of chaos K=
2k sin T/2 — K. The circles and the curve are, respectively, the
numerical data and the theory for the classical diffusion rate
D(K) from ref. 25 (+ for0< T <o, X for m< T <2m).
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Fig. 4. The spectrum of the Lyapunov exponents in model (4).
Quantum chaos: k=30, K=35 (points); stable motion: k=
30, K = 0.003 (circles).

chaotic regimes. Each v, is related to an eigenvec-
tor which is cross-orthogonal to all the other
vectors. We conjecture that QEE is a linear super-
position of all these vectors and that the probabil-
ity of each vector is y,/N (y, appears in the
normalization condition).

4. Steady-state distribution

If we initially excite one level then after some
time the localization will lead to the steady-state
distribution of the probabilities over unperturbed
levels

f(n)= TILn:O %j;d'rf(n,'r).

The expression for this distribution function may
be obtained by using the QEE with quasienergies
g,,. If initially only the n=0 level was excited,
then

f(n) =X 19.(0) g, (n)*. (15)

From this expression it is easy to see that f(n)
is analogous to the density—density correlation
function in solid-state problems [19]. The numeri-
cal experiments [13, 20] have shown that f(n)
exp(—2|n|/l,) and /= D =2[ (see fig. 1). The
cause of the difference between / and [, is ap-
parently related to fluctuations of the QEE ¢,.(n),
as it was in solid-state problems. The QEE may be
written in the form ¢, (n) X exp(—vy|n—m|+
£¢,.,), where £, describes fluctuations with zero
average (£,,,> = 0. However, the second moment
may grow linearly with n: ((4%,,)*) = D, 4n,
that leads to different values of (1/n)In{|g,(n)|)
and {(1/n)In|¢,(n)|). For Gaussian fluctuations
we obtain

Ugo(m)y ~ [ exp(=yn+¢)

yn

§? _
2D£n)d$~e .

X exp

Then y,=1//, and

Dy
S=Y— 75, vzDg
y2 (16)
}’5:717&, Y < D,.
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Fig. 5. The product of the diffusion rate D, in QEE and the
localization length for different /. The circles are for the
dynamical Lloyd model (7=1), and the points for the quan-
tum standard map.

The value of D, may be determined by the LEX
method from In||u, |. To this end, the whole inter-
val n,, was divided into An, parts. The value of
(A¢,,,)? was computed for each part and then the
average ((A¢,,,)?) of these values was de-
termined. The value of y was computed in the
whole interval n,,. The results of numerical ex-
periments have shown that ((A¢,,,)?) indeed
grows linearly with n and have allowed to find D,
in the dynamical Lloyd model and in the quantum
standard map. In the former case the whole inter-
val n,, =5 X 10° was divided into An, = 500 and
1000 parts. The parameter k was changed in the
interval 2-100 and no dependence on T was ob-
served. The results obtained (fig. 5) show that
ID,=2 for [>1 and therefore /= 4/. This ratio
is the same as the theoretical one in the case of a
one-dimensional random potential when the lo-
calization length is much larger than the distance
between sites [19, 35].

The situation is more complicated for the model
(4). In this case we used n, = 10% An, =
200-1000. The dependence of /D, on / obtained
from ||u{V|| is shown in fig. 5 for the region of
strong chaos (5 < K<10; 5<k=<20; T<1).1tis
seen that for /> 1 the value of /D, is close to one
({(ID;) = 1.14). Therefore, [ =2I, according to
(16), is in agreement with the results of ref. 13.
The different values of the ratio / /I for these two

models are again due to the fact that in the Lloyd
model there are only two interacting sites, while in
the other this number of sites is N ~k/2>1. A
special check has shown that also in the model (4)
with random phases £, ID;=1. However, the
value of /D, decreases with K for K <1, and for
K <1 and k > 1 reaches the limit /D, = 1/4. No
theory exists so far to explain this behavior.

5. The Akulin—-Dykhne model

An interesting model of molecular excitation
was introduced in ref. 17: in the vicinity of the
energy ¢,, there is a zone of N nearby levels
labelled by the index m, and a monochromatic
field & produces dipole transitions with An = +1,
and the matrix element p. We consider the case of
a small zone width W <« w and a small perturba-
tion ¥V =&p <« w. Then one can neglect nonreso-
nant terms and obtain the stationary equation for
QEE [17]:

£¢nm=Anm¢nm+ Z Vn’:nm n'm’s (17)
n',m’
where A, =¢,,,— nw.

Now we consider several different cases. If N =
1, 4,,,=0, V" =V then (17) corresponds to the
case of a one-dimensional crystal. The quasienergy
spectrum is continuous, & p) = 2Vcos p (p is the
quasimomentum), and the QEE are delocalized,
thereby leading to an unlimited excitation ({(n?)
«7?). If A, are randomly distributed in the
interval [— W /2, W /2] then (17) represents a one-
dimensional Anderson model. All QEE are ex-
ponentially localized, and the excitation is limited.
The quasienergies lie in the interval [— W /2 —
2V,W/2+2V] and the localization length de-
pends on &. For W V, the length / <« 1. For a
small disorder W < V and ¢ ~ W, the length [ =
100(V/W)? (see, for example, ref. 36).
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For a zone with an unlimited number of levels,
randomly distributed A, and

Vlz’,n’ — V[(S,,‘n'—l(am,m"l + Sm,m’Jrl)

nn
+8n,n’+l(6m.m'7l + 8m,m'+ 1)]’

the model (17) corresponds to the two-dimen-
sional Anderson model. According to refs. 22 and
31 all states in the model are localized and for
e < W the localization length varies from /~ 1 at
V/W =007 up to I ~10° at /W = 0.5. Asymp-
totically, In/, ~ (V/W)? and the QEE decay ex-
ponentially with n: ¢, @ exp(—|n|/I,). For 1 <
N </ the localization length is proportional to
N: [~ N(V/W)% In the case when all 4,, =0
and only the matrix element V"™ fluctuates, all
QEE are also localized.

The typical variant of the Akulin—-Dykhne
model in which transitions from one to many
sublevels of the neighboring zones are allowed is
analyzed in section 7.

6. One-dimensional localization in many-
dimensional systems

At a first glance it seems that the localization of
chaos takes place only in one-dimensional systems
(Section 2) and i1s therefore a rather special phe-
nomenon. However, it may happen that under
some appropriate conditions such a localization
occurs also in multi-dimensional systems. Con-
sider a conservative system with d degrees of
freedom, the energy E and the density of levels
p(E). We assume that the motion of the system is
chaotic and that the energy is the only motion
integral. Then the motion on the energy surface is
diffusive and may be characterized by a diffusion
rate D, . If D is nearly independent of the direc-
tion then the time of spreading of a narrow quasi-
classical distribution function throughout the
surface is equal to 7, ~ E?/D,. If an external
perturbation periodic in time is added, then also a
diffusive growth of the energy will be observed
with the rate D, = (AE)?/Ar. This diffusion pro-

ceeds perpendicular to the energy surface, and 7 is
measured in the number of perturbation periods.
If the latter diffusion is slow enough then the
distribution function has time to cover the whole
energy surface. The change of energy in time 7, is
relatively small, AE= (D, E*/D )V? < E, if

D <«D,. (18)

Under this condition we conjecture that the num-
ber of excited levels grows as if it was a one-
dimensional diffusion: An=pAE ~ p/D 7. Here
we assume that in the interval AFE all levels are
excited with approximately equal probabilities.
This condition is satisfied if there are no special
selection rules for the matrix elements. Besides
that, for a high frequency w > 1/p it is necessary
to have p&= w, otherwise the excitation of non-
resonant levels will be small. If these conditions
are satisfied then the expression for the localiza-
tion length can be obtained, as in the one-dimen-
sional case, from eq. (7):

I=14%p’D ~An~r1),, 1E=£, (19)
where /. is the localization length in the energy
scale. The conditions for the applicability of this
equation are a large number of absorbed photons
N, =1;/w>1, and the excited levels An ~ /> 1.
For a monochromatic perturbation the diffusion
goes on only for pw > 1 and the first condition is
decisive. Also, it is necessary to have r,> 1,
otherwise the localization will take place faster
than the spreading of the wave function on the
whole energy surface, and the value of / will be
smaller than in (19).

The expression (19) holds in the case of inho-
mogeneous localization (when /. depends on E)
only if /,~pD < E. Instead, for /. > E the
delocalization takes place. For example, if pD, =
po E# then the delocalization occurs for 8> 1 and
po = E'7# (see also refs. 13 and 16).

Assuming that the above picture is true, we
discuss the motion of a particle in a two-dimen-
sional billiards under the influence of a periodic
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perturbation as an example of the described effect.
Let the Hamiltonian of the system be

P3 . . (X2
H=7+7+ksmxlsm(?)8r(t) (20)
and the wave function is equal to zero on the
border of the billiard, o = 1. In the case of a
righ-angled billiards with 0 < x;, < 7; 0 < x, < 7o,
the unperturbed spectrum is E,, = (n? +
n3/6%)/2. The average density of the levels is
constant: p ~ 1. For kT > 1 the motion can be
shown to be chaotic and diffusive excitation takes
place in each degree of freedom: (An,)? = (An,)>
= D7 with D~ k2 For D<1 the localization
length /<1 (the quantum border, see section 2,
ref. 6) and almost the whole probability is con-
centrated on the initial level. For D > 1 the local-
ization length is exponentially large: In/~ D (see
(8) and refs. 22 and 31). Now let the border be
deformed inwards, which corresponds to the case
of Sinai’s billiards (see, for example, ref. 10). Then
the dynamics would be chaotic even in the ab-
sence of the external perturbation. After one colli-
sion with a border, Ap ~p (the case of strong
deformation). Taking into account that the time
between collisions ~ E~!/2 we obtain D, ~
E3/2T. The diffusion rate is D, ~ Ek?. For high
energies the conditions (18) and 7, <7, are
satisfied and we predict one-dimensional localiza-
tion (19) with /, ~ Ek?. Due to the dependence of
I on E the localization takes place only for
k < 1. For k=1 the QEE are delocalized due to
the increase in the diffusion rate. The significant
difference from the integrable case (right-angled
billiards) consists in the fact that even for a small
perturbation (k << 1) the localization length may
be large enough, /~ /> 1if E> k™2

7. Localization of photon transitions

In the previous section we calculated D, as the
diffusion rate in the classical system. For a mono-
chromatic field there is another way of calculating

D . It is based on the expression for the probabil-
ity of one-photon transition per unit time: w =
(m/2)|p(E, E + w)|*%. In such an approach the
absorption and reabsorption of photons leads to
diffusive excitation of the system. At wp =1,
according to [14, 17, 37],

=2ww2:%r =274 %w. (21)

From (19) and (21) we obtain the localization
length of QEE which is conveniently measured in
terms of the number of absorbed photons:

ly= % =7’u’¢%* = Dyp, (22)
where D, = mu*6 % is the diffusion rate in terms of
the number of photons per unit time. This result
does not depend on the field frequency and there-
fore it is natural to think that the assumed condi-
tion ué'> w may not be necessary at all for the
derivation of (22). In order to confirm this conjec-
ture let us consider the situation when p ' < pé&
<< w, which corresponds to the typical variant of
the Akulin—Dykhne model (see section 4 in ref.
17). In this case, an effective excitation takes place
only for the levels close to resonance, lying in a
zone of width AE ~ p’6€?% near the energies of
one-photon transitions nw (levels with A <
1’6 2p in (17)) [17). According to (21) and [17]. the
number of absorbed photons (number of zones)
grows diffusively with time: N, = /mu’¢%:. In
each zone the number of excited levels is of the
order of u’62p*. Then the total number of excited
levels is N ~ yu’6 %t p°6%°. Since the excited
levels lie in narrow zones of width p’6% < w
near the energies nw, all quasienergies also lie in
an interval of width ~ p?6%. Their average spac-
ing is then Ae ~ u’6€°p/N. In the same way as for
(7), from the uncertainty relation, we obtain an
estimate for the time after which a limitation of
the diffusion occurs: 1~ 1/4e ~ N,p ~
VSV 2o

pyr’€pt;, and for the localization length, /, ~ N,
~ p?¢%p*. The obtained result is applicable in the
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quasiclassical region when /, > 1. For p&'< « the
steady-state distribution looks like a chain of
equally spaced (in energy) peaks with the maxima
exponentially decaying. Since, as in the case of the
quantum standard map, the number of interacting
sites is large the localization length of the steady-
state is equal to /, = 2/,. It is important to note
that the localization is homogeneous when pép =
constant. Therefore, quantum effects lead to the
localization of photon transitions and to a limita-
tion of the system excitation.

The estimates obtained for the localization
length of QEE allow to investigate the excitation
of different multi-level systems by a periodic field
when the standard perturbation theory is inappli-
cable.
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