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PREFACE

International conference “Renormalization Group-86" was held ai Dubna,
USSKE in August 1986, The subject of the conference was numerous applications
of the ideology and technigue of the renormalization group in various fields of
theoretical physics.

Renormalization group was discovered in 1953 while studying the structure of
renormalizations in quantum field theory, At first, it was used o analyse ultra-
violet hehaviour in different OFT models. In particular, with the help of RG the
phenomenon of asymptotical lreedom in QUD was found. At the beginning of the
seveniies the RG method was successiully applied in the theory of phase transitions
to the caleulation of critical exponents. During the next decade. the RG method
found application in various far separated fields of physics such as the theory of
turbulence, polymer physics, transfer theory, percolation and others. In recent
vears, the renommalization group ideology has been used in the theory of dynamical
chaos. So, the RG method appears (o be a universal technigue used to handle the
singularities in a wide class of complicated physical problems.

The aim of the conference was 1o gather the specialists from dilTferent fields of
theoretical physics who use the renormalization group ideology in their research.

At the conference 10 invited review talks and more than 30 original reports were
given. The present volume contains all the review talks and half of the original
reports. The editors” aim was 1o choose those original papers which are interesting
from the point of view of renormalization group ideology.

The Organizing Committee would like to thank AN Vassiliev. M.A. Mnatsakanian.
5.5, Moiseev, 5.1 Obukhov, Ya.Go Sinail and BV, Chirikov for useful assistance.

Editorial hoard



CHAQS BORDER AND STATISTICAL ANOMALIES

B - v - Chiriku‘? E-n-d D & L - ShErp Glyﬂ.ﬂskj’

Institute of Nuclear Physics
630090, Novoaibirsk, U S S R

The dynamicel chaos ie the random after Alekseev (un-
predictable) motion of a purely dynamic aystem free of
any random parameters, or noise, in the equations of mo-
tion. According to the Alekseev-Brudno theorem (see Ref.
15 the necessary and sufficient condition for such a
chaos is the positive (nonzero) dynamical Kolmogorov-S5Si-
nai (K3) entropy h that is an exponential local insta-
bility of motion (on some transitive set whose dimension-
mlity is larger than one). Owing to that instability the
concept of trajectory of a chaotic motion loses the phy-
gical meaning (just as notion of unstable equilibrium be-
comes purely formal), and one haa to turn to a astatisti-
cal description of motion which is assumed to be stable.
Here the main problem is to find out the statistical
propertiea of a chaotic motion.

4 distinetive feature of this problem is in that the
statistical properties of the chaos are completely deter-
mined by the dynamics of a aystem without any additional
statigtical hypotheses., Moreover, that statistics may
happen to be rather unusual, or "abnormal". We put here
quotea as the abnormal is not the behaviour of a dynami-
cal syatem itself but rather our traditional simplifier
conception of the latter, just due to the additional sta-
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tistical hypothesea which had been required, indeed, pri-
or to the discovery of dynamical chaoag.

It was commonly assumed, for example, that the corre-
lation of a random process in statistical mechanics decays
exponentially in time. This eppeared to be confirmed in
the theory of dynamical chacs with its exponential local
instability. Indeed, there are special, so called Anosov,
ayatemsa, where the correlation decays exponentlally. Yet,
generally, the decay may he a much slower one, as a power
law, for exmaple., Apparently firat such a phenomenon of
(correlation) "long tails" has been discovered in numeri-
cal experimentes with the hard sphere model of = gaaz}

(see also Refs! : Chapter 16, ana¥).

Eelow we are going to consider another, typical for
oacillator systems, case of divided phase space with co-
exiating chaotic as well as regular components of motion.
A peculiar surface separating any two of these components,
the chaos border, is just the principal object of our stu-
dies.

Since long ago it has been noticed that the vicinity
of chaos border has generally a very intricate structure
of heirarchicelly interwoven domains of both chaotic and
reguler motions in a wide range of spatiasl and temporal
scales (see, e.g. Raf.EJ; an example of n simple chaoa bor-
der is presented in Ref.").

The detgiled atudiea, which basic resulfs are outlined
below, revealed that just such a complicated structure of
the "edge" of a motion cheaotic component results in sta-
tiatical "anomaliea". In fact, only the simplest class of
such dynamical systems has been inyeatigated up to now,
those with minimal dimensionality when the dynamical cheos
is still posseible., Theae are conservative Hamiltonian ays-
tems of two freedoma, and the related two-dimensional canco-
nieal mappings. In the latter case the chaocs border is

Just a curve.

One interesting result of the studies of chaos border
was the diecovery of a new type of dynamical chaocs, which
we term the renormalization chaog, i.e. chaotic fluctuamti-
ong of the whole phase plane structure near the border
upon transitien from cne space-time ascale to another one.

T« Model

As a model we have chomsen separatrix mﬂpE'G} specifi-
ed by the equations:

Z=2+SinX; X=X=-AIZl «.n

where Z,X are action-phase variables, and A\ - the pa-
remeter. Particularly, this map describes a chmotic layer
around the perfurbation splitted separatrix of s nonline-
ar resonance’

Model él.j] is reduced, locally in Z to the stan-
dard map5' )

;T:g + KsinXx; §=><+; (1.2)

where new action Y= A(Z - E.J’;? —A In 12|, ana new pa-
rameter K =- ")5./2 » Ag the latter mep is periodic in Y
there exiats the critic&l ]K"K}#i geparating bounded
(1Kl K}‘} and unbnu.ndad[[l(i}K}} motion in Y (see
Section 3 below). This approximately determines two bor-
ders of the main chaotic component

| Zzgl =~ A {1:3)

which fills up the layer |Z|£ A . Outside this region
there are also other isolated chaotic layers, generally

‘of a considerably amaller width, about the separatrices
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of various resonances, for example, at =, satisfying
}lfﬁlz.‘]-’:f?'h where integer h 2 A {n XAy -

Inside the main chaotic component the domains of stab-
le motion are embedded, corresponding to the centers of
some resonances. Hence, the main chaotic component has not
only external bordera {(1.3) but mlso n hoat of internal
onas durrounding the stable domains. Near any of these bor-
ders the phase plane structure becomes highly intricate
while the share of stable components amounts up to 50 per
cent. It was observed a long time ago that a trajectory
may "stick" within those domains for a long time (asee,
EsBey Ref.”) which leads to a subatantial change in the
atatistical properties of the motion in chmotic component.
It is just the subject of our atudies in question which
have been atarted in 1981 (=see Ref.?}.

Notice, that the chaotic component in model (1.2) has
posltive K3-entropy hx. Ehfk:{g). K > 4 (see REI.EJ, hen-
ce in the chaotic layer of model (1.1) h >0, too.

2. Statistice of Poincare's Hecurrences

One of the most important statistical properties of mo-
tion is the temporal correlation. However, our experience
taught us that the most simple and reliable statistical
characteriatic to measure is another one, the temporal dia-
tribution of Poincare's recurrences. To this endwe numeri-
cally calculated time 77 (the number of iterations) for
map {(1.1) between successive crossings of line = =20 by
a trajectory, i.e. the transition time from one half of the
chaotiec layer into another one. Eoth halvea are aymmetric
up to a shift in phase: X-—» X +7 . The basic result of this
measurement was integral recurrence probability () de-
fined as the ratio of the number of recurrences after time

T to the total number of recurrences. Apparently firast
such a method was used, implicitly, in Raf.a.
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ur main .1'»3:;1.:11;5»13‘l are presented in Fig. 1 taken from
Ref.'l Two qualitatively different regions of dependence
P(v) are clearly seen. At small 7+ the numerical data
are well described by the function  P(¥)= 272, 14
is in agreement with the results of Raf.BJ where also
the chaotic layer of a nonlinear resonasnce was actually
gtudied. This dependence has a aimple physical meaning:
it corresponds to a homogeneous diffusion within the lay-
er |Z[< )\ during the time interval 2},*—-}."’ .

The second region (> 2,)is much more interesting
and rich. Dependence P(%*) here has two distinctive fea-
tures. First, it is a power law, at average in &

Dy MCA)
o o (2.1)

the exponent f  weakly depending on A with the mesn
value over all the data in Fig. 1

<pr=4.945 (2.2)

Secondnvthere are irregular oscillations of the local ex-
ponent p:d’fgﬂﬁ@g-wh.[uh, however, have nothing to do
with fluctuations of the chactic motion as they do not de-
pend on the initial conditions. In other words, astatis-
tica (%) proves to be the same for completely different
(due to local instability) trajectories. This would Lmp ly
that both the oscillations and average power law dependen-
ce F(T)describe the atructure of the chaotic layer edge,
i.e. of the chaos border.

The statistics of recurrences is closely relaled to
the temporal correlation decay for chaotic motion within
the layer. Indeed, the mean relative sojourn ("sticking")
time for a trejectory in some neighbourhood of the chaos
border is of the order ¥ [(¥)/c¥> where <E>23) 1ia
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Fig. 1. Distribution of PﬂinEBrH'ETTEEUITEncEB in
the chaotic layer of map (1.1): 10' iterations for
each A =1 (+); 3 (#); 5 (0); 7 (*); 10 (x); -4
30 (A); end 100 (m); the straight line is Pre)= T =

the average recurrence timET}. From the ergodicity of mo-
tion this time is equal to the relative measure A44(Z)

of the sticking domain which is just the residual corre-
lation. A detalled calculation of the nurrg%atiun from
statistice of recurrences is given in Ref. {see also
Fig. 2}. We obtain

(2.3)

Fig. 2. Statistical properties of motion with chaos
border: &-Poincare's recurrences; b ~correlation de-
cay. Curvea are Karney's numerical datagj; circles

present our date for model {1.1), A = 3. Sraight 1i-
nes indicate power law with the exponent shown.

In Fig. 2 the comparison is given of our data with
those in Ref.’ obtained in a unique run of 1600 trajecto-
ries by 2 x 109 iterations each! In spite of a different
two-dimensional cannonocal map expored the general behavi-

227
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our of recurrences and of correlation is close, including
the mean velue of exponent P . This suggests universali-
ty of the critical phenomens at the chaos border. Even
though f wvalues are somewhat scatiered, certainly p< 2,
and P < 1 (Figs 1, 2). This proves to be very impor-
tant for the statisticel properties of a chaotic motion
with the border (Section T).

3. Resonant Theory of Criticel Fhenomena

The first qualitative explanation for an unusual sta-
tistics of the recurrences (2.1), presented in REI.TJ.
was based upon the idea that the diffusion rate in =
(see eqs (1.1)) vanishea by approaching to the chaos bor-
der. Importantly, the diffusion rate decreases suffici-
ently fast so that a chaotic trajectory does not reach
actumlly the border even though it comes to the latter
arbitrarily close. Thus, the chaos border forms a certa-
in eritical invariant curve.

The astudies of critical curves for two-dimensional
canonical mappings hed been initiated by Greene1ﬂj, aa
an extension of the KAM (Kolmogorov-Arnold-Moser) theory
of stability up to the strongest (eritical) perturbation,
and then were continued by many others (see, e.g., Refe
11-13,15,16)), ppe original problem was to find the criti-
cal value Kﬂ' for the standard map (Section 1) which
correaponda to the destruction of the last (strongest)
invariant curve. Greene conjectured that this curve has

the rotation number

it
PRl w4, ey Ly JE =2 0618

where

Fe S L Lﬂuﬂ Xy =Ko {3.1)

o s R
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and the integers in brackets are the elements of the con- |
tinued fraction expansion for F ., Irrational Iz 1is cal-
led the "Golden Mean" and is known to have the worst Bp-
proximation by the rational convergets. The latter was
precisely the idea of Greene's conjecture. Using a speci-
al numerical procedure, which proved to be highly effici-
ent in such problems, Greene calculated the eritical va-
lue KJT}(}:KG = ﬂ!9T16354ﬂ631l-411}9 According to Ref,'4)
K}_{ 63/64 = 0,9843... Our numerical data reveal that
the rotation number of the last invariant curve (Ig) lies
within the interval 0.380 < |5, < 0,388 around the aym-
metric "golden curve" with F= -, m R e
The remaining uncertainty is very small, and we agsume
ta=Ie {or 1 - q}] and K$==Kg (see, however, Section
5). At K= K? the whole phase plane of standard map is
decomposed into identical pairs of chmotic layers separs-
ted by the eritical curves and periodic in 3« .

The critical phenomena are characterized, particular-
ly, by the motion on the critical invariant curve. The
former may be described auqz];

X(t) = %é ag sin(g¥); Y=2rrt

where © is the iteration number, and ??E)the mean mo-
tion. It was noticed from the bﬁginning1ﬂ} that the big-
geat amplitudes A; (see eq. (3.4)) correspond to the
special % =4, which are denominators of the convergents
th=* = fF . This is becausge t, are the best approxi-
mationa to } . Particularly, the frequenciea of criti-
cal motion (3.2)

Y= gr(medi)=gr-p (3.3)

become minimal for §=9¢, and P=p, . Those harmonics
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determine the principal scales of critical motion. It is
convenient to describe these scales by the dimensilonless

quantities

A=l g Bas 18, 192 =24, §nSin(21Y, ) o
% 2wl anl A,

Here f,,r are the Fourier amplitudes of ?’f‘.") i UM, Bl
- the dimensionless frequencies, and the relation of Bn
to A, is obtained from the second eq. (1.2) and eq.(3.2},
the last expression for A, holding under §,>> 1.
Critical motion (3.2) represents to some extent the

structure of ites eclose neighbourhood, too. Particularly,
the principal scales correspond to strongest resonances
= P,‘_jq,h which are at distance (in frequency)qgf, = -
“t ™ Yusg. off the critical curve. Each resonance
forms a chain of §, stable "islands". Hence, its cha-
racteriatic Y scale is 22ﬂ/¢h , and one may introdu-
ce a dimensionless variable th-.}:xgﬂ_ . As the size and
shape of "islanda" are different the description in

terma of ff“Jia noninvariant. A more convenient quanti-
ty ie .-flh_ which characterizes some aversge (in ¥ ) strue-
ture of a principal resonance and of the corresponding
scale., Similarly, B, describes the average resonance
width in ‘I’y .

The dimensionless distance between a resonance and

critical curve is 'P,,,=zjﬁ, f;:ﬂgh Vi , and under
the critical perturbation, it is natural to expect that

P 8, (3.5)

Thia is the remarksble relation between a resonance che-
racterigtic of the critieal structure ( B"_} and an arith-
metic property of the critical rotation number ( f.).

Eq. (3.5) has & simple physical meaning directly rela-
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ted to a graphical picture of the overlap of neighbour-
ing prineipal resonances at both aides of the critical
curve. This vivid conception forms a basis of our appro-
ximate resonant theory .of the critical phenomena, Unlike
the formally rigorous theory relying upon the renormali-
zation group method” the resonant theory providea ap-
proximate analytical relamtions for some characteristica
of the eritical structure. On the other hand, the renor-
malization group method mllows to construct very effici-
ent numerical algorithms, and to compute highly accurate
values of the critical structure parameters like Kq ’
for example. An approximate renormelisation theory, ta-
king account of only two resonances on each acale (the
"two-resonance" approximation) has been developed by
Eacande15'15}. This theory alse essentially exploits the
resonance structure of critienl phenomena, and allows
Bome analytical calculations of its properties, more ac-
curate than our estimates like €q. (3.5).

In the simplest case of a homogeneous continuous
fraction ™% (m,m,..) the quantity ﬁ*f‘"’: (4+m*)" 7,
Hence, B -» B'™)  gang .4"-':-:4""*’ also. In & particular
case m=4 ,I'=f, , which has been studied in detail,
according to our numerical data

1)

(i) (L)
A = 0.16736---; 8 = 044?027--1: _-HJ =1-0515.--.

(3.6)

T A
he value of is two times of the result in Ha:r.m}
due to a different normalization of amplitudes 4, there
which holds for a periodic trajectory only.

The eritical atructure is also characterized by vari-
ous scaling factors, e.g., S;'L)z ff“%?ru= ‘}mz/@ = gl
where the latter ig a purely arithmetical :Eacto;. For

= A the factor Sihirsnf_- that is the exact scale
G
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invariance holds in the limit h-re . Similarly, Sitnf—.
:{ﬁi.m;fg,,]i{'j"'f and $,= 5‘!1%}Hhenca, for the area, or
meagure ,gu_:jx sg = ,5'3 . This relation ia only ap-
proximate as sx,fy describe the average Eca%e ratios _
gver the critical curve. According to numerical data in
Raf.“], on the dominant symmetry line {x=7) the factom
S5 () = 1.414836062..45 Sy(7) = 3.066888246... which
are gquite different from the mean valuea 5 = 1,61B...,
and S*= 2.618... However, numerical value S =
= 4,3391440884 .., which remains constant along the gurve
due to measure conservation, is fairly cloge jl,g 1B€ =
= #.236... It was confirmed recently in Refs 7
using the two-resonance theory. 4}

We also studied numerically the convergence A A
and have found two characteristic ratea:

{4)

l lc‘du - A I e ._‘E-J- - .E_J'.i_.i.{ (3.7)
VR T L
The first, rapid, rate relates to the arithmetica: II’EW..I'
"}p._-i[ = ifﬁ-ﬁf . The slower convergence was interpre-
ted ea.rliarﬂj as the effect of a certain local pertur-
bation. However, according to Ref.w}, the convergence

-vg_:' naturally arises from the renormalization group
equations. Thus, the question of the local perturbation
remaina open (see Section 6 below).

At & small difference K- KGI the behaviour of the
principal dimensionless amplitudes ia dt‘aacrihm‘i Ly the
following approximate empirical expression:

Ah.:' A“}Exp(i.z?hfk’kq}) (3.8)
12)
which improves the relation due to Escande (see Ref. )
Humerical data in Ref.m} show that near the critical
value the exponent in eq. (3.8) depends linearly on K
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This expression holds for sufficiently large ?n, when the
deviation (3.7) from the asymptotic value can be neglec-
ted.

In the suberitical case ( K< lg ) the amplitudes de-
cay exponentially, like in the KAM theory for a typical
enalytic perturhatiﬂnzm. At eny K3 Kg the amplitudes
grow exponentially, and a continuous invariant curve with

V=t gets destroyed and is tranaformed into some now-
here dense invariant Cantor aset, the so called cantorus
13), A1 resonances with Du 2 fK—Kﬁ_]-te.re completely
destroved, and form a solid chaotic layer. Its width (in
frequency) ﬂf'; is determined by the principal undestro-
yed resonance with minimal fi',’:_m(K— Kq_‘jd" 1

Al “’(?»:)“?N(K—K&Jz (3.9)

Numerical simulation shows that for ‘I,,L:,b ‘E: the exponen-
tial growth (3.8) is saturated so that 4 ~ i.

Other dimensionless gquantities characterizing the neig-
hbourhood of a critical curve behave in a similer way, for
example, Greene'as residue Rh_ 10) whose value determines
the stability of periodic trajectories [, = Fh/}t_n:

Ry = sint(Tote) G210

Here -.H.,L is the frequency of small oscillations about that
trajectory, the stability corresponding to the interval:

0 < R,< 1. hccording to Ref.'') R, - R™= 0.2500888...
at K=K¢ which implies that the resonance centres remain
undestroyed. For K;‘ Kq. the dependence £(K) is some-
what different from eq. (3.8):

{14+€

Ry = R expl 2208 (K-ke)] (341
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with £ = 0,013}, Besides, for 4 K= K-K»0 the re-
sidues grow with h indefinitely. It haes a simple physi-
cal meaning, namely, the Lyapunov exponent A, = ﬁw.( ?R.._J"_/%
remains approximately constant, and iz close to the en-
tropy 11_~AK in the critical chacotic leyer.

4. Renormelization Chaoa

The renormalization group, which describea a criti-
ecal atructure, may be considered as some abstract dynami-
cal system in s space of two-dimensionsl cenonicel maps
determining the motion structure in dimensionless variab-
les. The serial number of a prineipal scale of the criti-
cal structure, which is proportional to the logerithm of
s characteristic space or time scale, plays here the ro-
le of dynemical time, the so called "renormalization ti-
me',

In case of & homogeneous continuous fraction for the
rotation number the critical structure is characteriszed
by the exact scale inveriance. It corresponda to the
simplest renormalization dynamica, a fixed point. Natu-
rally, & question arises about a more complicated renor-
malization group. One may consider, for instance, peri-
odic continues fractions. These are reduced, however,
again to m fixed point of the corresponding power of re-
normaelization map.

_ The chaeotic renormalization dynemice, predicfed in
Ref.ET], and demonstrated in Raf.19 , appears to be much
more interesting. A similar phenomenon was independently
studied also in Ref.gg} for a one-dimensional mapping.
The renormelization chaos occurs when the sequence of a
continuous fraction elemente {m,] is rendom, and this
is just the case for almost eny irrational F 27), In-
deed, m., are given by the Gauss map
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il = -é— P{i' = JL
hi r dd Xy P [fk ] (4.1)

with initiml F, = . Homogeneous continuous fractions are

the particul i
: P B ar case with the apecial initigl condition

o = I -« Map (4.1) has a positive entropy h = HgfﬁlnE.

The randomness of sequences {ﬂJ and ﬁﬂnj resulte in

randomness of all the other parameters of a critical struc
tuie. For example, the main scaling factor $H==$h*1f =
= /}d;ii is described also by Gauss' map: s

1
= mod 1 (4.2)

h+1

Wy, =

backwards in renarﬂglizatinn time with the "initialn VE-

lue W =F where | is the irrational with reversed ge-

quence of elements in regard to I . The frequency ratio

a8l neighbouring ascales iﬁh = =V Vi i { > 0) also
satisfies map (4.1) with {, = ¢ .
The mean scaling factor for a typical ' may be ob

tained from the gteady-

state distribution of m
and is equal v

hsg
e I L P4y
(4.3)

It is about twice ag large as that for ﬁ#

i ;
N example of renormalization chaoa is gtandard map for

r? = (211121291112111214%.) = 0.37966453... is given in
Fig. 3. The choice for g will be explained below (Becti-
on 5). The critical value K, (f;)= 0.9618704... In Fig. 3
the critical structure ig represented by two dimensionleass
quantities, Ah."ﬁ‘h?n““& R « The yalues or A, were
obtained from a periodic trajectory of ﬁA/ = 10612
{ |FH—-I"£I' e 1D'B}. Big irregular oscillations of both Au



236
& - i ¥ g o n - ﬂ‘_.‘_ R
I o I TG SR TN P
P =y )
g b - - s
o O g L 20

- bogigal £

8
——
—
—

Fig. 3. An example of renormalization chaos on cri-
tical curve with I'=I,; (see the text) in standard
map (ecireles), Arrows indicate correspondingly sca-
le for ag=A (the lower part) and for R in the up-
per part; h is renormalization time (the number
of & principal mscele). For comparison, the seme da-
te are given for |= Fe which illustrate exsct sca-
le invarisnce (points).

and Eh. demonetrate chaotic fluctuationa of the motion
structure over a range of scales. Smme data for
(the scale invariance) are given for comparison.

A remarkeble feature of the eritical atructure is in
that it is completely determined msymptotically, &8s h-—>eo,
by the rotation number. It can be demonstrated as followa.
Coneider two rotation numbers, Fp and |y , related by
map (4.1). They correspond to the critical curves in dif-
ferent domeine of the phase plene of stenderd map, and
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have different critical K, . Yet, their asymptotical

eritical structures are Bimply shifted relative to each
other by one iteration of the renormalization map (n-ves):

A=A, (t); Kalie) 58000 day

Fig. 4 presents an axample of such shift by two itersm-
t-iEna for fo= Iy = {2111244s) = 0.3796..., and for

o = (112..0) = 057750005 K.(r,) = 0.961... while

K. Cl7) = 0.948... In the lower part of Fig. 4 some in.
tervals of the full spectrum are shown for the eritical
motion at [=Iy. The renormalization chaoa becomes here

8till more obvious. The rest of Fig. 4 presents the dif-
ferences

aA L Auy ()

A A, (F¢)
Both rapidly decrease in renormalization time (from ri ht
to left). Hemarkably, that convergence takes place nctE;
ly for the principal scales { 9 =4, ) but alsc for all .
intermediate ones. The latter were identified by the qu
antity ¥ where & was the period of the trajecto -
used in calculating the Fourier gpectrum, Signirican::y
the § values for F¢ and 'y are quite different n;-
mE].-F' {er}} = 10612 while Q(l;) = 2554, their r&t.”Lu
being 4.15505... The same is true for the i, valuea dete
mining dimensionleas amplitudes 4= a.9.. Nevertheleas .
the latter prove to be equal to the AccuUracy -~ 10*3 ’
and so do Greene's residues which characterize a nei A
bourhood of the critiegl curve, =

Moreover, if we take a different map (1.1} and consi-
ier the eritical curve with the same rotation number F¢
Attt ot oot

o converge to the asame

—4; aR=R, ()R (1) (4.5)
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tice changes in scale along (¥ axis. Numbers at upper
points are the values of renormaelization time K. . The

principal scales are marked by circles.
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renormalization attractor with the accuracy ]&f@ﬁ l“’10'3.

All this evidence leads to the conclusion that in the
limit ¥ =* &0 the critical structure in both casea im the
game., In other words, the critical structure of a two-di-
mensional canonical mapping has some universal "renorma-
lization attractor” depending on the rotation number |
only. For a typleal }~ the renormalizetion dynamica on
the attractor is cheotic. A similar type of renormaliza-
tion attractor was studied for one-dimensional mappi in
Ref.??), both analytically and numericelly. In Ref.aﬁ a
chaotically looking renormalization dynamics was numeri-
cally observed, and the authors conjectured that it is
completely determined by the arithmetics of the rotation
number (see alao Ref.jﬁg}.

A graphical picture of renormalization dynamics ias
provided by 8 very simple linear canonical rencrmalize-
tion map derived in the two-resonance apprnximatinn15ju
This map greatly facilitates studying renormalization
chrog.

5« Peculiarities of the Border Invariant Curve

Let us try to relate the statistical anomalies of =&
cheotic motion, discovered in numericel experiments (Sec-
tion 2), with the eritical astructure of a chesos border.
Firat, we need to know the border rotation number f} "

In Ref.alj. analysing the fractal diagram K. (r), the
conjecture was put forth that r; must be of a very spe-
cial form with bounded continued fraction elementa b1, .
Moreover, the elements were guessed to take on randomly
two values M, = 1;2 only, the average number of elementa
L= 1 being twice of that for ht = 2.

Indeed, recent numericel experiments confirm the
special nature of [y by revealing that dependence I'E{ K)
has the form of a "devil's staircase", i.e. of a monoto-

25,26)
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nic everywhere discontinuous function. In Hef.gﬁ] the dis-
tribution of m., was also messured, The ratio of element
numbers hr =1 and hi = 2 has been found to be about
2.5, yet some elements . = 3 (12%), 4 (4%) and 5 (1%)
were algo observed. Besides, some asymmetry of the mi,
distribution was found depending on whether B waas even
or odd. The asymmetry has a simple physical meaning
namely, detuning ]}y -/, | is at average less at the chao-
tic side of the critical curve. That agymmetry seems to
be quite natural for chegs-order transition (=mee REI.E?}L
However, a different type of the chacs beorder is amlac
posaible, for the chaps-chavs transition. Here the border
invariant curve separates two different chaotic compo-
nents. This is just the case in standard map at | = k:;
(Section 3). Then, the chaotic component may have statis-
tical properties different from those at m chaos-order
transition. Indeed, numerical experiments in REI.EIJ re-
vealed that the exponent in eq. (2.1) P = 1 ia very clo-
se to one. It would imply that the correlation is almost
nondecaying ( Pr = p—4 = 0 ), at least, uga’;o P~ 10°.
However, a much longer run made by Vivaldi shows a
considerable increase in the local exponent ﬁ? for
1'3,105 (see upper curve in Pig. 5). The latter distri-
bution corresponds to the cheotic layer with an integer
resonance, €.g., at g = 0. For comparison, the gimilar
data related to the neighbouring layer with a half-inte-
ger resonance (e.g., at g;ﬁ 1/2) are also presented in
Fig. 5. In the latter case the behaviour P.x0 persists
8till longer, at least, up to T ~ 3 x 10", A sharp drop
in j}(tj-at the last two points is statisticaelly unreli-
able due to a small number of events there. At any rate,
statistic's asymmetry at both sides of the border criti-
cal curve with e homogeneous continuous fraction ;= .=

il Yawee) dm atriking.
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1 |
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-21} \\\
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~
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| Ry \
E\ |JI L\, IHI"_‘
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Pig. 5, Distribution of Poincarers recurrencea
in the two chaotic layers of standard map at
K= Kfr + Upper 1:1;:1-T-rta‘?iB relates to the layer
with integer resonance while the lower one does
Bﬂ‘ﬁu that with half-integer resonance and ig
shifted by A log P Per) cacillation at

small T < 10 is due to stable regions around
resonance centers,

= =1,

The cause of this agymme try,
alow correlation decay ia presently unclear. The aimpleat
e%planatiun would be in that the dependence Prr) inp -
Fig. 5 has not ¥et reached the asymptotic scale invari
ce (ef, Pig. 3), The point is that for P %the .
re AL~ Prt)ia almost constant according to 2q. {ET;?EH_

as well as of g super-
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{actually {‘E}M&Twhere 7" is the total motion
time).

Another possible explanation is in that K;?‘KQ{Sec-
tion 3), and the last invariant curve has @c (8 1.8.,
is shifted toward the half-integer resonance. Extending
Greene'as hypothesis (Section 4) we conjecture that ."E;
values at the chaos-chaos transition, particularly, f
for the standard map, are the aso called Markov numbers
(see, e.g., Ref. 9 )}« Those form denumerable set of ir-
rationals r'““ with nonrandom sequence of elements

M., = 1;2. These and only these numbers have minimal
asymptotic detunings ff‘""'}:-‘MEHMIE—‘f] {? with some in-
tegers /M , which are all different from each other
(see eq. (3.5)).

Another important question is whether the statistical
properties are completely determining by the boundary ro-
tation number !“‘ a8 1s the critical structure (Fig.4)?
It ia sleo not clear thus far. In Fig. 6 the recurrences
in model (1.1) are shown for r{"rﬁ' (mod 1). The expo-
nent P 2 1.4 has a usual value (lower curve, Ret.zﬂ b
However, the recurrences in some cheotic layer at the
other side of the same critical curve F" appeared to
be anomalous with P = Tels

6. Fossible Mechanisms of Statistical Anomalies

The simplest gquantitative conjecture for the trajec-
tory "sticking" near a chacs border is in that the tran-
sition time (7, ) from one scale to the next is of the
order of a characterigtic time for a given scale fﬁh} i

T~ E (6.

2
As ‘ffh rapidly drops with /L (tn ,5"_*;5 J the total

gaticking time 7+ ~ 't’h_ +« On the other hand, the measure

4 6 log?

—e

+E..
i

Fig. 6. The same as in Fig.

A = 3.1819316; fe =14 « The lower curve, shifted
by A ifagf' = =1, is the recurrences in the main
chaotic layer, P == 1.4, Rer, <8 + The upper curve
is the recurrences in some chaotic layer at the other
side of the same critical curve,

5 for separatrix map (1.1):
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of all the scales > h. , up to the critical curve, is
/;¢.u,;¢ua.€;f{3ectiﬂn 3). Hence (see eq. (2.3)) the
correlation

C(r) ~pe(t)~ 2 (6.2)

Whence P. = 2; [P =3 which certainly contradicts with
the numerical results?'g'zi} (see Figs 1,2,5). Eatimate
(6.2) had been obtained in Rar.ﬁ}é gnd was confirmed by
more accurate calculations in Ref. . Taking account of
gome .internal chaos borders, surrounding stable ,domains
i:-mide the main chaotic component at the centers of
principal resonances, in Ref. % the value P = 2 was
obtained, and the conjecture was put forth that the com-
plete account for all the internal borders would explain
numerical value P az 1.5 (2.2),

However, the following difficulties arise in this ap-
roach. First, our observations revealed that most long
recurrences correspond to sticking just at the main bor-
der 23253). {(1.1) rather tggn at internal ones. Se-
cond, the calculation in Ref. has been actually carri-
ed out for standard map at K= K‘-’r when P 21 (Fig.5).
Finally, in Raf.‘T} the same value P = 2 was obtained
taking mccount of all the internal bordera, assuming a
universal dependence Prr)at any chaos border.

Let us take a different approach to this problem.
Suppose the transition time of & trajectory between neigh-

touring scalea
ke

-1
Then, the numerical value Pa 2z 1/2 and relatmn/uuhgn
imply that
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k=4

How could one explain such a big k value? It is clear,
first of all that value (6.4) camnot characterize the re-
normalization attractor itself on which the scaling for
any time is given by eq. (6.1), whence tl/ﬁﬂqz'v SI. and
k=1

We conjecture that the statlistical properties of the
chaotic motion with a border are determined not by the
renormalization dynamicas on the attractor but rather by
deviations from this dynamics at finite n . If eq. (6.3)
with [ % 1 describes the convergence to renormaliza-
tion attractor then it should be %, = co on the attrac-
tor that is all the scales there are dynamically isolated.

Now, what determines the particular k value (6.4)7
The following hypothesis was put forth in RaI.ET} (see
also Ref.1gj}. The convergence (6.3) is controlled by
some effective local perturbation which generally depends
on the distance to the chaos border. In separatrix map

{(1.1), for instance, such a perturbation could be charac-
terized by the parameter

(6.4)

K“"Jﬁ K} +F(|"'-f:’) (6.5)

of the atandard map (1.2) which locally (in £ or )
describes the dynemice of map (1.1). The linear dependen-
ce seems to be typical for the chaos-order transition.

The empirical dependence (3.8) and (3.11) implies that
perturbation (6.5) would destroy, at the one side of the
border, only resconance with

9> &, ~ 1

2 IrLf'r?I

2
P (6.6)
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Theae just form narrow (Al a) ﬁai ) chaotic layers
between the prinecipal acaJEE, and, thus, determine the
trensition time ¥, . The latter can be roughly estimated
ag follows (see Hef. 19}] The diffusion rate in the nar-
row layer D, ~ .G?_"’t?-'[ &, %, The gradient of dlEtI‘lbu-
tion function £, ~ @n over the layer width A-Qh is of
the order ?]fhn-gn Qn . Henea, the flux

-im:Dv?f .s?;@., ,.,%,\,g (6.7)

gnd we arrive at estimate (6.3) with the required wvalue
of k = 4.

This mechanism asppears to be typical for the chaoa-or-
der tranaition. It i2 natural to assume that the chacs-
—chaos transition corresponds to the speﬁial case of F =
in eq. (6.5). If, for example, a K~far) thf{l’i, s}milarly
to the above estimates, we obtain &/, ~({al) ~g, "  + and
from eq. (6.7) z

3f-4
s sl el (6.8)
L]
Hence, k = gf- 2, and S =(3f - 1) < Partlcular-
1y, for ¢ =2 we have k =10, and P = 175.

Unfortunately, the latter approach is also not free of
some contradictions. In particular, numerical data in
Re£.2®) on the dependence |7 (K) for standard mep appear
to suggest that f = 1/2, and we come back to the case
(6.1), (6.2) which is impossible to reconcile with our nu-
merical results on P(%).

The moat direct method for studying the statistical
anomalies would be a straightforward measurement of the
exponent k h1m.%&hﬂemﬂhmahomﬂfwk§2
the effeet of internal chaos border could be neglected.

1
The latter case was missed in Ref. T}.
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7+ Concluding Remarks

Even though the whole critical structure occupies a
negligible part of the phase plane along a chaoa border
it is just this structure which determines some statisti-
cal properties of the whole chaotic component of motion.
The most important of those properties is a power law de-
cay of correlations with the exponent F% 2 0.5 < 1.

Firat of all, thia results in a singular motion apectrum

("power" spectrum) at (J—» 0'9).

-4 -
Stw)~ Pt (7.1)

Moreover, if such s alow decaying correlation determines
the diffusion in another freedom, its rate proves to be

abnormaelly fast21}
2
E - ol ]
S U

(7.2)

where 6 ° ig the dispersion of the distribution function.
An intereating problem is the complete statistical deserip-
tion of such s puperfasat diffusion.

To what extent these anomalies do peraist in a many-
-dimensional system? Thus far, this question remains open
although a possibility was mentioned in the firat paper24}
to generalize the renormalization group onto the many-di-
mengional cage,

One of the most intriguing results in gtudying of cri=-
tical phenomena in dynamics waa the discovery of a new ty-
pe of dynamical chaos, the renormmlization chmos (Section
4). A similar phenomenon was briefly mentioned in Ref.jT}
in connection with deviations from Kolmogorov's apectrum
of turbulence, and in Ref.jz] on the medels of spin glas-

seg. However, the most impressing example of the renorms-
lization chaos, which as a matter of fact has been known
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already since long ago, is the chaotic oscillation of the
metrics in homogeneoua but mniscotropic cosmological modela
33) (for recent results aee Haf.BqJ].

We express our sincere gratitude to F.Vivaldi, who at-
tracted our attention to the critical phenomena in dyna-
mica, for importent additional numericel dsts, to D.Eacan-
de for most hepful stimulating discumsions, and to V.I.
Arnold, Le.A.Bunimovich, F.Grassberger, J.OGreene, K.M.Kha-
nin, I.Percival, D.V.Shirkov, and Ya.G.Sinai for valuable
comments., We are also indebted to L.Kadanoff, and R.Mac-
Kay for informing us on their results prior to publica-

tion.
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RENORMALIZATION GROUP METHOD IN THE THEORY OF
DYNAMICAL SYSTEMS

¥a,.G.5inai, K.M,Ehanin
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One of the moast important events in the theory of dyna
-mical systems for the last decade has become a wide pe -
netration of ideas and renormalization group methods (RG)
into this treditional field of mathematicml physics . RG-
method has been one of the main tools in statistical phy-
gics and it hms proved to be rather effective while sol -
ving problems of the theory of dynamical systems referring
to new types of bifurcations (see further). Az in statis -
tieal mechanics the application of the RG-method is of a
great interest in the neighborhood of the ecritical point
concerning the "order-chacs™ transition, First the RG -
method was applied in the ploneering papers by M.Feigenbaum
A=3/ dedicated to the appearance of a stochastical regime
a3 & result of infinite sequences of pericd doubling bifur-
cations. At present this stochesticity mechanism is the
mo3t studied one and many papers deal with it. /4-6/ .

The study of the so-called intermittency phenomenon was

the next example of application of the RG-method, i.e. the
study of such a situation where the domains of the stochas-
tical and regular behavior do alternate along & trajectory
of the dynamical aystem. In this case RG ia exactly sol -
vable and the situation can be exhaustingly investigated



