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Abstract. -We compare the classical and quantum behaviour of the kicked rotator and a kicked 
three-dimensional top. The most prominent classical difference lies in the topology of the 
respective phase spaces which is cylindrical for the rotator and spherical for the top. Quantum 
mechanically, localization of the angular momentum is possible for the rotator but not for the 
top. We show, however, that in a very special limit the top goes over into the rotator. 
Incidentally, that limit illustrates the nonuniqueness of quantization. 

For nearly a decade the periodically kicked rotator has yielded an important testing 
ground for the study of classical chaos and its modifications by quantum effects. Its classical 
stroboscopic description, Chirikov’s <<standard. map [l] ,  yields a dominantly regular 
behaviour in the cylindrical phase space for small kicking strengths; at a certain critical 
kicking strength the last KAM trajectory disappears and global diffusion sets in. Quantum 
mechanically, a different behaviour arises depending on whether the driving frequency and 
the natural quantum frequency of the free rotator have a rational or an irrational ratio y [2]. 
In the irrational case, there is convincing evidence for dynamical localization of quasi-energy 
eigenfunctions in the momentum representation (analogous to Anderson localization in a 
random lattice), a pure-point spectrum of quasi-energies, level clustering even for kicking 
strong enough to produce classical chaos, and quasi-periodic (i.e. recurrent) temporal 
behaviour of expectation values. In the rational case (when the ratio in question can be 
represented as y = M/N in terms of integers M and N without common divisors; it is 
important to note that MIN is a dimensionless measure of Planck’s constant, MIN<<l 
implying the semi-classical limit) the eigenvalue problem for the quasi-energies is equivalent 
to the Schrodinger equation for a one-dimensional tight-binding model of a particle in a 
periodic potential. The quasi-energy eigenfunctions are, therefore, not localized and the 
quasi-energies continuously fill N bands [3]. Within each band, different quasi-energies are 
continuous functions of a Bloch wave number a[4] .  Even though in the rational case the 
quasi-energy eigenfunctions are of the Bloch type rather than localized, the concept of the 
localization length can still be useful in a slightly modified sense; if the localization length Zlh 
for typical irrational y close to MIN is much less than N (with N ,  M >> 1, MIN = const), the 
quasi-energy eigenfunctions have moduli of the form, in the momentum representation, of 
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N-periodic chains of localized exponentials. The N quasi-energies at fixed a lend themselves 
to statistical analysis if N >> 1. In the semi-classical limit MIN << 1 with llh << N the N quasi- 
energies in question turn out to be uncomelated among themselves and thus to have a 
Poisson distribution of their nearest-neighbour spacings; in the regime llh > N ,  on the other 
hand, level repulsion prevails according to  a Wigner distribution of the spacings[5]. As 
regards the time evolution of expectation values, the rational case does not imply quasi- 
periodicity, due to the presence of continua of quasi-energies. As a further complication of 
the already intricate quantum behaviour just sketched, the possibility of nonrecurrent (i.e. 
not quasi-periodic) time evolution even for certain irrational values of the frequency ratio 
mentioned has been demonstrated recently [6]. 

Quite different and, in fact, a lot simpler is the behaviour of the periodically kicked three- 
dimensional top [7]. Here, the classical phase space has the topology of a sphere, since the 
squared angular momentum is conserved (see below). Correspondingly, the quantum- 
mechanical Hilbert space has the finite number of dimensions 2j + 1 with the quantum 
number j integer or half-integer. The classical limit is approached as j grows large. As the 
kicking strength is increased there is again, classically, a transition from dominantly regular 
to dominantly chaotic motion. That transition is paralleled by a change in the statistics of the 
(2j + 1) quasi-energies if j >> 1. Level clustering according to a Poissonian spacing 
distribution is concomitant with mostly regular classical motion; level repulsion U la Wigner 
accompanies the classical predominance of chaos. The temporal evolution of expectation 
values is quasi-periodic in all cases, but takes significantly different forms for weak and 
strong kicking: a nearly periodic sequence of collapse and revival with a quasi-period of 
order j is typical of the weak kicking leading to near-integrable classical dynamics, while 
erratic recurrencies arise together with classical chaos. 

To reveal the difference but also certain similarities between the rotator and the top, we 
need to look at  the Hamiltonians(l) 

t o r  1 HR=-p2+kcos$ 6( t -n) ,  I 21 

in which p and p are canonical variables for the rotator, while J is the angular-momentum 
vector for the top. The respective quantum commutation relations read 

[ p, p] = hli and [ Ji, JJ = iheijk J k  (2) 

and the corresponding Poisson brackets arise as usual as [ , ]+(hl i ) { , } .  Due to the 
periodicity of the kicking potential, the phase space of the rotator is the cylinder 
- cc < p  < CO, 0 < p < 2 x .  As regards the phase space of the top, we must first note that the 
obvious conservation law 

J2 = h 2 j ( j  + 1) (3) 

restricts the classical motion of J to a sphere. That sphere is revealed as a phase space by 

('1 Note that we work with a dimensionless time. The Hamiltonians (1) thus have the dimension of 
an action. 
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introducing the canonical pair P ,  p as 

( J ~ ,  J J  = v h 2  j ( j  + 1) - p2 (COS p, sin p>, J ,  = P . (4) 

There is a certain similarity between the two Hamiltonians given in (1). Each contains a 
quadratic piece which by itself is integrable. For the rotator that piece describes free 
rotation with constant momentum p ;  the classical phase space trajectory is a circle around 
the cylinder. Similarly, the motion of the top generated by the quadratic term in H T  is a 
monlinear, precession of J around the z-axis with angular velocity zJ,lhj, J ,  being 
conserved; in the classical phase space, J moves uniformly around the circle along which the 
sphere (3) intersects the plane J,  = const. In a somewhat pictorial language the parameter z 
might be called a torsion strength, since points on the sphere with J,>O and with J,<O 
rotate in opposite senses. By analogy with the parameter I of the rotator hjlz may also be 
looked upon as a moment of inertia of the top. 

The second terms in the Hamiltonians reveal the different topologies of cylinder and 
sphere somewhat more ostensibly. If we consider them by themselves, i . e .  set z = 0 and 
I = CO, we obtain a sequence of impulsive precessions around the x-axis for the top, the 
angular increment a arising at  each kick; for the rotator, on the other hand, we get a 
stepwise advance of p by x sinp at each kick with a constant angle p. However, even these 
second pieces are not without resemblence: as long as JI << h2j( j  + 1) , the transformation (4) 
shows the two Hamiltonians to be essentially equivalent. We shall come back to this 
important point below. 

Due to the modulation of the Hamiltonians (1) by a periodic train of delta-functions a 
stroboscopic description of both dynamics is indicated and easily accessible. Denoting the 
momentum of the rotator right after and right before the n-th kick by P,+~ and p,, 
respectively, and the angle at the n-th kick as p,, we have the stroboscopic equations of 
motion 

Pn+l = P n  + k sin?,) Pn+1= i?n + p f i + ~ / I )  ( 5 )  

which hold both classically (as Hamilton’s equations) and quantum mechanically (as 
Heisenberg’s equations). Similarly, with X, = J,/hj as a rescaled angular-momentum vector 
for the top and with the classical limit j +  performed, we obtain the classical map 

Xn+l= X n  COS 7.2 - P sin TZ , 
Y,+,=X,sinrZ+YcoszZ , 
Zn+l=Z i 
X=X, , 
Y =  Yn COS a - Z, sin a , 
Z = Y, sina + Z, cosa , 

which clearly displays the sequence X, + 2, a linear precession around the x-direction, and 
8- X,,, , a nonlinear precession around the z-direction. The quantum version of the 
stroboscopic motion of J looks slightly more complicated than (6) ,  due to the occurrence of 
products of the noncommuting components of J [7dI; we shall not need the explicit form of 
the quantum map here. 

Having presented the Hamiltonians as well as the stroboscopic equations of motion for 
the rotator and the top, it is well to come back, for a moment, to the general discussion given 
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at  the beginning of this paper. That discussion rests on the assumption that the parameters I 
and k for the rotator and, more importantly for the argument to follow, the torsion strength 
z and the precession angle a for the top are kept constant when semi-classical, and 
eventually, classical behaviour is enforced by letting j +  CQ. Indeed, the transition from 
mostly regular to globally chaotic behaviour with increasing, for instance, k for the rotator 
and z for the top, takes place when all of the parameters kl l ,  a and T are of order unity. In 
spite of being globally chaotic right above the respective thresholds, both systems still 
display an interesting difference classically. The momentum of the rotator cannot change, 
through a single kick, by more than k and that increment is a vanishing small fraction of the 
infinite length of the cylindrical phase space. In its diffusive motion the phase point covers a 
long distance Ap in a very long time - ( A P ) ~  only. In contrast, the phase point of the top is 
capable of going around the sphere in a single kick as soon as global chaos has set in. A 
quantum analogue of the distinction in question is the possibility and impossibility of 
localization for the rotator and the top, respectively. 

We finally turn to the main goal of this paper, proposing the rotator as a very special limit 
of the top. The nature of that limit has already been touched upon in our qualitative 
comparison of the two Hamiltonians above. We must scale the torsion strength T and the 
precession angle a so as to confine the classical trajectory of the top to a narrow equatorial 
waist band, I J,l<< hj, of the sphere. Indeed, from within such a band the sphere cannot be 
told apart from a cylinder. Formally, the confinement required is achieved by a + 0 and 
z+  CQ; it is most intuitive to combine that limit with letting the radius of the sphere grow 
large and set 

a = klhj , z = hjlI , j + w .  (7) 

In the same spirit we represent the components of the classical vector X = Jlhj  as 

X = c o s @ ,  Y = s i n @ ,  Z = P l j h .  (8) 

It is a trivial matter t o  verify that with the transformation (7), (8) the stroboscopic equations 
of motion (6) of the top go over into those of the rotator (5 ) .  The Hamiltonians (l), taken as 
classical Hamiltonian functions, assume equal appearance as well. 

Similarly, the semi-classical version of the quantum top is turned into the quantum 
rotator. Indeed, if we rescale our operators as 

J ,=h jX ,  J g = h j Y ,  J , = P  (9) 

the angular-momentum commutators given in (2) read 

[ X ,  fi = iP/hj2,  [Y, P I  = ihX , ' [ P ,  2l= ihP . (10) 

By dropping the 10' term in the first of these, we obtain <semi-classical>, commutators 
which can be realized by 

(11) ,. h a  
i a@ X=COSQ, P=sinQ,  P=--. 

Moreover, the transformation (7), (9), (11) gives an identical form to the quantum 
Hamiltonians H in (1). 

An equivalent way of reducing the (semi-classical) quantum top to the quantum rotator 
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goes via the unitary evolution operators which carry the respective quantum states from 
immediately after one kick to right after the next, 

U R  = exp [ - ip2/21hI exp [ - i (k/h)  cos 91 , 

UT = exp [ - izJz/2hjl exp [ - iaJ,/hl . 
(12) 

The left factors in these operators are diagonal in the eigenrepresentations of p and J, 

plm) =hmlm), 

J,lm(=hmlm), - j < m < j .  

m=0, kl .0 ,  f 2 . 0 ,  ... 

In fact, their diagonal matrix elements coincide once we set T = j/I according to (7). The 
exponents in the right-hand factors in (1) read, in representations (13) and with a = k/hj ,  

The matrices (14) become identical for mlj + 0 which limit implements the semi-classical 
approximation and also is the quantum analogue of looking at a narrow equatorial waist band 
of the classical sphere. 

It is instructive to check the consistency of localization with the limit (7). To that end, we 
first recall the order-of-magnitude estimate for the classical diffusion constant D of the 
rotator [SI, D - k2. From a quantum point of view, the diffusive behaviour ((Ap)’) - Dt can 
prevail only until the momentum spread has reached the localization length 1; this 
consideration yields a break time t* through Dt* - 1’. An independent estimate is the time 
needed to resolve the discreteness of the Floquet spectrum; the number of Floquet 
eigenstates supporting a wave packet at the break between diffusion and quasi-periodic 
behaviour is -Uh; the mean separation of the corresponding quasi-energies is 2 ~ h l l  and 
gives, as its inverse, the break time t* - l/h. The two independent estimates for t* imply a 
relation between the kicking strength k and the localization lengthC91 

For localization to arise this length must be small compared to hj, i .e.  

The latter condition is certainly fulfilled in the limit (7), i .e.  for j + O  with k fixed. 
We would like to conclude by remarking that the classical Chirikov map (5) may be 

quantized in many different ways. The canonical one employs the first of the commutators in 
(2) and leads to the Floquet operator UR in (12). An equally legitimate quantization uses the 
angular-momentum commutators given in (2) or (lo), leads to the Floquet operator UT in 
(12), and is undone by the limit (7). 
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