reaulte ars prruanhq in the figure. One can nae; how the I

nica HEs -H'ﬂki with all possible h and M dria]:r::"
that the spectrum becomes dense and praciically may be consider-
ed continuous. However, in the strict sense of the term there
only diecrete components in the spactrum and the fleld remai "
quasiperiodic 1n_ Bpace. Thie paradox can be resplved 1if '“:“ - i
der a quasiperiocdic fisld ss 8n object (m two-dimensional t::“’}*
‘An & phase space, It 1ia convenient to consider s Grﬂ!a—ulctin:ﬂ
of the torus. For eq.(1) this maana that we take the point
We= IﬂfLF,tﬂi yL=am/iey | E-U,d,‘l_,... and mark 1hamponnt::u
pl.unn (e, pdd "+ These points form a closed-11ine
8ection of the torus. One can sse this line fold, wind nnd"-‘"““"
stretch as the time grows. For largs + onu'cannut disti
guish this line from a strange attractor, as well as the & ac:'
rum cannot be ﬂiatlﬂ_ﬁuilhad from the” :Eontinuéuu.unu". P- ¥

- Using space-tims enalogy, we may reformulate the prublum. dea~

eribed above ma 8 epatial development of temporal chaos. For

simonochromatic waves in the o

medium with convective instabi
: _ 11ty
the 'dual* form of the Ginsburg-Lanflau equation is uged

4 - =, o
: :ﬁ:: a+ (&*1E.)§E*{-4+ia,')|u.|’_a

Th : ; od
_ uu,_qll. the abofl results ocam be directly applied to thio cage

Non binesr oof TM&&M
_ Procecses - < P/'j“fs

(Kiew, NVawbova Duu.fa
V.4 p. 2% (198% ) ) -
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CHAOS AND TONIZATION OF THE HYDROGEN ATOM
IN A MONOCHROMATIC FIELD

‘D.L,.Shepelyanaky

qutitutt_. of Wusclear Hnyai.-:.n
630080, Novoelbirek, US 5 R

We consider loniwetion of highly excited Hydrogen atom by &
linsar polerized monochrometie electric fisld. For extended Bta-
tes with megnsatic quantum number M = 0 and parabolic gquantum
numbers h.p?ﬂ., it im possible to deseribe the classical process
of axaitation by the one-dimensional Hamiltonian *

= Jts)
H=_,§?I7f + En'eoswit [; " ,E!Zl =" cosfsh) | (1)
where I1, 4  ars action and conjugnte phase and atomic unite are

usad, Instead of sontinuous equationa it ia more convenient to
deseribs the motion by & map, To this and, we uss ths unperturbsad
expression for coordinate £ and integrate the Hamiltomian squa-
tione over an orbital pericd of the slesctron. After that wa find
the genarating funetion of the map: i

GV, P)=A' @ + 9r(-20/7)" % 4 k ACE ) cos ¢

nere A= Efo = _iﬂ'ﬂwﬂij, ?5’ is the phase conjugated to A/
and equal to the wvalue of £t  at the moment of pasmage through
the perihslion, k=08227 £/c0% end Al¥) = .i:w:f .
. ;I;{EE) whers J,(¥) 1s Anger function (for integer ¥
it cbineides with Bessel function amd for 2 —*{ J;ff-] = ¥,
R= (-8, e
For 3 w1 the function A -* 1 and the mep has very aimp-

le form:

/1?:4;‘+_f<sin?5 : 5';.5= ;zﬁf-.?ra)(—.fmdn;,rh . (2)

where the ber denotes the values of variables after an orbital
paricd. A check of this map was made in the following way. We nu-
merically solve the continuocus sgquaticns (1) and fix the values
of &/t in the perihelion, The function 3(?’} =(A-A)/k

was detarmined from the three successive valuass of ?S + The ocom-
pnrinaﬁ. of numerical results (points) with the theorstical depsn-
dence GF@)=sin$ (1ine) 1ia shown in Pig. 1 for initial eondi-
tions with £ =¢ n,z =004, e, = ui.a::' =4.5.
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Therafore, the map (2) g4 -
“ wnx . glve utinfnutur;r: demoription of motion up
. ,ﬂt; ::;::: tan be locally approximated by the standard map
om & F I ;
whers £, = :{/F'"F’Fmﬁij.’ Bl aud K= T S"/Ec .
K> ey et . . 'ﬂm_ global diffusion takes place for
fusion pruunaﬂthu r_‘“:h‘t ;. e '“hi' sneigliogdls
us a inereasens, the )

¥ rhamas -

:: uﬁdu- !f‘:d 1ndupnn_dunt and the diffusion zitu on :V iﬁ';[ ey
o . ]
ol aff . ;na;umpll of phase-plane for 7R -'Vﬁr.?n"wn
o= O, v =3 d1s shown 1 etk
- : ced, n in Plg. 2 (5

:‘H! unstable. trajectories), It ie important ‘tugnohtth::.:h

tmd::t:ppn:r- IUA:III result of the last kick which oarriss :ﬂi*
ry from <0 ¢ ¢ :
b © N3 0 after that 1t extends to in-
For quantization of (2) .
- " .

i g : note tliat uucurd;hs to ;hu usual
-t = :.mj -

the up!.‘l‘l tﬂ‘! /‘/- "-;‘%
Silluﬂ the pa tu h.tiﬂ:“- 1. P& iﬂdiﬂ in '?t th.‘“ a naw f“t-ﬂ‘ ral
r I }
E

of motion will appear (quasi-momentum),
et + besides quesi-aner « Po
“un:]; F“.:h:: 15:“‘;:1_7&;“1;11: qlzu:i-omum!ntuu is equal tg t:: fra:;-
S hi:h 7 (deont) . External perturbation lesds
e mmionice of quasi-momentum, Since gac f
el et o u:mupundn_ to the quesi-ensrgy in the ‘miti:
e & + the quantized map (2) describes the diffusi-
rmonice of quasi-ensrgy in (1), A derial number of hap-

monlo gives a number of wbeorbed photons and 1s equal t
o F' =
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= A = A, . The quantization gives A’p o (o #17).
Aa the result wa obtain the quantum map for & wave funotion

W = exp(-iH,) P exp(-ikcose) )
~ - - A
whars H, = 29 ,-‘,rr"“zm (A, *"'V’FJ] and P ie the projeocti-
on operator on bounded mtates { A'< O ), Quantum sffects lemd to
localisation of diffusive excitation. Dus to homogeneity _nf diffu-
sion the localization ie also homogensous and exponantial with
tha langth fp= D ". The ateady-state distribution haa the faorm

— - .

p”,':: é;“*xje W= ‘%—:—i! ’.€?=3,33 C—i—ml' (4)
An exampla of such diltri’hruti.an is shown in Fg. 3 for R, = 100,
E,,=p.ﬂl?, mﬁnj. The solid lins i& the 1"m||.ll.|‘.l.".:2 of numerical simu-
lation of gquantum modal (1), crosses (+) indieate the probability
in tha interval D‘l{,-f ,}.;,+f1. pointa were ocbtdined by iterat-
ing the guantum mep (3). The straight line is the result of laast-—
-aquare fit for the maxima of Ap with /VI;;}IJ. For the case of
Fig. 3 the experimental valus of ¢ 18 in 1.6 times larger
‘then the theorstical ome (4).° A

If the localization length is comparable with the numbsr of

photone requirsed for ionization #A-_;:-—A»E than the deloocalisa-
ticmz takes place and the process of excitation is oclose to the
clasaical one. The resultes obtained are in agreement iith2 and al-
low to describe the excitation on high levels and to axplain the

uhnnrv';nd.z multiphoton peakes in distribution over levels.
. 229
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Aocording to (3) the one-photon lonisation rate (in nu.ubu--

of iterations) im squal to = fk&jl: that i in agreement
with the standard perturbation theory ( k << 1). Por kjﬁ} 1 and

A% <« k the distribution of elsctrons in the continuum ~J!(k]-

5
ﬂ_“;(,:f::: ::;ht;"m::t:::::::nnulmu to E:' hes been obtainsd in
; ondition ‘W= @
considerstion was made only for one itsration,
In the localised regime Af> f,,‘:ir k> 4
the ionisation rate ia equal to /

was used and

R g T T I
i:l:; loss uil" r.:rohlb.ﬂi.t:r after one kick}.%i‘lﬁzyu‘;enl tj..u:r%w ob=
R [, ¥ B TS
p ok Ry kol 22 (B) enpe2(3)) )
whare = £J7¢ : -

is the delocalisation border,
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STOCHASTIC ﬂGEELERﬁTLDH OF RELATIVISTIC
PARTICLES IN THE MAGNETIC FIELD

G.M., Zaslawskii, M.Ya. Natenzon, B.A. PFetvovichev,
R.Z. Sagdeev, A.A. Chernikmr__ =

Space Research Institute, USSR Academy of Sciences,
. Moscow

While moving in the field of a plene wave and in the trans-
verse magnetic field charged particles are accelerated. Particles

.moving bafore the slow wave front {w < kc) in the magnetic field

may collide repeatedly with a wave thereby increasing their ener-
g¥- In the.nunrelativistic case the same mechanism lesds to the
particle escape from a potential .well 1 and to the interaction
loosening. In so deing, the particle acceleration is always sto-
chastic. In the relativistic case for a group uf.patticlss with
the initial velocity close to the phase velocity of a wave the
confinement is possible in the potential well. This confinement
is accompanied by nonlimited regular accelsration of patti:%as
along the wave front 2", The particles with another initiébfcnun
ditions can be accelerated only stochastically 5.

This paper studies dynamics of charged particles ia the field
of a fast electromagnetic wave (w > kc] and in the transverse
magnatié field. 'In the fields of ;uch'a configyration there is
no ohserved the capture and regular acceleration of parvicles.

The Hﬁml!tﬁnlan H which describes the charged particle inter-
gction with a linearly polarized wave with a vector potential
A= ‘iy A sin (kx - wr)in the transverse magnetic field i =
=& B !

o Bos cian be written as

& = !m?:"fff/’g%c?/‘fi?";#m (""‘:“J{)]T/g = B3 kL

The equations of particle motion in the given field are

e L_.zf /JC ; P s ._e-; t!:!'ﬂ"'”q h#w-wfﬂfm.mm(u ucﬂ/xlzi

The Uumiltuui&n (1) is =8 functinn-af time

" 2w r R ; X : ; i 2
. . A e o ch.x_..;‘jfjfﬂg.cf-,d';.a. (muf)j/)f (3
If A ¢ 0 aparticle moving along a Larmar circumference begins
interacting with a wave; for ultrarelativistic particles with the
: 231



