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Exponential photonic localization for the hydrogen atom in a monochromatic field
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We present theoretical and numerical results showing that the probability distribution on ener-
gy levels of highly excited hydrogen atoms produced by a monochromatic field should be exponen-
tially localized in the number of absorbed photons. These results allow for a new interpretation of
underthreshold ionization and also for an estimate of the ionization rate.

The strong underthreshold ionization observed in highly
excited hydrogen atoms in a microwave field!~® has been
related to the onset of chaotic motion in the classical atom
and, indeed, good agreement has been found between ex-
perimental data and numerical results of computer simu-
lations of classical dynamics. 3 At the same time, however,
quantum interference effects may place strong limitations
on chaotic motion. This fact was numerically demonstrat-
ed and theoretically justified on simple models’~'® for
which, in contrast to the unlimited diffusion taking place
in classical action space, the quantum distribution f, over
unperturbed levels stays localized, with a localization
length / that, under semiclassical conditions, is roughly
equal to the classical diffusion coefficient. If the latter is
constant, then one has exponential localization, i.e., the
time-averaged steady-state distribution is approximately
fnxexp(—2|n—ng|/1), no being the initially excited lev-
el. This phenomenon of “quantum limitation of classical
chaos” was then numerically detected even in the one-
dimensional hydrogen atom in a monochromatic electric
field;'"!? the important difference from previous models
being that classical diffusion coefficient increases here
with n. Because of this peculiarity, under appropriate
conditions delocalization and unlimited diffusion close to
the classical one may occur, thus explaining the observed
agreement between experiments and classical computa-
tions. However, the nonconstancy of the localization
length in n did not allow for a theoretical prediction for
the form of the steady-state distribution in the localized
case. As a matter of fact, this distribution displays, on
high-n values, a characteristic peak structure, produced
by multiphoton transitions, the explanation of which
seemed out of the reach of localization theory. This latter
theory seemed therefore unable to achieve a complete
description of the excitation process, and to determine ion-
ization rates.

In this paper, we show that localization theory can ac-
tually be modified, so as to include these essential details
of the excitation process. The basic result will be that an
approximate exponential distribution is again obtained by
plotting the distribution against the number of absorbed
photons (and not, as previously, against the state number
n). We shall see that numerical data from computer
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simulations of the quantum H atom nicely confirm our
theoretical predictions.

We begin by describing a general method for determin-
ing the localization length. By applying this method to
the hydrogen atom, we shall show that the localization
length in the number of absorbed photons is constant, so
that the usual picture of exponential localization applies.

Let us consider a quantum system with a density of un-
perturbed energy levels p which is acted upon by an exter-
nal monochromatic perturbation with frequency w. Then
the system initially concentrated on some unperturbed lev-
el may start diffusing in energy. This may happen due to
an irregular distribution of levels (such a model was used
to describe the excitation of molecules in a monochromat-
ic field by Akulin and Dikhne'3) or also when the pertur-
bation is strong enough to give rise to a chaotic diffusion
in the classical limit.

However, quantum effects will lead this diffusion to a
halt after a time tp = 4n%/(wAc),'%'* where Ac is the
average spacing of quasienergy eigenvalues significantly
contributing in the evolution (A =1 here and in the fol-
lowing). In estimating Ac we shall distinguish between
two opposite situations, according to whether all unper-
turbed levels take part in the diffusion process, or not (a
quantitative condition discriminating these two cases will
be given below).

In the former case, Ac~2n/An®'%'* where An is the
spread over the unperturbed levels at time tp: An
=p(D1p) 2, with D =~ (AE?/tp the diffusion coefficient
in energy. It then follows that tp ~ (47%/@?)p2D and the
localization length in energy, / = An/p = a2npD/ w.

According to numerical experiments, the numerical fac-
tor a can be given the value 1.!%!5 The localization length
in the number of absorbed photons is then /, = 27pD/w?.

Now, the change in energy due to a single one-photon
transition is w, so that D =2w?W, where W is the one-
photon transition rate. According to Fermi’s “golden
rule” W=(n/2) | ug r+ol| 2€*p, where pg g+, is the di-
pole matrix element, and ¢ is the field strength. Thus we
finally get'®

ly=21?u2e?p? . (¢))

The assumption that all levels are involved in the
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diffusion process is satisfied for ue> w; indeed, ue is an
estimate for the critical detuning from the resonant Rabi
frequency.!> In the opposite case, ue< w, only levels
close to resonance will be excited. Then the above argu-
ment leading to (1) is not valid, and we shall instead
proceed as follows. First we estimate the number of excit-
ed levels at time ¢p by An~ N,An, where N, is the number
of absorbed photons at time 7, and An, is the number of
excited levels in each resonant zone. NV, grows diffusively
in time, and from the above-written transition rate we get
Ny~ (nu2e*ptp) 2, while An,~pep. Since all excited
levels lie in zones of width ~ ue around resonant levels,
then the quasienergy eigenvalues can also be assumed to
lie in an interval ~ue2n/w in (0,27). Therefore, their
average spacing is Ac~2nue/(wAn). We now put in this
expression the above estimate for An and substitute the re-
sulting Ao in tp~4n%/(wAc); thus we finally get the
same previous estimate (1) for /,~N, However, the
structure of the steady-state distribution will now exhibit
a chain of peaks with gaps between them. If /, is but
weakly dependent on energy, the population of these
peaks, numbered according to the number of photons N,
will decay exponentially ~exp(—2|N,|/l,).

The above results are of a general nature, and in princi-
ple they may be applied to widely different quantum sys-
tems. Let us turn now to the particular case of a one-
dimensional hydrogen atom in a microwave field. We
write the classical Hamiltonian for this system in action-
angle variables (#,A) and in atomic units, » 1417

H=——1 +en2coswr 1—225“'-’;'(5)00”7» , ()
2n? 2

s=1

where J; are Bessel functions. By using the asymptotic
expansions for these functions with s =wn3, s — o we get
the semiclassical expression for the dipole matrix ele-
ment '8 for a one-photon transition from the initial level n:

u=0.411/(0*’n3) . (3)

On the other hand, since p=r?, from (1) and (3) we ob-
tain

l,=3.33820 193 (@)

Therefore, the localization length in the number of ab-
sorbed photons turns out to be independent of energy.

Notice that on multiplying (4) by wn?, i.c., the number
of unperturbed levels in a one-photon interval of energy,
we obtain the previously derived %! value of the localiza-
tion length [Eq. (11) of Ref. 14], with a slight difference
in the numerical factor. As explained in Ref. 14 this
difference is due to the particular choice of a numerical
factor in the classical diffusion coefficient made in Ref. 12.
We wish to emphasize, however, that the previous theory
was able to justify the form of the steady-state distribu-
tion only in a restricted neighborhood of the initially excit-
ed level; instead, we have now an approximate description
for the overall distribution, including its peak structure.

If the photonic localization length is large enough, then
this peak structure will produce a plateau in the original
distribution over unperturbed levels.!%!* If, moreover, /,
is comparable to the number of photons required for ion-
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ization N;=(2néw) ~! then strong ionization will occur.
This is the delocalization phenomenon described in Refs.
12 and 14, which leads to diffusive ionization, as in the
classical atom. As a matter of fact, the condition /,= N,
yields the same expression for the delocalization border as
in Refs. 12 and 14 [Eq. (15) of Ref. 14].

We checked the above theoretical prediction on numeri-
cal data from extensive computer simulations of the quan-
tum H atom that are fully reported elsewhere.!* In Fig. I,
a time-averaged distribution is plotted versus the number
of photons N,=N;—1/(2n?w). An approximate ex-
ponential behavior is here evident. We determined the
value of /, by dividing the explored range of values of N,
(to the right of zero) in one-photon intervals, and by tak-
ing the maximum of the distribution f, in each interval.
A least-squares fit of these values, in semilogarithmic
scale, with a straight line, yielded the localization length.
The ratio of the /, thus obtained to the theoretical value
(1) was here 1.6.

The results of several such determinations of /, for
different parameter values (1 < wo=< 3; 0.02 < g < 0.16;
no=230,45,66,100) are shown in Fig. 2. Here Inf, is plot-
ted versus the number of photons x =2N,/l,. With this
rescaling, pure exponential localization in all cases would
yield the solid line.

In all but three cases considered, the theoretical value
of /, was larger than one, and g was larger than the classi-
cal chaotic border & =1/(50 w{’?). The dependence of Iy
on ¢ predicted by (4) can be checked in Fig. 3; the
theoretical formula correctly works in a range of 5 orders
of magnitude of &2.

Quite remarkably, still another independent theoretical
justification for photonic exponential localization can be
given. To this end, we first reduce the classical dynamics
described by (2) to a two-dimensional mapping and then
we quantize this mapping; in this way, we obtain a new
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FIG. 1. The probability distribution, averaged from 80 to 120
periods vs the number of photons N,=N;—1/(2n%w). Here
no =100, eo=end =0.04, wo=wng =3. For each integer value of
N,, open circles indicate the probability in the interval N,— %,
N,+ 7. The straight line is the result of a least-squares fitting
of the peak’s value. Filled circles were obtained by iterating the
quantum map (6).
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FIG. 2. Infn vs x =2N,/l,. Here I, is the experimental value,
obtained by least-squares fits on 41 distributions as described in
Fig. 1, for different values of &, wo, and no. The constant parts
in Infy have been subtracted, so that perfect exponential locali-
zation would correspond to Infy = —x, which is also drawn in
the figure (full line).

approximate formulation of the quantum dynamics of the
H atom. In order to derive the classical map, we integrate
the Hamilton equations of motion over an orbital period
of the electron, substituting the unperturbed motion in the
ﬁeld-de;;endent terms and keeping just the resonant term
s = n.

We then find that the variables N (energy divided by
o) and ¢ =wt —sA during an orbital period change ac-
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FIG. 3. Plot of the logarithm of the rescaled experimental lo-
calization length In(/,0'%3/3.33) vs Ing%. The solid line gives the
theoretical dependence (4). The points are obtained from nu-
merical data of 38 different distributions, with /,> 1.
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cording to

N=N+ksing ,
(5)
d=¢+2rn0(—20N) 32

where k =0.8227¢/w*. This “Kepler map” yields an ap-
proximate description of the motion of the classical elec-
tron. It is defined for all bound states (V< 0) but carries
some of them into the positive energy region, where it is
not defined. The real trajectory then goes to infinity, and
its energy is determined by the last “kick” [term ksing in
(5.

It is important to remark that (5) can be locally ap-
proximated by a standard map!® with parameters k,
T=6rw?ng3 and stochasticity parameter K =kpT =g/,
as follows from linearization. Thus (5) shows again that
global diffusion is to be expected for K > 1, i.e., &> ..

Let us now quantize the map (5). Since this map de-
scribes an unbounded motion in ¢ under a periodic pertur-
bation, a new integral of motion will appear (“qausi-
impulse”), besides quasienergy; for a given unperturbed
level ng, it will be just the fractional part of No= —n¢/
(2wo) = —N;. Then, putting N,=N — Ny, we can rep-
resent N, by the operator N,= —id/d¢, with periodic
boundary conditions in ¢. The quantized version of (5)
will be the following quantum map for the wave function

w(o):

v=e "ﬁoﬁe—ikcosqhw, ©)
where

1;70=2n[—2w(N0+1\7¢)] -2 5

and P is the projection operator on bound states
(Ny< N;). This quantum map clearly establishes a link
between the H-atom problem and the rotator problem.
By using this approximate formulation of the H-atom dy-
namics, we obtain the following results.

(1) By iterating (6) we find the evolution of the distri-
bution on the number of photons. Then the usual picture
of exponential localization with a length / = k%/2 (Refs.

- 10 and 15) should apply, were it not for the dissipation in-

troduced by projector P. However, if the localization
length thus predicted is less than the number of photons
for ionization, a quasistationary exponential distribution is
reached even in the presence of P. Then from I = k2/2 we
get the same value (4) previously derived by a quite
different method.

The results of a numerical simulation of (6) are report-
ed in Fig. 1, where the steady-state populations of NN,
eigenstates (filled circles) numerically obtained from (6)
are compared with the probabilities in one-photon inter-
vals of energy gotten from the numerical simulation of the
Schrodinger equation (open circles). The two sets of data
are not very close, but there is an average agreement,
especially in a neighborhood of the initial peak.

We recall that, according to numerical data,'® the
steady-state distribution can be satisfactorily described by
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the formula
Fvg= 42| N,|/l)exp(=2| N, | /1,)/1) . (1)

(2) The map (6) also allows for the determination of
the ionization rate. This is particularly simple for one-
photon ionization with k < 1. Indeed, by estimating the
probability for a transition with AN,=1 under one kick,
we get the ionization rate in number of map periods
ve=(k/2)% In real physical time, the rate is
I,=v,(27n3) ~', which is the same as the standard re-
sult®14 1, =0.265¢%/(0'"*ng).

In general, in the localized regime the ionization rate
should be

Ny _
Yo~ 2 In—kSw,,

N=N,—k
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where Ny > [, > k > 1. In physical time, this gives

Ty~kfn, (ko) ~w3e ™52
xexp(—0.30% 2ng %) . (8)

(3) From (6) we can also extract a prediction about the
distribution in the continuous part of the spectrum. If, as
in the classical case, this distribution is essentially deter-
mined by the effect of a single kick on states close to the
ionization border, then from (6) we get that for k> 1 this
distribution should be « IJN.(k) | 2, in agreement with re-
sults obtained in Ref. 20.

The authors express their deep gratitude to B. V. Chiri-
kov for his attention to this work and valuable comments.
This work was performed with the support of the Consi-
glio Nazionale delle Ricerche (Italy).

*Also at Istituto Nazionale di Fisica Nucleare, Sezione di Mi-
lano, Milano, Italy.

fPermanent address: Istituto di Fisica Nucleare e Teorica,
Universita di Pavia, Via Bassi 4, 27100 Pavia, Italy. Also at
Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy.

1J. E. Bayfield and P. M. Koch, Phys. Rev. Lett. 33, 258 (1974).

2J. E. Bayfield and L. A. Pinnaduwage, Phys. Rev. Lett. 54, 313
(1985); J. N. Bardsley, J. E. Bayfield, L. A. Pinnaduwage,
and B. Sundaram, ibid. 56, 1007 (1986); J. E. Bayfield, in
Fundamental Aspects of Quantum Theory, edited by
V. Gorini and A. Frigerio (Plenum, New York, 1986).

3K. A. H. Van Leeuwen, G. V. Oppen, S. Renwick, J. B. Bowlin,
P. M. Koch, R. V. Jensen, O. Rath, D. Richards, and J. G.
Leopold, Phys. Rev. Lett. 55, 2231 (1985); P. M. Koch, in
Physics of the Phase Space, Lectures Notes in Physics
(Springer, New York, in press).

4N. B. Delone, V. P. Krainov, and D. L. Shepelyansky, Usp. Fiz.
Nauk. 140, 335 (1983) [Sov. Phys. Usp. 26, 551 (1983)].

5R. Blumel and U. Smilansky, in Proceedings of the Conference
and Workshop on Quantum Chaos [Phys. Scr. (to be pub-
lished)].

6G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky,
Phys. Rev. Lett. 57, 823 (1986).

7G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, in Sto-
chastic Behavior in Classical and Quantum Hamiltonian
Systems, edited by G. Casati and J. Ford, Lecture Notes in

Physics, Vol. 93 (Springer, New York, 1979), p. 334.

8B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Sov.
Sci. Rev. Sect. C 2, 209 (1981).

9S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett.
49, 509 (1982); Phys. Rev. A 29, 1639 (1984).

108, V. Chirikov and D. L. Shepelyansky, Radiofiz. 29, 1041
(1986).

Up, L. Shepelyansky, in Proceedings of the International
Conference on Quantum Chaos, 1983 (Plenum, New York,
1985), p. 187.

12G. Casati, B. V. Chirikov, and D. L. Shepelyansky, Phys. Rev.
Lett. 53, 2525 (1984).

13V. M. A. Akulin and A. M. Dykhne, Zh. Eksp. Teor. Fiz. 46,
1099 (1977) [Sov. Phys. JEPT 73, 2098 (1977)].

14G. Casati, B. V. Chirikov, 1. Guarneri, and D. L. Shepelyan-
sky, Phys. Rep. (to be published).

I3D. L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986).

16D, L. Shepelyansky (unpublished).

IR, V. Jensen, Phys. Rev. A 30, 386 (1984).

185, P. Goreslavsky, N. B. Delone, and V. P. Krainov, Zh. Eksp.
Teor. Fiz. 82, 1789 (1982) [Sov. Phys. JEPT 55, 1032
(1982)].

I9A. J. Lichtenberg and M. A. Lieberman, Regular and Sto-
chastic Motion (Springer-Verlag, New York, 1983).

20J. Ya. Bersons, Zh. Eksp. Teor. Fiz. 86, 860 (1984) [Sov.
Phys. JEPT 59, 502 (1984)].



