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The excitation of multi-level systems by a periodic field is considered in the regime of quasiclassical diffusion which takes 
place in the region of classical dynamical chaos. It is shown that quantum effects lead to a limitation of diffusion and to the 
localization of quasienergy eigenfunctions (QEE). The expression for the QEE localization length in terms of the classical 
diffusion rate (1 = D/2) is obtained and the analogy between this phenomenon and the Anderson localization in solid-state 
problems is analyzed. The localization length for photon transitions in the energy spectrum is found. 

1. Introduction 

In recent years a number of experiments on the 
ionization of Rydberg (highly excited) atoms and 
dissociation of molecules by a strong monochro- 
matic field have been carried out [1-5]. A char- 
acteristic peculiarity of such processes is the large 
number of absorbed photons N , -  100 and the 
excitation of many unperturbed levels. Due to this 
the dynamics of excitation may be described in 
the first approximation by the classical equations 
of motion. Such an approach was used for mole- 
cules in ref. 6 and for Rydberg atoms in ref. 7. 
The process of excitation obeys the diffusion law. 
The appearance of diffusion in the absence of any 
random forces is connected with the chaotic dy- 
namics of the corresponding classical system. The 
nature and the properties of such chaotic motion 
in classical mechanics is now well understood 
[8-10]. At the same time an investigation of sim- 
ple models has shown that the dynamics of classi- 
cally chaotic quantum systems has a number of 
peculiarities (see, e.g., refs. 9, 11 and 12). The 
most interesting one being the quantum diffusion 
limitation [11-16]. This limitation is due to the 
localization of quasienergy eigenfunctions (QEE), 

(QEE decay exponentially with the serial number 
of unperturbed levels.) 

We carried out an investigation of the QEE 
localization mainly on the examples provided by 
two models. The first one is the quantum rotator 
model which has been investigated in refs. 11-13, 
18, 20, 27-29, 32-34. The second one is the 
Akul in-Dykhne  model [17] which describes a gen- 
eral picture of the excitation of a system with 
irregular spectrum by a monochromatic field. It 
has been introduced as a model for the molecular 
excitation in a laser field. With the help of a 
simple estimate based on the uncertainty relation 
between frequency and time, which was first used 
in ref. 12, we obtain a simple expression for the 
QEE localization length in the rotator model (eqs. 
(7) and (13)). The generalization of this result and 
the estimate (7) is used to find the value of the 
length in the Akulin-Dykhne model (section 7). 

We have checked and confirmed the theoretical 
results for the quantum rotator by a special 
numerical method. The advantage of this method 
consists in the fact that it allows to evaluate the 
value of the QEE localization length without the 
computation of the exact QEE. Indeed, we show 
that this evaluation can be reduced to a computa- 
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tion of the Lyapunov exponents (LEX) in some 
auxiliary classical Hamiltonian system. Due to the 
linearity of the SchrSdinger equation, the equa- 
tions of motion for this system are linear, with the 
coefficients explicitly depending on the serial num- 
ber of the unperturbed level, which plays the role 
of a discrete "t ime".  For one-dimensional systems 
the number of equations is determined by the 
number of unperturbed levels effectively coupled 
after one period of the field. This approach for the 
investigation of QEE was introduced in ref. 20. 

There are two simple limiting cases for the 
obtained system of linear equations. The first one 
is the case in which the coefficients of the system 
periodically depend on discrete " t ime" (the serial 
number of the level). In that case the quasi-energy 
spectrum is continuous and the QEE are delocal- 
ized like the Bloch eigenfunctions in a perfect 
crystal. The second case corresponds to a random 
dependence of coefficients on "time". This situa- 
tion is analogous to the quantum motion in a 
random potential. The analogy between these two 
physical problems has been established in ref. 18. 
In a one-dimensional random potential all eigen- 
states are localized, which is the well-known 
Anderson localization [19, 30]. This corresponds 
to the localization of all QEE [18]. In this ap- 
proach the serial number of the unperturbed level 
plays the role of a spatial coordinate. 

However, in spite of the usefulness of the anal- 
ogy between the Anderson localization and the 
localization of dynamical chaos we need to stress 
two important differences between them. Firstly, 
the absence of randomness in the dynamical sys- 
tem, and secondly, the QEE localization occurs in 
a quite different class of systems than those con- 
sidered in solid-state problems. In this paper we 
illustrate these differences mainly for the rotator 
model and the Akylin-Dykhne model. Another 
example is the diffusive photoeffect in a hydrogen 
atom (see refs. 14-16). 

The contents of the paper is as follows. In 
section 2 we describe the rotator model and the 
LEX method, find the corresponding solid-state 
Hamiltonian, and give the estimate (7) for the 

localization length I. In section 3 we obtain exact 
expressions for l in the dynamical Lloyd model 
and the quantum standard map, and compare 
them with the numerical results. The localization 
length for the steady-state distribution ls(4 l) is 
obtained in section 4. The main results of sections 
2 -4  were briefly reported in ref. 20. In section 5 
we discuss a simple variant of the Akulin-Dykhne 
model which can be reduced to the Anderson 
model. The conditions under which the excitation 
of systems with many degrees of freedom may be 
considered within the framework of one-dimen- 
sional localization are obtained in section 6. In 
section 7 we find the QEE length for the excitation 
of typical multi-level systems by a monochromatic 
field. 

2. The quantum rotator model 

In order to investigate the motion of quantum 
systems which are chaotic in the classical limit we 
chose the generalized model of a quantum rotator 
with the Hamiltonian 

Jq = t-Io(r,) + v ( o )  (1) 

where h = -iO/O0, 8r(t ) is the periodic delta- 
function with T the dimensionless period, 0 the 
phase variable, V(O) the external perturbation, 
h = 1 [11-13, 18]. Here Ho(n ) determines the en- 
ergies of unperturbed levels n. The dynamics of 
the corresponding classical system is determined 
by the equations of motion with the Hamiltonian 
(1), where n, 0 are canonically conjugated action- 
phase variables. After integration over a period T, 
we obtain a map 

OHo(H) ov (2) 
h = n 00 ' O~ 

where ~ and 0 are the values of the variables n, 0 
after a period T. For strong perturbation the 
resonances overlap [8] and then the action grows 
beyond any limit according to the diffusion law: 
( (An)  2} = Dr, where ~" is the number of periods. 
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Generally, the diffusion rate D is a complicated 
function of the system parameters. However, in 
the region of a strong chaos the phases 0 ( r )  are 
random and independent. This allows one to use 
the quasilinear approximation in order to calcu- 
lated D [10]. In this case the diffusion rate is equal 

to 

2,~ 3V]  2 
D q l = 2 @ f o  ( 3 0 1  dO. (3) 

The quasiclassical condition is satisfied if the 
number of levels excited in one period is large: 
D >> 1, and if the dimensionless parameter T << 1 
(Tcc h) [9, 11-13]. 

The main part of our investigations was carried 
out for the quantum standard map 

~2 
I4 = -~- + k cos O Sr( t ). (4) 

The motion of the corresponding classical system 
is described by the standard map [8-10]: 

f i = p + K s i n O ,  0 = 0 + f i ,  (5) 

where p = Tn, K =  kT. For K <  Kcr = 0.9716...  
[24] the change of n is finite Izanl < 1/rk/T, but 
for K > Kcr(A n)2 grows according to the diffusion 
law with the rate D = D o ( K ) / T  2, where Do(K ) is 
the diffusion rate in p in the standard map (5). 
Within the chaotic component the dependence of 
the diffusion rate on K may be approximately 
described by the following expression [25, 13]: 

Do 
= I K 2 ( l + 2 J 2 ( K ) + 2 J 2 2 ( K ) ) ,  K >  4.5, 

~0 .30 (AK)  3, K < 4 . 5 ,  

(6) 

where J2 (K)  is a Bessel function, A K =  K - K c r .  
For  K > 4.5 the dependence of D O on K has the 
form of oscillations which decay as K grows. The 
limit value D O = K2/2  corresponds to the quasi- 
linear approximation (3), when the phases 0(z)  in 

(5) are random and independent. For K--* Kcr we 
use in (6) the empirical formula which was ob- 
tained from numerical experiments in ref. 13. The 
value of the exponent 7/--3 in the power law 
D Occ (AK)n is close to that given in ref. 26. 

Numerical experiments [11-13, 27, 28] with the 
quantum standard map have shown that in the 
course of time (n 2) stops growing. This means 
that the external field effectively excites only a 
finite number of unperturbed levels (An - l). An 
analogous result was obtained in ref. 29 for the 
dynamical Lloyd model with V(0 ) = 2 arctan (E  - 
2k cos 0), and H o = 112/2 which was introduced in 
ref. 18. It is natural to interpret this effect as the 
result of the QEE localization which is analogous 
to the Anderson localization in a one-dimensional 
lattice [18, 13, 20]. For the number of excited 
levels and the localization length of QEE, the 
following theoretical estimate was obtained in refs. 
12 and 13: 

l=  ctD - A n -  rD, (7) 

where a is an undetermined numerical constant. 
The derivation of (7) may be done in the following 
way. Let one unperturbed state contain l QEE 
with quasienergies e i. Since all these e, are distrib- 
uted within the interval [0, 2¢r], its average spacing 
is equal to A e -  1/ l  (here we consider the case 
when the unperturbed levels are uniformly distrib- 
uted in this interval). If initially we excite one 
unperturbed state then the diffusion will continue 
during the finite time r D until the discreteness of 
the QEE spectrum becomes effective. According to 
the uncertainty relation, r D -- 1/Ae - 1. After this 
time the number of diffusively excited levels will 
be equal to An - ( D r D )  1 /2  -- l. From this relation 
we obtain eq. (7). The condition for its applicabil- 
ity is D>> 1. In the case of a d-dimensional 
unperturbed system the number of excited levels 
An - (D 1 • . .  Od)l/2Td/2 and hence in the absence 
of a degeneration of levels the condition for the 
quantum limitation of chaos takes the form 

, I .D~ ( D  1 ~ ~ / 2  d / 2  • . . 1 . 1  d )  T D "  . (8) 
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For  d = 1 we always have localization. For d > 3 
the delocalization takes place if D 1 . . .  Da>_. 1. 
This condition corresponds to the Anderson crite- 
rion [30] (a small random potential provides fast 
diffusion and large conductance). For d = 2 the 

estimate (8) gives the delocalization for DID 2 >> 1. 
However, a more rigorous consideration shows 
that in this case the localization always takes place 

but for D1D 2 >> 1 its length is exponentially large: 
In l - D a D  2 (see, for example, ref. 31 and refer- 
ences therein). For any d it follows from (8) that 
the localization always takes place if each D, << 1. 

This case corresponds to the quantum stability 
border  [6]. 

Let us consider now the equation for the eigen- 
function with quasienergy e [18]: 

u 2 = e  i{~ rH°("))U+, u+(O) = e  iv(O)u-(O). 

(9) 

reduce the problem to the case with Hamiltonian 

H~ s = t a n [ e / 2  - (T/2)/~0] - tan(V/2) .  This pro- 
cedure was implicitly used in ref. 18. However, it 
is necessary to stress that this approach leads to 
the appearance of a nonphysical singularity which 
does not allow for an analysis of the wide class of 
potentials with I V(0)l > ~r. 

The form of eq. (10) is convenient for exploiting 

the analogy with the solid-state problems. How- 
ever, for numerical experiments it is more con- 

venient to rewrite eq. (9) and (10) as follows. We 
introduce fi = e + iV/2u +-l/g, where g(O) is an arbi- 

trary real function (we will consider the case when 
g and V are even functions of 0). Then we obtain 

from (9) the equation 

E ~.+~Wr sin (X. + %) = 0, (11) 
r 

where 

Here u q:(O) are the values of the function u 
before and after a kick 8 ( 0  and u + are the 
Fourier coefficients of u +(0). After simple trans- 
formations eq. (9) may be rewritten in the form 

T t a n ( ~  - T ^ i I T - ~ s i n V }  (cos I7 e 1 ^ 
T H o ]  cos T u 

\ 

= 0 ,  (10) 

where u = e+-iV/2u +. After the Fourier transfor- 
mation e - iV /Z=Y ' . rW r- e i(r0+w,) it is easy to see 

that the Hamiltonian Hss corresponds to a one-di- 
mensional lattice with interacting sites and energy 

E = - F.rW 7 W -  r sin % cos cp_ r. In such an ap- 
proach the quasienergy e determines the potential 
of interaction and the eigenvalue of energy E 
plays the role of a parameter. Moreover, the num- 
ber of unperturbed levels n in the model (1) 
corresponds to a discrete spatial coordinate in the 
lattice. 

Since all eigenfunctions in a one-dimensional 
random lattice are localized [19] it is natural to 
expect an exponential localization of QEE in (1). 
If cos (V/2 )  =~ 0 we may introduce ~ = cos (V /2 )u  
and divide eq. (10) by cos(V/2) .  After that we 

e-iV/2g = Y'~Wre i(re+%), X,  = ( e -  T H o ( n ) ) / 2 .  
r 

Let us assume that in (11) only W r with [r[ _< N 
differ from zero. Then a column of 2N known 
values of ~, determines the value of QEE for an 
arbitrary n. The recursive computation of ~, from 

(11) may be considered as the motion of a dy- 

namical system in the discrete time n. The dy- 
namics of the 2N-component  vector is determined 
by a transfer matrix M,,  the expression for which 
may be easily obtained from eq. (11). It may be 
shown that the product of matrices M~ can be 
t ransformed by a rotation into a simplistic matrix. 
Therefore, the dynamics in n is Hamiltonian and 
there are N positive and N negative Lyapunov 
exponents (LEX) ~,,+ = -~'i  > 0 (see, for example, 
ref. 10). Asymptotically, the localization length of 
QEE is determined by the minimal positive LEX 
"Ix = 1 / l  [20-22]. The fact that Y1 is different from 
zero leads to an exponential localization of QEE 
and to a discrete spectrum of quasienergies. The 
numerical method of computation for all LEX is 
described, for example, in ref. 10. This method 
allows not only to find all "6, but also to determine 
the dependence on n of the norm I[u(/q[ = 
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(~m=ll_n+rnl p 2 N  ,(i) 12~1/2 of an eigenvector corresponding 

to a given exponent. In solid-state physics the 
LEX method is known as the transfer matrix 
method. This method is extensively used for the 

investigation of localization in two- and three- 

dimensional solid-state systems [21, 22]. For dy- 
namical  models it was first applied in ref. 20, and 
later in ref. 23. 

3. Localization of QEE 

Let us consider the rotator model with potential 

V = 2 arctan ( E -  2k cos 0), which was introduced 
in ref. 18. Taking g = l / c o s V / 2 ,  we obtain 
Wo ei~° = 1 - iE,  W ± I  ei~°±l = ik and W~= 0 if [r[ 
> 1. Eq. (11) now takes the form 

E,u,  + kun+ 1 + ku,_ 1 = Eu,, (12) 

where E ,  = tan X, and we dropped the bar on u,. 
In the case when the phases X, are random and 
independent in the interval [0, ~r] eq. (12) corre- 
sponds to the well-known Lloyd model [18, 19]. 
For  this model the exact expression for the local- 
ization length is known (see, e.g., refs. 18-20), and 
for l >> 1 it has the form l = x/4k 2 _ E 2. This may 

be used for the determination of the numerical 
factor in eq. (7) [20]. Due to the randomness of 
X,, the phases 00" ) ~x 3X,/Sn in (2) are also ran- 
dom and independent, and D = Dql. The calcula- 
tion of the integral in (3) for Dql >> 1 and the 
comparison with l gives a = ½. 

The same method of calculation for 1 can also 
be applied in a more complicated case when the 
interaction connects 2N sites and the potential 
has the form V=2arctan(E-2kE~=~cosmO).  
According to (7), l = Dqz/2 = 2kN 2, where the last 
equality takes place when Dqt >> N. All values of 
Dqt were obtained by numerical calculation of the 
integral in (3). These values are in good agreement 
with the experimental values obtained by the LEX 
method (see fig. 3 in ref. 20). 

Now we consider the dynamical Lloyd model 
with H 0 = n2 /2  ( N  = 1). Then the phases X, are 

not random. Moreover, for the rational values of 
T/4~r = p/q ,  E, in (12) becomes a periodic func- 
tion of n, which corresponds to the case of an 
ideal crystal with delocalized eigenfunctions. In 
such a case of quantum resonance [32] the quasi- 
energy spectrum is continuous and consists of q 
zones. It was shown in ref. 33 that the continuous 
component  exists also for the special irrational 
values of T/4~r which are very close to the ra- 

tional numbers. However, we conjecture that for 

any irrational numbers T/4~r (so that C2q 1 ~< 
IqT/4~r -p ]  < Clq 1 for any e > 0), the measure 
of which on the interval [0,1] is equal to one, an 

exponential localization will always take place with 
the same exponent as in the Lloyd model (12) with 

random phases X,- 
This conjecture was confirmed by the numerical 

experiments based on the LEX method. They re- 
ally showed that the localization length is the 

same as in the case of random phases X,- The 
parameters  of the model were changed in the 
intervals 0.01 < k < 1000,10- 5 < T < 1, 0 < E < 2. 
The value of ~, was determined in the interval 
1 < n < n m = 105 and it did not depend on e and 
T. The relative accuracy of ~, was equal to 
( A ) ' / y )  2 = 2/) ,n  m (see below). 

The recursively obtained values of u, may be 
considered to give a QEE in some interval of 

n ~ ~ .  For T<< 1 the dependence of u, on n is 
in steps of size An - 1/Tn. With the growth of n 
these steps decrease in size and for T n -  1 they 
disappear. An estimate for An may be obtained 
f rom the condition A X , =  ½TnAn- 1. It is im- 
portant  to note that in the model under discussion 
the quasiclassical limit (k>> 1) always corre- 
sponds to the region of strong chaos where l = 
Dq, /2 .  

The LEX method has also been applied to the 
calculation of l in the quantum standard map (4). 

Taking g = 1 we obtain in (11) IV, = Jr(k~2), % = 
- ~ r r / 2 ,  X , = ( ~ - T n 2 / 2 ) / 2 ,  where Jr(k~2) is a 
Bessel function. Due to the fast decay of Wr for 
Ir I > k / 2  it is possible to use a finite number of 
sites N - k /2 .  The further increase of N is related 
only to exponents "y - 1. Another check consisted 
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in ver i fy ing the re la t ion y,÷ + Y7 = 0. Fo r  a large n 

in terva l  of  the order  - 1 0  s levels the sum of 

pos i t ive  and  negat ive  exponents  was small:  (y1 + + 

- lO-  

The  results  of  numerica l  exper iments  [20] show 

tha t  in the quasiclassical  region T <  1; 5 < k < 75; 

1.5 < K < 29 (T/4~r is a typical  i r ra t ional  num-  

ber)  the loca l iza t ion  length is sat isfactor i ly  de- 

sc r ibed  by  the formula  

l =  Do( K ) / 2 T  2. (13) 

This  re la t ion  holds  not  only in the region of s t rong 

s tochas t ic i ty ,  K>__ 4.5, where the measure  of  the 

s tab le  c o m p o n e n t  is negligibly small  [8], bu t  also 

in the  region with A K =  K - K ~  << 1, where the 

di f fus ion ra te  is de te rmined  by a compl ica ted  criti-  

cal s t ruc ture  [26] and the stable componen t  covers 

a p p r o x i m a t e l y  50% of the whole phase  space [8]. 

The  numer ica l  results ob ta ined  demons t ra te  a 

sa t i s fac to ry  agreement  with the formula  (13) in a 

range  of  four  orders  of magni tude  for the diffusion 

ra te  (fig 1). However ,  it is impor t an t  to note  that  

the re la t ion  (13) holds  only in the case when the 

loca l iza t ion  length  is larger than the number  of 

in te rac t ing  sites 2 N =  k. In the oppos i te  case 

D o / 2 T  2 << k, the diffusion is too slow and does 

no t  lead  to the increase of the local izat ion length 

l -  k. Thus  the condi t ion  for the appl icab i l i ty  of 

(13) is 

x K  2 
k > k o ~ -  Do 

3xK 2 
- (aK) B >>1,  g~>gcr  , (14) 

where  x = 1.3 is de te rmined  from numer ica l  ex- 

per iments .  The  inequal i ty  (14), first ob ta ined  in 

ref. 13, gives the condi t ion  for the so-called ho- 

mogeneous  (exponent ia l )  localizat ion.  In  the op-  

pos i te  case, k << kc~, the local izat ion length l - N 

- k  is c o m p a r a b l e  with the per iod  of the reso- 

nance  s t ruc ture  An = 2~r /T  and,  like the diffusion 

rate,  it is i nhomogeneous  too [13]. Examples  of 

h o m o g e n e o u s  and inhomogeneous  local izat ions are 

J 

2- ~o~I t T' 1 ,"/ ,j  
?, 

. °  

. o  

. o  

o° 

~ 
' 6 1 

Fig. 1. The dependence of the localization length on the diffu- 
sion rate D O in the classical standard map (5). The circles 
represent the numerical data of ref. 13 for the values of l x 
obtained from steady-state distributions (15). The dashed line 
corresponds to the average value {as) = 1.04. The points show 
the localization length obtained from QEE by the LEX method. 
The straight line shows the theoretical localization 1 = D/2. In 
the inset the numerical data from ref. 13 are shown, giving the 
dependence of D O on AK= K -  Kc~, Kc~ =0.9716 . . . .  Here 
and in fig. 5 the logarithm is decimal. 
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Fig. 2. The dependence on n of the averaged quantity Ilu}~lltl 
r~-2u ,,U) 2~1/2 in model (4): (a) the homogeneous lo- 

calization at k = 20, K= 5; (b) the inhomogeneous localization 
at k = 20, K= 1.3. Periodic oscillations with An = 21r/T are 
related to the resonance structure. The straight lines show 
experimental values of 1 obtained in the interval n m --- 5 × 104. 
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shown in fig. 2. In the latter case, the size of the 
clearly observed steps is equal to 2~r/T. In con- 
trast to the dynamical Lloyd model these steps 
persist for the arbitrarily large values of n as well. 
For example, the dependence of Ilu(.1)ll on n in fig. 
2 is given in the region n---3 × 104. The reason 
for this difference is apparently related to the large 
number of interacting sites in the model (4). In the 
region of stability (k >> 1, K << 1) the localization 
is almost homogeneous due to a small amount of 
nonlinear resonances. Numerically, the localiza- 
tion length in this case is comparable with the 
number of interacting sites: l = k/4. 

The dependence of the diffusion rate D O on the 
classical parameter of chaos K (see (6)) leads to a 
significant change of the localization length with 
the parameter T even for a fixed value of k. An 
example of this effect is shown in fig. 3. According 
to (13), the localization length repeats all oscilla- 
tions of D o. These oscillations take place for K > 
4.5 and are given by the formula (6) in which we 
may use the asymptotics of the Bessel function. 
The difference of D from the quasilinear value is 
related to the influence of the correlations: D = 
Dqt[l + 4E~= 1C(~')]. Here the correlation function 
is C( r )  = {s in0( r ) .  sin0(0)) and the averaging is 
performed over the homogeneous steady-state dis- 
tribution [25]. For K >  5, CO') decays very fast 
with ~- and the main contribution to D is given by 
C(2) = - ½J2(K)(C(1)= 0). The remaining corre- 
lations give only small corrections [25]: 

C ( 4 )  = ½Jd( K) - K -1 

C(3) = ½ [ J d ( K )  - j 2 ( K ) ]  - K -2. 

The same method of computation for the diffusion 
rate may be also used in the quantum model with 
T >_ 1, k >> 1. In this case, a few first correlations 
Cq ('r) = -~ (0 [ sin t~(T) sin 8(0) + sin 0(0) sin 0(-r) [ 0) 
give the quantum diffusion rate Dq using which we 
can determine the localization length and, in such 
a way, can take into account the influence of the 
residual correlations [28]. 

In order to calculate Cq(¢) it is convenient to 
write the operator sin t~(¢) in a normal form with 

respect to the initial operators h(0) and 0(0), as 
was done in ref. 34 (for example, all h(0) will be 
on the right and 0(0) on the left). Using the 
expression for sin0(T) obtained in ref. 34 and 
assuming that the distribution in the phase space 
is approximately homogeneous and, therefore, 

(01 e i'1~(°) eim2~(°)10) = 3m,,O3m2,0, 

we obtain that the first three correlations are the 
same as in the classical case, upon the substitution 
K ~  K q  = 2k sin(T/2).  The expression for Cq(4) 
contains an additional term which is usually as 
small as C(4): 

Cq(4) ~ l ( j 2 ( g q )  'b rn~_2[Jrn(gq)Jm+4(-g q) 

×J2m+4(2k sin( T ~ ( m +  2))) 

+ 

Therefore, for T >_ 1 the quantum diffusion rate is 
approximately given by the expression (6) with 
K =, Kq = 2k sin T/2. The numerical data for the 
localization length at k = 30, 0 < T < 27r demon- 
strate satisfactory agreement with the theoretical 
value l = Dq/2 (see fig. 3). In the region T > 1 the 
average ratio (l/Dq)~ 0.6 is slightly larger than 
1/2;  this is apparently due to the not very small 
value of the ratio k/l = 0.1. From (6) it follows 
that the period of oscillations in D(K)  is equal to 
~Kq = 2vr (see fig. 3). Therefore, at fixed T the 
period in the dependence of l/Dqt on k is equal to 
8k -- ~r/sin T/2. Such oscillations for T = 1, 2 have 
been observed in ref. 23, with the period in satis- 
factory agreement with the above value. 

Up to now we have discussed the properties of 
the minimal LEX which determine the asymptotic 
behavior of QEE. However, there is a spectrum of 
LEX yi + in the system (4). A typical spectrum of 
this type is shown in fig. 4 for both the stable and 
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Fig. 3. The dependence of the localization length in the quan- 
tum standard map on the quantum parameter of chaos Kq = 
2 k sin T / 2  ~ K. The circles and the curve are, respectively, the 
numerical data and the theory for the classical diffusion rate 
D ( K )  from ref. 2 5 ( +  f o r 0 <  T<~r, × for ~r< T<2~r).  
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Fig. 4. The spectrum of the Lyapunov exponents in model (4). 
Quantum chaos: k = 30, K =  5 (points); stable motion: k = 
30, K = 0.003 (circles). 

4. Steady-state distribution 

If we initially excite one level then after some 
time the localization will lead to the steady-state 
distribution of the probabilities over unperturbed 
levels 

ljo. f (n )  = lim ~- d¢f(n,'r).  

The expression for this distribution function may 
be obtained by using the QEE with quasienergies 
e~. If initially only the n = 0 level was excited, 
then 

/ ( n )  = E I m(O) m(n)l = (15) 
m 

From this expression it is easy to see that f (n )  
is analogous to the density-density correlation 
function in solid-state problems [19]. The numeri- 
cal experiments [13, 20] have shown that f(n)c~ 
exp(-21nl/ls)  and l s=D=2l  (see fig. 1). The 
cause of the difference between l and l~ is ap- 
parently related to fluctuations of the QEE qv,~(n), 
as it was in solid-state problems. The QEE may be 
written in the form %(n)ocexp( -~ , ln -m I + 
~,,,), where ~,., describes fluctuations with zero 
average (~, , , )  = 0. However, the second moment 
may grow linearly with n: ((A~,.,) 2) = D~An, 
that leads to different values of ( l / n )  In ( lepta(n)] ) 
and ( (1 /n )  In I%.(n)l ). For Gaussian fluctuations 
we obtain 

(l 0(n)l 

× exp 

f o •  - exp ( - yn + ~) 
pl 

2D~n d~-  e ~'~". 

chaotic regimes. Each ~'i is related to an eigenvec- 
tor which is cross-orthogonal to all the other 
vectors. We conjecture that QEE is a linear super- 
position of all these vectors and that the probabil- 
ity of each vector is yJN ('¢~ appears in the 
normalization condition). 

Then 3's = 1/l~ and 

D~ 
~'s=Y 2 ' Y >D~; 

3, 2 
7 s -  2D~' 7<D~.  

(16) 
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models are again due to the fact that in the Lloyd 
model there are only two interacting sites, while in 
the other this number of sites is N -  k /2  >> 1. A 
special check has shown that also in the model (4) 
with random phases ~ ,  ID~= 1. However, the 
value of ID~ decreases with K for K < 1, and for 
K << 1 and k >> 1 reaches the limit lD~ --- 1/4.  No 
theory exists so far to explain this behavior. 

Fig. 5. The product of the diffusion rate D~ in QEE and the 
localization length for different l. The circles are for the 
dynamical Lloyd model ( T =  1), and the points for the quan- 
tum standard map. 

The value of D~ may be determined by the LEX 
method from lnl[u,[[. To this end, the whole inter- 
val n,, was divided into An 1 parts. Theva lue  of 

(A~mn)2 was computed for each part  and then the 
average ((A~mn) 2) of these values was de- 
termined. The value of 3' was computed in the 
whole interval n,,,. The results of numerical ex- 
periments have shown that ((A~mn) 2) indeed 
grows linearly with n and have allowed to find D~ 
in the dynamical  Lloyd model and in the quantum 
standard map. In the former case the whole inter- 
val n m -- 5 × 106 was divided into An 1 = 500 and 
1000 parts. The parameter k was changed in the 
interval 2-100 and no dependence on T was ob- 
served. The results obtained (fig. 5) show that 

ID~ = 2 for l >> 1 and therefore l s = 4L This ratio 
is the same as the theoretical one in the case of a 
one-dimensional random potential when the lo- 
calization length is much larger than the distance 
between sites [19, 35]. 

The situation is more complicated for the model 
(4). In this case we used n m - 106, Anl = 
200-1000. The dependence of lD~ on l obtained 

f rom Ilu(~X)ll is shown in fig. 5 for the region of 
strong chaos (5 < K <  10; 5 < k < 20; T <  1). It is 
seen that for l >> 1 the value of ID~ is close to one 
((IDa) = 1.14). Therefore, ls=21, according to 
(16), is in agreement with the results of ref. 13. 
The different values of the ratio ls/l for these two 

5. The Akulin-Dykhne model 

An interesting model of molecular excitation 
was introduced in ref. 17: in the vicinity of the 
energy e,m there is a zone of N nearby levels 
labelled by the index m, and a monochromatic 
field o ~ produces dipole transitions with A n = ± 1, 
and the matrix element ~t. We consider the case of 

a small zone width W << ~0 and a small perturba- 
tion V = 8tl << ¢0. Then one can neglect nonreso- 
nant  terms and obtain the stationary equation for 
QEE [17]: 

*+°m = a . , . , . . .  + Z ', (17) 
n ' ,  m r 

where An,,, = enm - n~. 
Now we consider several different cases. If N - -  

1, A~m = 0, V~'= V then (17) corresponds to the 
case of a one-dimensional crystal. The quasienergy 
spectrum is continuous, e ( p ) =  2Vcos p ( p  is the 
quasimomentum),  and the QEE are delocalized, 
thereby leading to an unlimited excitation ((n 2) 

cc ,r2). If  A are randomly distributed in the 
interval [ -  W/2, W/2] then (17) represents a one- 
dimensional Anderson model. All QEE are ex- 

ponentially localized, and the excitation is limited. 
The quasienergies lie in the interval [ - I 4 I / 2 -  
2V, 141/2 + 2V] and the localization length de- 
pends on e. For W>> V, the length l<< 1. For a 
small disorder W << V and e -  W, the length l = 
IO0(V/W) 2 (see, for example, ref. 36). 
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For a zone with an unlimited number of levels, 
randomly distributed A m  and 

Vj;~[ n'= V[8  .... ' i( 8 ..... , - i  + 8  . . . .  '+i)  

-I-8 .. . . .  , + i ( 8  . . . .  ' I + 8  . . . . .  '4 I ) ] '  

the model (17) corresponds to the two-dimen- 
sional Anderson model. According to refs. 22 and 
31 all states in the model are localized and for 

e < W the localization length varies from l - 1 at 
V / W =  0.07 up to l -  106 at V / W =  0.5. Asymp- 
totically, In l~ - ( V / W )  2 and the QEE decay ex- 

ponentially with n: + ,  cc e x p ( -  [n[/l~).  For I << 
N << l~o the localization length is proportional to 
N: l - N ( V / W )  2. In the case when all A =  0 

and only the matrix element V~,"" fluctuates, all 
QEE are also localized. 

The typical variant of the Akul in-Dykhne 
model in which transitions from one to many 
sublevels of the neighboring zones are allowed is 
analyzed in section 7. 

ceeds perpendicular to the energy surface, and ~- is 
measured in the number of perturbation periods. 

If the latter diffusion is slow enough then the 
distribution function has time to cover the whole 
energy surface. The change of energy in time ~,, is 
relatively small, A E = ( D ± E 2 / D  ~,) x/2 << E, if 

D± << D,,.  (18) 

Under  this condition we conjecture that the num- 
ber of excited levels grows as if it was a one- 
dimensional diffusion: An = p A E  - p ~ ' r .  Here 
we assume that in the interval a E all levels are 
excited with approximately equal probabilities. 
This condition is satisfied if there are no special 
selection rules for the matrix elements. Besides 
that, for a high frequency ~0 >> 1 /p  it is necessary 
to have /~>__ ~, otherwise the excitation of non- 
resonant levels will be small. If these conditions 
are satisfied then the expression for the localiza- 
tion length can be obtained, as in the one-dimen- 
sional case, from eq. (7): 

6. One-dimensional localization in many- 
dimensional systems 

At a first glance it seems that the localization of 
chaos takes place only in one-dimensional systems 
(Section 2) and is therefore a rather special phe- 
nomenon. However, it may happen that under 
some appropriate  conditions such a localization 
occurs also in multi-dimensional systems. Con- 
sider a conservative system with d degrees of 
freedom, the energy E and the density of levels 
p (E ) .  We assume that the motion of the system is 
chaotic and that the energy is the only motion 
integral. Then the motion on the energy surface is 
diffusive and may be characterized by a diffusion 
rate D ,,. If  D ,, is nearly independent of the direc- 
tion then the time of spreading of a narrow quasi- 
classical distribution function throughout the 
surface is equal to % , -  EZ/D, , .  If an external 
perturbation periodic in time is added, then also a 
diffusive growth of the energy will be observed 
with the rate Dz = (z~E)Z/A~. This diffusion pro- 

l 
= ~ ' - - l L.= p ,  (19) I 2p'D± An TD, 

where l E is the localization length in the energy 
scale. The conditions for the applicability of this 
equation are a large number of absorbed photons 
N,  = l e / ~  >> 1, and the excited levels A n - l >> 1. 
For a monochromatic  perturbation the diffusion 
goes on only for pw > 1 and the first condition is 
decisive. Also, it is necessary to have T o >> %,, 
otherwise the localization will take place faster 
than the spreading of the wave function on the 
whole energy surface, and the value of l will be 
smaller than in (19). 

The expression (19) holds in the case of inho- 
mogeneous localization (when l E depends on E)  
only if I F "  pDj_ << E. Instead, for It.>_, E the 
delocalization takes place. For example, if pD± = 
po Ea then the delocalization occurs for fl >_ 1 and 
P0 >-- E1 - a  (see also refs. 13 and 16). 

Assuming that the above picture is true, we 
discuss the motion of a particle in a two-dimen- 
sional billiards under the influence of a periodic 
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perturbat ion as an example of the described effect. 
Let the Hamil tonian of the system be 

H =  P---~ + P-~ + k s i n x l s i n ( 9 ) 3 r ( t )  (20) 

and the wave function is equal to zero on the 
border  of the billiard, o =  1. In the case of a 
righ-angled billiards with 0 < x~ < qr; 0 _< x 2 _< ~ro, 

the unper turbed spectrum is E,,,~ = (n~ + 
n 2 / o 2 ) / 2 .  The average density of the levels is 
constant: p - 1 .  For kT>> 1 the motion can be 
shown to be chaotic and diffusive excitation takes 
place in each degree of freedom: (An1) 2 = (An 2) 2 
= D~- with D ~ k 2. For D << 1 the localization 
length l << 1 (the quantum border, see section 2, 
ref. 6) and almost the whole probability is con- 
centrated on the initial level. For D >> 1 the local- 
ization length is exponentially large: In l -  D (see 
(8) and refs. 22 and 31). Now let the border be 
deformed inwards, which corresponds to the case 
of Sinai's billiards (see, for example, ref. 10). Then 

the dynamics would be chaotic even in the ab- 
sence of the external perturbation. After one colli- 
sion with a border, A p - p  (the case of strong 
deformation).  Taking into account that the time 
between collisions - E -  1/2 we obtain D t~ - 
ES/2T. The diffusion rate is D± ~ Ek  2. For high 

energies the conditions (18) and r,, <<r  D are 
satisfied and we predict one-dimensional localiza- 
tion (19) with l e - Ek  2. Due to the dependence of 
l e on E the localization takes place only for 
k _< 1. For k > 1 the QEE are delocalized due to 
the increase in the diffusion rate. The significant 

difference from the integrable case (right-angled 
billiards) consists in the fact that even for a small 
perturbat ion (k << 1) the localization length may 
be large enough, 1 - l E >> 1 if E >> k-2.  

7. Localization of photon transitions 

In the previous section we calculated D L as the 
diffusion rate in the classical system. For a mono- 
chromatic field there is another way of calculating 

D±.  It  is based on the expression for the probabil- 
ity of one-photon transition per unit time: w = 
0 r / 2 ) [ # ( E ,  E + ¢0)12o~2 o. In such an approach the 

absorption and reabsorption of photons leads to 
diffusive excitation of the system. At ~0O >_ 1, 
according to [14, 17, 37], 

(aE)  2 9,,,- 
- 2w~:-~7=' = 2~r2tt2~f2p~o. D ± =  (21) 

From (19) and (21) we obtain the localization 
length of QEE which is conveniently measured in 
terms of the number  of absorbed photons: 

l~, = l--~r" = 7r2~2~ep 2 = ¢rD~p,  (22)  
¢0 

where D o = ~r/*2g2p is the diffusion rate in terms of 
the number  of photons per unit time. This result 
does not depend on the field frequency and there- 
fore it is natural to think that the assumed condi- 
tion ~>__ ~0 may not be necessary at all for the 

derivation of (22). In order to confirm this conjec- 
ture let us consider the situation when O 1 << ~g~ 
<< w, which corresponds to the typical variant of 
the Aku l in -Dykhne  model (see section 4 in ref. 
17). In this case, an effective excitation takes place 
only for the levels close to resonance, lying in a 
zone of width Z~E-~2ox~21o near the energies of 
one-photon transitions n0a (levels with k .... < 
~2o~2p in (17)) [17]. According to (21) and [17], the 

number  of absorbed photons (number of zones) 

grows diffusively with time: N , =  V"~rt*2o~2Ot. In 

each zone the number of excited levels is of the 
order of t~2o~2p 2. Then the total number of excited 

levels is N - ~ / , 2 9 2 p 2 .  Since the excited 
levels lie in narrow zones of width /,2go2p << ~0 

near the energies n~, all quasienergies also lie in 
an interval of width -/~26°2p. Their average spac- 
ing is then k e - t~2o ~ 2p/N. In the same way as for 
(7), from the uncertainty relation, we obtain an 
estimate for the time after which a limitation of 
the diffusion occurs: t D - 1 / k e  - N~,O - 
p~/~2~20t D and for the localization length, l ~ -  N~ 

t~2g2p 2. The obtained result is applicable in the 
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quasiclassical region when l ,  >> 1. For ~td°<< w the 
steady-state distribution looks like a chain of 
equally spaced (in energy) peaks with the maxima 
exponentially decaying. Since, as in the case of the 
quantum standard map, the number of interacting 
sites is large the localization length of the steady- 
state is equal to l,s = 2l, .  It is important to note 
that the localization is homogeneous when/~d°O = 
constant. Therefore, quantum effects lead to the 
localization of photon transitions and to a limita- 
tion of the system excitation. 

The estimates obtained for the localization 
length of QEE allow to investigate the excitation 
of different multi-level systems by a periodic field 
when the standard perturbation theory is inappli- 
cable. 
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