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ABSTRACT

The excitation of multi-level systems by a periodic
iield is considered in the regime of quasi-classical dif-
iusion which takes place in the region ol classical
dynamical chaos. It is shown that quantum effects
lead to a limitation of diffusion and to localization of
quasi-energy eigeniunctions (QEE). The expression for
the QEE localization length in terms ol the classical

diffusion rate (Ez_ﬂ) is obtained and connection of

t_his phenomenon with the Anderson localization in so-
lid state problems is analysed. The localization length
for photon transitions in the energy spectrum is found.
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1. INTRODUCTION

In recent years a numbe: of experiments of the ionization of
Rydberg (highly excited) atoms and dissociation of molecules by a
strong monochromatic field have been carried out [1—5]. A charac-
teristic peculiarity of such processes is the large number of absor-
bed photons Nj,~100 and the excitation of many unperturbed levels.
Due to this the dynamics of excitation may be described in the first
approximation by the classical equations of motion. Such an approach
was used for molecules in Ref. [6] and for Rydberg atoms in
Ref. [7]. The process of excitation obeys the diffusion law. The ap-
pearence of diffusion in the absence of any random forces is connec-
ted with the chaotic dynamics of the corresponding classical system.
The nature and properties of such chaotic motion in classical mec-
hanics is now well understood [8—10]. At the same time investiga-
tion of simple models has shown that the dynamics of classically
chaotic - quantum systems has a number of peculiarities (see
e. g. Refs [9, 11, 12]). The most interesting one is the quantum dif-
fusion limitation [11—16]. This limitation is the result of QEE lo-
calization (QEE decay exponentially with the serial number of un-
perturbed levels).

We carried out the investigation of the QEE localization mainly
on the examples provided by two models. The first one is the quan-
tum rotator model which has been investigated in Refs [11—13, 18,
90, 27 —29, 32—34]. The second one is the Akulin— Dykhne model
[17] which describes the genetal picture ol excitation of a system
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with irregular spectrum by a monochromatic field. It has been in-
troduced as a model for molecular excitation in a laser field. With
the help of a simple estimate based on the uncertainty relation
between frequency and time, which was first used in Ref. 12, we
obtain a simple expression for the QEE localization length in the ro-
tator model (eqs (7), (13)). The generalization ol this result and
estimate (7) allowed to find the value of the length in the
Akulin — Dykhne model (Sec. 7).

We have checked and confirmed the theoretical results for the
quantum rotator by a special numerical method. The advantage of
this method consists in the fact that it allows to evaluate the value
of the QEE localization length without computation of the exact
QEE. Indeed, we show that this evaluation can be reduced to com-
putation of the Lyapunov exponents (LEX) in some auxiliary.classi-
cal Hamiltonian system. Due to linearity of Schroedinger equation
the equations of motion for this system are linear with the coeffici-
ents explicitly depending on the serial number of the unperturbed
level, which plays the role of a discrete «time». For one-dimensional
systems the number of equations is determined by. the number of
unperturbed levels effectively coupled after one period of the field.
This approach to investigation of QEE was introduced in Ref. [20].

There are two simple limiting cases for the obtained system of
linear equations. The first one is the case in which coefficients in the
system periodically depend on discrete «time» (the serial number of
the ievel). Then the quasi-energy spectrum is continuous and the
QEE are delocalized like the Bloch eigenfunctions in a perfect
crystal. The second case corresponds to a random dependence of co-
efficients on «time». This situation is analogous to the quantum mo-
tion in a random potential. The analogy between these two physical
problems has been established in Ref. [18]. In one-dimensional ran-
dom potential all eigenstates are localized that is the well-known
Anderson localization [19, 30]. This -orresponds to localization of
all QEE [18]. In such approach the serial number of the unper-
turbed level plays the role of a spatial coordinate,

However, in spite of the usefulness of the analogy between the
Anderson localization and the localization of dynamical chaos we
need to stress two important differences between them. The first one
is the absence of randomness in the dynamical system, and the se-
cond one is that QEE localization occurs in a quite different class
of systems than considered is solid-state problems. In this paper we
illustrate these differences mainly on the examples of the rotator
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and Akulin— Dykhne models. Another example is the diffusive pho-
toeffect in Hydrogen atom (see Refs [14—16]).

The contents of the paper is following. In Section 2 we describe
the rotator model and LEX method, find the corresponding so-
lid-state Hamiltonian, and give the estimate (7) for the localization
length L In Section 3 we obtain exact expressions for { in the dyna-
mical Lloyd model and quantum standard map, and compare them
with the numerical results. The localization length for the steady-
_state distribution [;(=4() is obtained in Section 4. The main results
of Sections 2—4 have been briefly reported in Ref. [20]. In Secti-
on 5 we discuss a simple variant of the Akulin— Dykhne model
which can be reduce to the Anderson model. The conditions under
which the excitation of systems with many degrees of freedom may
be considered within the framework of one-dimensional localization
are obtained in Section 6. In Section 7 we find the QEE length
for the excitation of typical multi-level systems by a monochromatic
field. '

2. THE QUANTUM ROTATOR MODEL

In order to investigate the motion of quantum systems which are
chaotic in the classical limit we chose the generalized model of
quantum rotator with Hamiltonian: !

B = Ho(#A) + V(8) (1), (1)

where E:—ffg, 8,(¢) is the periodic delta-function with dimensi-

onless period T, 0 the phase variable, V(0) the external perturbati-
on, i=1 [11—13, 18]. Here Ho(n) determines the energies of un-
perturbed levels n. The dynamics of the corresponding c}ass:_cal
system is determined by the equations of motion with Hamli_taman
(1), where n, 8 are canonically conjugated action-phase variables.
After integration over a period T we obtain a map:

ien_ OV g_gy 2@ !
Awilirecs B=04T PY .{}

where 7 and 0 are the values of the variables n, 0 after a period T.
For strong perturbation the resonances overlap [8] and .then the
action grows beyond any limit according to the diffusion law:
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( (An)*) = Dr, where 1 is the number of periods. Generally, the dif-
fusion rate D is a complicated function of the system parameters.
However, in the region of a strong chaos the phases 0(t) are ran-
dom and independent. This allows one to use the quasi-linear appro-
ximation in order to calculate D [10]. In this case the diffusion rate
is equal to

= (3’

The quasi-classical condition is satisfied if the number of levels ex-
cited in one period is large: D> 1, and if the dimensionless parame-
ter Tl (Toch) [9, 11—13].

The main part of our investigations was carried out for the
quantum standard map:

ol

ﬁ:%—l—fe cos 0 8(1). (4)

The motion of the corresponding classical system is described by the
standard map [8—10]:

p=p+Ksin®, 06=0-+4p, (5)

where p=7Tn, K=kT. For K< K.;=0.9716... '[24] ‘the ¢hdnge of n
is finite |An|<C\/k/T, but for K> K. (An)® grows according to the
diffusion law with the rate D=D,(K)/T?, where Dy(K) is the diffu-
sion rate in p in the standard map (5). Within the chaotic compo-
nent the dependence of the diffusion rate on K may be approxima-
tely described by the following expression:

2
K 420K +273(K) | K=>45
Do~ § 2 (6)

0.30 (AK)® - K<4.5

where Jo(K) is a Bessel function, AK=K— K.,. For KZ=4.5 the de-

pendence of Dy on K has the form of oscillations which decay as K
2

grows. The limit value Duﬁ% corresponds to the quasi-linear ap-

proximation (3), when phases 0(t) in (5) are random and indepen-
dent. For K— K. we use in (6) the empirial formula which was ob-
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tained from numerical experiments in Ref. [13]. The value of the
exponent na~3 in power law Dyx(AK)" is close to that given in
Ref. [26].

Numerical experiments [11—13, 27, 28] with the quantum stan-
dard map have shown that in the course of time (n®) stops gro-
wing. This means that the external field effectively excites only a fi-
nite number of unperturbed levels (An~I!). An analogous result has
been obtained in Ref. [29] for the dynamical Lloyd model with
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V(0) =2arc tan (E—2kcos ), and Hy= ”? which had been introdu-

ced in Ref. [18]. It is natural to interpret this effect as the result of
the QEE lo:alization which is analogous to the Anderson localizati-
on in one-dimensional lattice [18, 13, 20]. For the number of exci-
ted levels and the localization length of QEE the following theoreti-
cal estimate has been obtained in Reis [12, 13]

[=aD~An~1p, (7)

where o is an undetermined numerical constant. The derivation of

- (7) may be done in the following way. Let one unperturbed state

contain [ QEE with quasi-energies e, Since all these g; are distribu-
ted within the interval [0,2x], its average spacing is equal to
Ae~1/! (here we consider the case when the unperturbed levels are
uniformly distributed in this interval). If initially we excite one un-
perturbed state then diffusion will continue during the finite time 1,
until the discreteness of the QEE spectrum becomes effective. Accor-
ding to the uncertainty relation, tﬂn-r;—gwf. After this time the num-
ber of diffusively excited levels will be equal to An~(Drp)'2~L.
From this relation we obtain equation (7). The condition for its ap-
plicability is D> 1. In the case of a d-dimensional unperturbed
system the number of excited levels An~ (D ... Dq4)'/*t?* and then
in the absence of a degeneration of levels the condition of quantum
limitation of chaos takes the form

Tp (D ... D)2, (8)

For d=1 we always have localization. For d==3 delocalization
takes place if D;... Ds>1. This condition corresponds to the Ander-
son criterion [30] (a small random potential provides fast diffusion
and large conductance). For d=2 the estimate (8) gives delocaliza-
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tion for D;Dy>>1. However, a more rigorous consideration shows
that in this case localization always takes place but for D\D;>1 its
length is exponentially large: Ini~D;D, (see, for. example,
Ref. [3]1] and Refs therein). For any d it follows from (8) that lo-
calization always takes place if each Di< 1. This case corresponds
to the quantum stability border [6].

Let us consider now equation for the eigenfunction with quasi-
energy ¢ [18]:

ty =TT et ey —2T W (e). (9)

Here u™(0) are the values of the function u before and after a kick
8(¢) and u~ are the Fourier coefficients of u™(0). After simple tran-
slormations the equation (9) may be rewritten in the form

o~

ﬁﬁu:{ COoSs %tan (i——ﬁ') CDb—-———-z— sin f;’} =i}, (10)

Vg
where u=e*""?y* After Fourier transform
E—IVIQ:Z Wr_ EI (rid+uq.)

r

it is easy to see that the Hamiltonian Hs corresponds to an one-di-
mensional lattice with interacting sites and energy

E=—)W; W ,sing,cosq_,.

In such an approach the quasi-energy e determines the potential of
interaction and the eigenvalue of energy E plays the role of a para-
meter. Moreover, the number of unperturbed levels n in the model
(1) corresponds to a discrete spatial coordinate in the lattice.

Since all eigenfunctions in one-dimensional random lattice are
localized [19] it is natural to expect an exponential localization of
QEE in (1). If cos (V/2) =0 we may introduce u=cos (V/2)u and
devide equation (10) by cos (V/2). After that we reduce the prob-
lem to the case with Hamiltonian

Hssﬂtan(i — iffg) — tani.
2 2 2

This procedure was implicitly used in Ref. [18]. However, it is ne-
cessary to stress that this approach leads to the appearance of a
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nonphysical singularity which does not allow for an analysis of the
wide class of potentials with [V (0)| ==

The form of equation (10) is convenient for exploiting the ana-
logy with solid-state problems. However, for numerical experiments
it is more convenient to rewrite equations (9), (10) as follows. We
introduce u=e*""?u* /g, where g(8) is an arbitrary real function
(we will consider the case when g and V are even functions of 8).
Then we obtain from (9) the equation

Y ity 4. W, sin (.4 ¢) =0, (11)

where
Vg T W, (o THA)2.

Let us assume that in (11) only W, with |r| <N differ from zero.
Then a column of 2N known values of u, determ:nes the value of
QEE for arbitrary n. The recursive computation of u, from (11)
may be considered as the motion of a dynamical system in the dis-
crete time n. The dynamics of the 2N-component vector is determi-
ned by a transfer matrix M, the expression for which may be easily
obtained from equation (11). It may be shown that the product of
matrices M, can be transformed by rotation into a symplectic mat-
rix. Therefore, the dynamics in n is Hamiltonian and there are N
positive and N negative Lyapunov exponents (LEX) vW=—v">=0
(see, for example, Ref. [10]). Asymptotically, the localization length
of QEE is determined by the minimal positive LEX yvi=1/!
[20 —22]. The fact that y, is different irom zero leads to exponenti-
al localization of QEE and to a discrete spectrum of quasi-enérgies.
The numerical method of computation of all LEX is described, for
example, in Ref. [10]. This method allows not only to find all y,
but also to determine the dependence on n of the norm

el =( Z |l B

2

of an eigenvector corresponding to a given exponent. In solid-state
physics the LEX method is known as the transfer matrix method. If
is extensively used for investigation of localization in two- and
three-dimensional solid state systems [21, 22]. For dynamical mo-
dels it was first applied in Ref. [20], and then in Ref. [23].
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3. LOCALIZATION OF QEE

Let us consider the rotator model with potential V=
=2arctan (E—2kcos0) which has been introduced in Ref. [18].

Taking g=1/cos (V/2) we obtain W™ =1—iE, W, % =ik,
W,=0if |r|> 1. Equation (l11) now takes the form

Enttn~+ bty s | + ktty__ ;= Etts, (12)

where E,=tany, and we dropped the bar for u,. In the case when
phases y. are random and independent in the interval [0, n] equa-

tion (12) corresponds to the well known Lloyd model [18, 19]. For
- this model the exact expression for localization length is known (see
e. g. Refs [18—20]), and for />>1 it has the form [=~/4k?—E>
This may be used for the determination of the numerical factor in

equation (7) [20]. Due to randomness of . the phases 6(t)cc ?‘" in
nl

(2) are also random and independent, and D= D,,. The calculation
of the integral in (3) for Dy>1 and the comparison with [ gives
=172,
. The same method of calculation of [ can be applied also in a

- more complicated case when the interaction connects 2N sites and
~ the potential has the form

N
V=2arc t_an(E—?k Z COS mﬂ).

m=

According to (7), [=Dyu/2~2kN* where the last equality takes
place when Dg>> N. All values of D, were obtained by numerical
calculation of the integral in (3). These values are in good agree-
ment with the experimental values obtained by the LEX method (see
Fig. 3 in Ref. [20]).

~ Now we consider the dynamical Lloyd model with Ho=n?/2
(N=1). Then the phases y, are not random. Moreover, for rational

values of ;lizp/q E, in (12) becomes a pei-,dic function of n, that
L

corresponds to the case of an-ideal crystal with delocalized eigen-
functions. In such a case of quantum resonance [32] the quasi-
energy spectrum is continuous and consists of g zones. It was
shown in Ref. [33] that the continuous component exists also for
special irrational values of T/4m which are very close to rational
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numbers. However, we conjecture that for any irrational numbers
T/4n (so that B |%——p| < C,q~"! for any ¢=> 0), the mea-

sure of which on the interval [0, 1] is equal to one, expﬂnenti.al lo-
calization will always take place with the same exponent as in the
Lloyd model (12) with random phases ya. :

This conjecture was confirmed by the numerical expenmer}ts I_Ja-
sed on the LEX method. They really showed that the localization
length is the same as in the case of random phases y.. The parame-
ters of the model were changed in the intervals: 0.01 <k< 1000,
10-°< T<1, 0 E<2. The value of y was determined on the m
terval 1<n<nm.=10° and did not depend on & and T. The relative
accuracy of y was equal to (Ay/y)*=2/ynm (see below). ‘

The recursively obtained values of u, may be considered to give
a QEE on some interval of n—oo. For T<1 the depe‘nde.nce_uf Un
on n has steps of size An~1/Tn. With growth of n their size decre-
ases and for Tn~1 they disappear. An estimate for An may be obta-

ined from the condition zh;{n=-;~+?‘n&n~l. It is important to note

that in the model under discussion the quasi-classical limit (#>1)
always corresponds to the region of strong chaos wher_e I=Dq:_/2,
The LEX method has been also applyed to calculation of [ in the
quantum standard map (4). Taking g=1 we obtained in (11)
W,=1,(k/2), q>,=—52"_, .= (2—Tn%/2)/2, where I, (k/2) is a
Bessel function. Due to fast decay of W, for |r|> £/2 it.is possib!e
to use a finite number of sites N~#k/2. The further incré;hse uf' N is
related only to exponents y~1. Another check consisted in venf},rmgﬁ
the relation y* +y =0. For a large n interval of the order ~10
levels the sum of positive and negative exponents was small:
+ = + *"-"10_2.
8 %_hgr r)éfs?llllts of numerical experiments [20] show that in the qua-
si-classical region T<<1; 5<<k<75; 1.5<<K<29 (T/4n is a tyglcal
irrational number) the localization length is satisfactorily described
by the formula

Do(K) | (13)

= : £=—-

2%

This relation holds not only in the region of strong _'stnchagtif:ity
K>4.5, where the measure of the stable component is negligibly
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small [8], but also in the region with AK=K— K., < 1, where the
diffusion rate is determined by a complicated critical structure [26]
and the stable component covers approximately 50% of the whole
phase space [8]. The numerical results obtained demonstrate a sa-
tisfactory agreement with formula (13) in a range of 4 orders of
magnitude for the diffusion rate (Fig. 1). However, it is important
to note that the relation (13) holds only in the case when the locali-
zation length is larger than the number of interacting sites 2N~ k.

In the opposite case 2%{5'5{(!3, the diffusion is foo slow and does not

lead to increasing the localization length /~k. Thus the condition of
applicability of (13) has the form

s K
Do~ (AKP

k> k., = >4 DRREY o8 0 (14)

where x~1.3 is determined from numerical experiments. The in-
equality (14), first obtained in Ref. [13], gives the condition for the
so called homogeneous (exponential) localization. In the opposite
case k<K ke, the localization length /~N~Fk is comparable with the
period of the resonance structure An=2n/T and, like the diffusion
rate it is inhomogeneous, too [13]. Examples of homogeneous and
inhomogeneous localization are shown in Fig. 2. In the latter case,
the size of the clearly observed steps is equal to 2a/T. In contrast
to the dynamical Lloyd model these steps persist for arbitrary large
values of n as well. For example, the dependence of [|&"] on # in
Fig. 2 is given in the region n~~3-10* The reason for this differen-
ce is apparently related to the large number of interacting sites in
the model (4). In the region of stability (1, K< 1) the localiza-
tion is almost homogeneous due to a small size of nonlinear reso-
nances. Numerically, the localization length in this case is compa-
rable with the number of interacting sites: /~k/4.

The dependence of diffusion rate Dy on the classical parameter
of chaos K (see (6)) leads to a significant change of the localiza-
tion length with the parameter T even for a fixed value of k. An
example of this effect is shown in Fig. 3. According to (13), the lo-
calization length repeats all oscillations of D,. These oscillations

take place for KZ=4.5 and are given by formula (6) in which we:

may use the asymptotics of the Bessci function. The difference of D
from the quasi-linear value is related to the influence of corre-
lations:

12
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Fig. 1. Dependence of the localization length of diffusion rale Dg in classical s_lau~
dard map (5). Circles represent numerical data of Ref. [13] for values of / obtained
from steady-state distributions (15). Dashed line corresponds fo average value
{as) =1.04. Points show the localization length obtained f{rom QEE_ by the LEX met-
hod. Straight line shows the theoretical localization [=D/2. In the insert the numeri-
cal data from Ref. [13] are shown, giving dependence of Dy on AK=K— K.,
Ker=0.9716... . Here and in Fig. 5 the logarithm is decimal.
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Fig. 3. Dependence of localization length in the quantum standard map on quantum

. + : = parameter of chaos K;=2k sin %—rh’. Circles and the curve are numerical data and
O_ 1000 theory for classical diffusion rate D(K) from Ref. [25].

N
Fig. 2. Dependence on n of averaged quantity ||« || =( ¥ |th}.1%)"* in model (4) for:

m=1
a— homogeneous localization at 2=20, K=05; b—inhomogeneous localization at =20, K=1.3.

Periodic oscillations with An= %5} are related to the resonance structure. Straight lines show ex-

perimental values of [ obtained on interval n, = 5.107,
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D=Dq;[l—|—4 i C(T)] :

Here the correlation function is C(t) = (sin0(t) sin0(0) ) and ave-
raging is performed over the homogeneous steady-state distribution
[25]. For K=5 C(t) decays very fast with t and the main contri-

bution in D is given by C(2)=—;—Jg(f(} (C(1)=0). The next cor-

Clt)= 13 (K)~K~

relation give only small ‘corrections

[q:s):-énug(m—;mNK--E) (25]. The same method of compu-

tation of the diffusion rate may be also used in the quantum model
with T>1, k> 1. In this case, a few first correlations

Ct)= —;- (0| sin 6 (t)sin 8 (0) + sin 6(0)sin 6(x)10)

give the quantum diffusion rate D, using which we can determine
the localization length and, in such a way, can take into account
the influence of the residual correlations [28].

In order to calculate C,(t) it is cenvenient to write the operator
sin@(t) in a normal form with respect to the initial operators 7 (0),
§(0) as was done in Ref. [32] (for example, all 7(0) will be on the
right and E?(D} on the left). Using the expression for sin é\[r} obtai-
ned in Ref. [32] and assuming that the distribution in phase space
is approximately homogeneous and so

< {}| E!m'IH':D} E!'mzn[ﬂ.] ] l:}} —— lSth 6?,”2‘“ %

we obtaine that the first three correlations are the same as in the
classical case upon the substitution K—K,=2ksin (T/2). The ex-
pression for C,(4) contains an additional term which is usually as
small as C(4):

City=5{ BEKD)+ T [1nlK Insal—Ko) X

me= =12

% ngH(?k sin (—;{m+2})) e .fgmﬂ(zk sif (%(erzj))] } .
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T_here[nre, for T=1 the quantum diffusion rate is approximately
given by the expression (6) with K=K,=2ksin (T/2). The numeri-
cal data for localization length at £=30, 0< T<<2n demonstrate
satisfactory agreement with the theoretical value [=D;/2 (see
Fig. 3). In the region 7> 1 the averaged ratio (L/DgY =06 is
slightly larger than 1/2; this is apparently due to the not very
small value ol the ratio k//~0.1. From (6) it follows that the peri‘-
od of oscillations in D(K) is equal to 6K, ~2n (see Fig. 3). There-
fore, at fixed T the period in the dependence of [/Dy on k is equal
to kgt oo

sin(T/2)
in Ref. [23] with the period in satisfactory agreement with the abo-
ve value. ~

Such oscillations for T=1: 2 have been observed

I ¥
034 ®o
HO
ﬂﬂnsas

011
Fig. 4. Spectrum of Lyapunov expo- K
nents in model (4): quantum chaos ° i
k=30, K=5 (points); stable motion fas? :. .

k=30, K=0.003 (circles). 0 10 20

Up to now we have discussed the properties of the minimal LEX
which determine the as;r,rmptotic behaviour of QEE. However, there
is a spectrum of LEX v in the system (4). A typical picture of this
spectrum is shown in Fig. 4 for both the stable and chaotic regimes.
Each y; is related to an eigenvector which is cross-ortogonal to all
the other vectors. We conjecture that QEE is a linear superposition
of all these vectors and that the probability of each vector is vy:;/N
(v: appears from the normalization condition).
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4, STEADY-STATE DISTRIBUTION

If we initially excite one level then after some time the Iacaliz_a-
tion will lead to the steady-state distribution of the probabilities
over unperturbed levels

f(n)=lim Ltgm; f(n, 7).

T oo tﬂ

The expression for this distribution function may be obtained by
using the QEEs with quasi-energies en. I initially only the n=0 le-
vel was excited, then

f(m)= Y 19m(0) gu(n) |*. (15)

From this expression it is easy to see that f(n) is analogous to the
density-density correlation function in solid state problems [19].
The numerical experiments [13, 20] have shown that
f(n)ocexp (—2|nl/l) and l;= D=2l (see Fig.: 1), . The cause of the
difference between [ and [ is apparently related to fluctuations of
the QEE ¢n(n), as it was in solid-state problems. The QEE may be
written in the form @u(n) ccexp (—yln—m |+ E&mn) where En. des-
cribes fluctuations with zero average (&..)=0. However, the se-
cond moment may grows linearly with n: ( (AEma)*> = D:An, that
leads to different values of (1/a)lIn{len(n)l) and
((1/n) In |@m(n)|). For Gaussian fluctuations we obtain:

(lpo(m)l Y ~ | exp(—yn+E) exp(— ng) dg~e ™",
i

Then y.=1/I; and

pe=v— 2, y=D;  pe=, 1<D:. (16)

2

The value of D; may be determined by the LEX method from
In ||u.]]. To this end, the whole interval n. was divided into An,
parts. The value of (Afw.)® was computed on each part and then
the average "¢ (AEs:)2) of these values was determined. The y value
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was computed in the whole interval n,. The results of numerical ex-
periments have shown that ( (AE..)?) indeed grows linearly with n
and allowed to find D; in the dynamical Lloyd model and in the qu-.
antum standard map. In the former the whole interval n,a~5-10°
was divided into An;=500 and 1000 parts. The parameter £ was
changed in the interval 2+ 100. No dependence on T was observed.
The results obtained (Fig. 5) show that {D;=2 for [>>1 and there-
fore [;=4I. This ratio is the same as the theoretical one for the case
of one-dimensional random potential when the localization length is
much larger than the distance between sites [19, 35].

eD,
o S e e ek e
oAl e v
]
L]
[ ]
g e SN ot~ 8 T
Fig. 5. The product of diffusion rate D
in QEE by localization length for difier-
ent [ Circles are for the dynamical fog!
Lloyd model (T=1), points for the . : : . i e
quantum standard map. 0 1 2

The situation is more complicated for the model (4). In this case
we used n,~10°% An,;=200-1000. The dependence of /[D: on [ ob-
tained from ||uil}|] is shown in Fig. 5 for the region of strong chaos
(b K<10, 5<h<<20, T<1). It is seen that for [>>1 the value of
[D: is close to one ({[D:;)=1.14). Therefore, [,=2I, according to
(16), in agreement with the results of Ref. [13]. The cause of diiie-
rent values of the ratio [;// for these two models is again related to
the fact that in the Lloyd model there are only two interacting sites,
while in the other this number of sites is N~k/2>>1. A special
check has shown that ID;=1 also in the model (4) with random
phases y.. However, the value of [D: decreases with K for K<l
and for K<l and k> reaches the limit /D;~1/4. No theory
exists so far to explain this behaviour. -
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5. THE AKULIN— DYKHNE MODEL

An interesting model of molecular excitation was introduced in
Ref. [17]: in the vicinity of the energy e.. there is a zone of N ne-
arly levels labelled by index m, and a monochromatic field # pro-
duces dipole transitions with An= 4-1, and matrix element u. The
case of a small zone width W<« w and small perturbation
V=%un< o is considered. Then one can neglect nonresonant terms
and obtain the stationary equation for QEE [17]:

E'-rll:'mri=-&nm 'qun—i— Z V;:nTI qju’m’ (17)

o’

WhE!‘E‘ f'.,\.r;m — Eam— 100,

Now we consider several different cases. I N=1, Aun=0,
V¥ =V then (17) corresponds to the case of a one-dimensional
crystal. The quasi-energy spectrum is continuous e(p) =2V cosp (p
is quasi-momentum) and QEE are delocalized thereby leading to an
unlimited excitation ({(n?)oct?). If A, are randomly distributed on
the interval [— l;?- g—] then (17) rEprésents a one-dimensional An-
derson model. All QEE are exponentially localized, and excitation is
limited. The quasi-energies lie in the interval [—-ag?—-r?'f, QE—F?V]
and the localization length depends on e. For W>>V the length
l<1. For a small disorder W<V and e~W the length
[~ 100(V/W)? (see, for example, [36]). ‘

For a zone with an unlimited number of levels, randomly distri-
buted A,», and ”

V:::tf e V [ﬁn,n’— I{'ﬁm,m"— 1 + am,m’—]— 1} + IEj'r:,n"-{— 1 (&'ﬁ.m’— 1 + 6m,ﬂ'x’ﬂl— 1 )]

the model (17) corresponds to the two-dimensional Anderson model.
According to [22, 31] all states in the model are localized and for
e<<W the localization length varies from [~1 at V/W=0.07 up to
[~105 at V/W=0.5. Asymptotically, Inl, ~(V/W)* and QEE decay
exponentially with n: y,ocexp(—|nl/l,). For 1<K N« the locali-
zation length is proportional to N: [~N(V/W)® In the case when
all A,n=0 and only the matrix element V" fluctuates all QEE are
also localized.

The typical variant of the Akulin—Dykhne model in which tran-
sitions from one to many sublevels of neighbouring zones are al-
lowed is analysed in Section 7.
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6. ONE-DIMENSIONAL LOCALIZATION
IN MANY-DIMENSIONAL SYSTEMS

At first glance it seems that the localization of chaos takes place
only in one-dimensional systems (Sec. 2) and is therefore a rather
special phenomenon. However, it may happen that under some ap-
propriate conditions such a localization occurs also in many-dymen-
sional systems. Consider a conservative system. with d degrees of
ireedom, energy E and density of levels p(£). We assume that the
motion of the system is chaotic and that energy is the only motion
integral. Then the motion on the energy surface is diffusive and
may be characterized by a diffusion rate D,. If D, is nearly inde-
pendent of the direction then the time of spreading of a narrow
quasi-classical distribution function throughout the suface is equal
to t,~E*/D,. If an external perturbation periodic in time is added,
then also a diifusive growth of energy will be observed with the

2

. This diffusion proceeds perpendicular to the energy
T

surface, and t is measured in a number of perturbation periods.

If the latter diffusion is slow enough then the distribution func-
tion has time to cover the whole energy surface. The energy change
in time 7, is relatively small AE=(D, E?/D,)'?<E if

D el (18)

Under this condition we conjecture that the number of excited levels

grows as it were a one-dimensional diffusion: An=pAE~p\/D, 7.
Here we assume that in the interval AE all levels are excited with
approximately equal probabilities. This condition is satisfied if there
are no special selection rules for the matrix elements. Besides that,
for high frequency o> 1/p it is necessary to have n& =o, otherwise
the excitation of nonresonant levels will be small. If these condi-
tions are satisfied then the expression for localization length can be
obtained, as in the one-dimensional case, from equation (7):

1

= = pIDy ~hn~ty, g == (19)

where [ is the localization length in energy scale. The conditions of
applicability for this equation are a large number of absorbed pho-
tons N,=1I/o>1, and excited levels An~{>1. For a monochro-
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matic perturbation the diffusion goes on only for pw>=1 and the
first condition is decisive. Also, it is necessary to have 1,371,
otherwise the localization will take place faster than the spreading
of the wave function on the whole energy surface, and the [ value
will be smaller than in (19).

The expression (19) holds in the case of inhomogeneous locali-
zation (when [ depends on E) only if [~pD, <E. Instead, for
L delﬁcallzatmn takes place. For example if pD, =poE® then
delocalization occurs for B==1 and po=>E " (see, also [13, 16]).

" Assuming the above picture is true, we discuss the motion of a
particle in a two-dimensional billiard under the influence of a pe-
riodic perturbation as an example of the described effect. Let the
Hamiltonian of the system be

o] ~Z
H=2 4 & 4 fsinxsin ( ii) 81 (20)

-~ and the wave function is equal to zero on the border of the billiard,
oa~1. In the case of right-angled billiard with Df:.’x]{n
- 0<<xy<<mo the unperturbed spectrum is E,, = (0’ 4+ n2 /6)/2. The
average density of levels is constant: p~1. For kT>>1 the motion
can be shown to be chaotic and diffusive excitation takes place in
- each degree of freedom: (An;)%= (Ans)®= Dt with D~&* For D«
the localization length /<1 (quantum border, see Sec. 2, Ref. [6])
and almost the whole probability is concentrated on the initial level.
For D> 1 the localization length is exponentially large: Inl~D (see
(8) and [22, 31]). Let now the border be deformed inwards, which
corresponds to the case of Sinai’s billiard (see, for example, [10]).
Then the dynamics would be chaotic even in the absence of the ex-
ternal perturbation. After one collision with a border Ap~p (the
case of strong deformation). Taking into account that the time bet-
ween collisions ~E~!/2 we obtain D, ~E**T. The diffusion rate is
equal to D, ~Ek* For high energies the conditions (18) and T, K Tp
are satisfied and we predict one-dimensional localization (19) with
l. ~EE?. Due to the dependence of [ on E localization takes place
only for k1. For k=1 the QEEs are delocalized due to increase in
~ diffusion rate. The significant difference from the integrable case

(right-angled billiard) consists in the fact that even for small per-
turbation - (k< 1) the localization length may be large enough
bk 1 dE Eﬁpk 5,

Lo

B F

7. LOCALIZATION OF PHOTON TRANSITIONS

In the previous section we calculated D, as the diffusion rate in
the classical system. For a monochromatic field there is another
way of calculating D, . It is based on the expression for the proba-
bility of one-photon transition~per unit time:

=%|M(E E4o)2T%.

In such an approach absorption and reabsorption of photons leads
to diffusive excitation of the system. At wp>1, according to
417 310

=200’ 2 — 2% % po (21)

From (19) and (21) we obtain the localization length of QEEs
which is conveniently measured in the number of absorbed photons:

{
lp = i =n’n*g?p’ =nDgp, (22)

where Dy =nu’#?% is the diffusion rate in the number of photons
per unit time. This result does not depend on the field frequency
and therefore it is natural to think that the assumed condition
wZ =>w may not be necessary at all for the derivation of (22). In
order to confirm this conjecture let us consider the situation when
o'« pn? <o that corresponds to the typical variant of the Aku-
lin— Dykhne model (see Section 4 in Ref. [17]). In this case, an ei-
fective excitation takea place only for the levels close to resonance,
lying in a zone of width AE~u% near the energies ol one- photﬂﬂ

‘transitions no (levels with A,,<p@ in (17)) [17]. According to

(21) and [17], the number of absorbed photons (number of zones)
grows diffusively with time: N, =-/nu?# %t In each zone the num-
ber of excited levels is of the order of pn#p. Then the whole number
of excited levels is Nw\/ug’gﬂptp%’p. Since the excited levels lie in
narrow zones of width p% <@ near the energies nw, then all
quasi-energies also lie in an interval of width ~u#. Their average

spacing is then &EN%E-. In the same way as for (7),

from the un-

certainly relation, we obtain an estimate for the time after which
diffusion limitation occurs:
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and for the localization length [, ~N,~p*&?p®. The obtained result
is applicable in the quasi-classical region when [,>> 1. For p% <o
the steady-state distribution looks like a chain of equally spaced (in
energy) peaks which maxima are exponentially decaying. Since, as
in the case of the quantum standard map, the number of interacting
sites is large the localization length of steady-state is equal to
l,, =2l,. It is important to note that the localization is homoge-
neous when p&p=const. Therefore, quantum eifects lead to locali-
zation of photon transitions and to limitation of the system excitati-

on.
The estimates obtained for localization length of QEEs allow to

investigate the excitation of different multilevel systems by periodic
field when the standard perturbation theory is inapplicable.

The author wishes to express his deep gratitude to B.V. Chirikov
and 1. Guarneri for attention to this work and valuable comments.
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