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Hydrogen Atom in Monochromatic Field: Chaos and 
Dynamical Photonic Localization 

GIULIO CASATI, ITALO GUARNERI, AND DIMITRI L. SHEPELYANSKY 

Abstract-We discuss the quantum localization phenomenon that 
strongly limits any quantum process of diffusive ionization that may be 
started in systems subjected to a periodic perturbation. In the case of 
a highly excited hydrogen atom in a monochromatic field, this phenom- 
enon is theoretically analyzed by reducing the dynamics to appropriate 
mappings. We show that, if the field strength is less than a “delocal- 
ization border,” the distribution over unperturbed levels is exponen- 
tial in the number of absorbed photons and we determine the corre- 
sponding localization length. Using the mapping description, we show 
that the excitation process occurring in a two-dimensional atom goes 
essentially along the same lines as in the one-dimensional model. We 
support these predictions by results of numerical simulation, and we 
discuss the possibility of their experimental verification. 

I. INTRODUCTION 
UCH theoretical and experimental work has been M recently devoted to the investigation of the behavior 

of highly excited atoms in microwave fields. This line of 
physical research prompted by the influential experiments 
of Bayfield and Koch in 1974 [40] has by now revealed a 
remarkable variety of themes of absolute interest. 

The present day technique allows for preparation of 
highly excited states (up to principal quantum number n - 300 [ l ] )  with a long lifetime.’ Since these states are 
endowed large matrix elements, they are very sensitive to 
external fields. Therefore, the microwave ionization of 
Rydberg atoms may find application in the field of micro- 
wave radiation detection. 

From a general physical viewpoint, this problem lies at 
the intersection of several lines of contemporary research, 
so that methods and ideas originally developed in quite 
different areas find here a common ground of application. 

The first and perhaps the most important of these themes 
is chaos. As a matter of fact, even the simplest theoretical 
model-a classical, one-dimensional Kepler atom in a 
monochromatic electric field-shows that the onset of 
chaotic motion gives an essential contribution to the clas- 
sical excitation process. On the other hand, a Rydberg 
atom is an essentially quantum object. The study of its 
microwave excitation provides, therefore, an ideal testing 
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ground for the existence of quantum “chaotic” phenom- 
ena, and brings the long debated and sometimes abstract 
question about the existence and nature of quantum chaos 
very close to physical application. In particular, the deep 
phenomenon of quantum suppression of chaotic diffusion, 
that previous theoretical studies on quantum chaos indi- 
cate a typical occurrence, may find here its first experi- 
mental verification. This phenomenon is due to quantum 
interference effects that prevent any diffusive-like exci- 
tation process from going on indefinitely, and can be con- 
sidered as a dynamical version of the Anderson localiza- 
tion well known to solid-state physicists. From a 
conventional quantum theoretical viewpoint, a large num- 
ber of photons is required in order to ionize Rydberg at- 
oms by microwave fields. The results obtained in this field 
do, therefore, provide a better understanding of multipho- 
ton processes and collisionless ionization of atoms and 
molecules in laser fields. For example, a somewhat un- 
expected result is that the most efficient ionizing process 
is not a single-photon but a multiphoton one [ 121. 

The theory developed for this problem [2], [3], which 
lies on the elusive borderline between classical and quan- 
tum mechanics, borrows ideas ‘from both these disci- 
plines, as well as from localization theory. A ground work 
for this theory was provided by the results of previous 
investigations of a rather abstract model now known as 
the “kicked rotator,” which, in spite of its unphysical 
character, conveys the essentials of the present day un- 
derstanding of the effect of quantization on classical cha- 
otic motion [4], [ I  I]. We have here one more illustration 
of how useful the investigation of properly constructed 
abstract models may prove as an approach to more phys- 
ical and complicated problems. 

It is important to remark that the main impulse to the 
development of the present theoretical frame was not 
given by new laboratory experiments but by numerical 
simulation on super computers. Obvious limitations of 
computer performances enforced the use of simplified 
models. The first of these was a one-dimensional model, 
which yields an approximate description of the excitation 
of atoms initially prepared in very extended states. How- 
ever simplified, this l -D model turned out to reproduce 
the essential qualitative features of the real problem, as 
was made apparent by subsequent numerical simulations 
of more complete models. According to the picture 
emerging from the 1-D simulations, the quantum excita- 
tion process is determined by a sort of competition be- 
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tween the diffusion that would be predicted on classical 
grounds and the ‘‘localizing” effect of quantum interfer- 
ence. The latter tends to arrest the diffusive broadening of 
the wave packet at a maximum spread (“localization 
length”) on the order of the classical local diffusion coef- 
ficient. Since the latter sharply increases with the level 
number, it may happen that diffusion does never actually 
come to an end, with a consequent enhancement of the 
ionization rate. 

The quantitative conditions for this diffusive ionization 
are determined by the classical chaotic border-below 
which diffusion cannot even start-and by the delocal- 
ization border that defines the critical value above which 
the increase of the classical diffusion coefficient triggers 
an unending escape of the wave packet, in spite of the 
paralyzing effect of quantum interference. Within the 
“window” of field strength defined by these two critical 
values, the classical diffusion is “frozen” by quantum ef- 
fects and a quasi-stationary distribution over the unper- 
turbed levels is reached. 

This is, in summary, the theory presented in 123, [ 3 ] ,  
and [12]. An unsatisfactory aspect of that theory was its 
incapability of accounting for the form of the localized 
distribution. In particular numerical experiments, [2] and 
[3] show that in the tail of the steady-state distribution a 
chain of equidistant multiphoton peaks appears, which 
could not be described by that theory. For this reason, it 
was not possible to estimate ionization rates. 

Recently, we developed an alternative theoretical ap- 
proach [13], [14] which confirms the older results and 
moreover allows for a gross description of the whole dis- 
tribution, including its peak structure. This approach was 
based on the construction of a map describing the evolu- 
tion in one orbital period. The explicit form of this map 
establishes a close connection with the rotator problem 
and leads us to predict that the localized distribution 
should be exponential in the number of absorbed photons. 
This allows for a new, simple interpretation of the delo- 
calization phenomenon: delocalization takes place when 
the number of photons within the localized distribution 
becomes comparable to the number of photons required 
for ionization. 

The strategy of reducing the dynamics to a suitable 
mapping proved very fruitful also in the analysis of a 2-  
D model. In that case, we found that, due to Coulomb 
degeneracy, the 2-D excitation in energy proceeds in a 
quite similar way as in the 1-D model [15]. This result 
suggests the important conclusion that the localization 
phenomenon, originally predicted for the 1-D model, is 
not a peculiarity of that simplified model, but is typical in 
highly excited atoms. 

However, this phenomenon has not yet been experi- 
mentally observed. The reason is that available experi- 
mental data refer to the region wo = wni < 1 where, ac- 
cording to our theory 121, [ 3 ] ,  there is either stable (even 
classically) behavior, or diffusive excitation (delocaliza- 
tion). In other words, there is no “localization window” 
in this region. 

In this paper, we illustrate the general theory of pho- 
tonic localization and its relationship to the mapping de- 
scription of the dynamics. We shall support this theory 
with a large amount of numerical data, whose agreement 
with the theoretical predictions yields solid grounds for 
the predicted phenomena, and makes the call for experi- 
mental verification more urgent. It is worth mentioning in 
connection with the possibility of laboratory experiments 
that, owing to the general nature of the localization phe- 
nomenon and in view of some numerical simulations of 
ours in which a quantum defect was introduced, local- 
ization should be observable also in Rydberg alkali at- 
oms. 

In this paper, we will use atomic units. To facilitate 
conversion to physical units, we recall that for no = 100 
the frequency v = u/27r = 10 GHz corresponds to wo = 
wni = 1.51998 and eo = €12: = 0.1 corresponds to E = 
5.14485 V/cm. According to this choice of units, t2 = 1 
throughout the following sections. 

11. QUANTUM LOCALIZATION OF DIFFUSIVE 
EXCITATION 

The onset of chaos in a classical system subject to an 
external time periodic perturbation triggers a process of 
diffusive excitation. Instead, in quantum systems, this 
process is usually inhibited by a phenomenon known as 
quantum localization of diffusion. In this section, we shall 
analyze this phenomenon in some generality. 

Let us consider the excitation process which is induced 
by an external monochromatic perturbation on a quantum 
system with a density p ( E  ) of unperturbed levels ( E  is 
the energy ). Under appropriate conditions, the initial 
stage of this excitation process will be characterized by a 
diffusive growth of the energy. This phenomenon can be 
reasonably expected at least in two cases. 

1) When the unperturbed classical motion is chaotic 
(e.g., a typical strongly nonlinear system). In this case, 
the perturbation matrix can be assimilated to a random 
matrix. This may lead to a diffusive growth of energy with 
time, at least on some initial time scale, provided that 
some additional conditions are fulfilled. First of all, the 
perturbation strength V should be larger than the average 
level spacing, i.e.,  the inequality p V  > 1 ,  which defines 
the quantum stability border [16], should be satisfied. 
Moreover, the external frequency w should be larger than 
the average level spacing ( u p  > 1 ); otherwise, a picture 
in which levels move adiabatically in time would apply, 
leaving no room for any excitation. 

A model yielding diffusive excitation according to the 
above sketched mechanism was introduced and analyzed 
by Akulin and Dykhne [ 171 in order to describe collision- 
less molecular dissociation in a monochromatic (laser) 
field. These authors obtained the diffusion rate for the case 
1 << p V  << p u ;  however, they did not investigate the 
excitation process for large times, which will be our main 
concern in the following. 

2) If the unperturbed classical system is an integrable 
one, a diffusive growth of energy can still be started when 
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the perturbation is strong enough to produce a stochastic 
transition in the classical motion. Notice that the condi- 
tion p V  >> 1 does not by itself enforce any diffusion; it 
just means that many neighboring levels will be strongly 
coupled by the perturbation. Even so, however, invariant 
curves may exist in the classical phase space, and these 
in the semiclassical case will restrict also the quantum ex- 
citation to narrow energy intervals. In order that diffusion 
may occur, classical invariant curves must be destroyed. 
Overlapping of classical resonances [ 181 yields a quanti- 
tative criterion for this destruction. The threshold defined 
by this criterion is in principle absolutely distinct from the 
quantum stability border discussed above. Strong reso- 
nance overlapping leads to purely chaotic classical mo- 
tion; this supplies the randomness which is needed for 
diffusion and which in the previous case 1) was provided 
by the random character of the matrix elements. 

We shall therefore assume that a sort of diffusion has 
been started, for one of the above illustrated reasons. The 
really important question is then whether this diffusion 
will continue indefinitely or  not. The answer is in general 
negative: indeed, quantum interference effects will lead 
diffusion to a halt after some finite time T~ [ 131, [ 191. This 
important phenomenon was first detected in the kicked ro- 
tator model [4], [ 5 ] ;  a simple heuristic analysis was then 
developed, which allowed for an estimate of T ~ .  The same 
analysis can in principle be applied to widely different 
models. 

In order to illustrate this estimate, we shall first assume 
that the diffusion involves all levels around the initially 
excited one, with a diffusion rate D = ( ( A n ) 2  ) / T  where 
A n  is the number of excited levels at time 7. This as- 
sumption is satisfied when V z W .  In the opposite case, 
the diffusive excitation would proceed via one-photon 
jumps between neatly distinguished resonant zones. The 
argument that we shall presently explain would in that 
case require some modifications that will be discussed 
later. 

Let us consider a wave packet initially concentrated on 
a given unperturbed level and follow its evolution in the 
discrete time defined by the number of periods of the ex- 
ternal perturbation. The character of this evolution will 
be determined by the nature of the quasi-energy spectrum, 
which is a subset of ( 0 ,  27r) 1411. If this spectrum is pure 
point, so that only a finite number of quasi-energies can 
be assumed to significantly contribute in the wave packet 
dynamics, then the evolution will have a recurrent char- 
acter, with a recurrence time on the order of A a - ' ,  i.e., 
of the inverse of the average spacing of quasi-energies. 
Therefore, even the excitation determined by a pure point 
quasi-energy spectrum may appear diffusive on a short 
time scale < A a - ' ;  nevertheless, a continuous QE spec- 
trum is required for an unlimited diffusion. 

If we assume the number of QE significantly contrib- 
uting in the motion up to time 7 to be on the same order 
as the number An ( 7 )  of levels excited up to 7, A n  (7) - 
( D T ) ' / ~ ,  then we can write A a  - ( A n ) - '  (notice that 
this estimate would be wrong in the presence of approxi- 

mate resonances, because then some quasi-energies would 
be very close to each other; indeed, in the case V < a, it 
will be suitably modified). This yields the conditions that 
must be satisfied in order that no recurrence may have 
appeared up to time 7: 7 < A n  (7). By using the diffusive 
estimate for A n ,  we see that this condition is violated for 
7 z T ~ ,  with 7D - D. For such times, recurrences will 
become manifest and this will lead to localization of dif- 
fusion. Instead of spreading indefinitely, the distribution 
over unperturbed levels will enter a steady-state oscilla- 
tory regime; its "width" will henceforth assume a con- 
stant value 1-the localization length-that can be esti- 
mated by the value of An at time T ~ ,  i .e.,  by 

1 - An - TD (YD. ( 1 )  

The numerical factor (Y - 1 has been introduced in order 
to turn the previous estimates of orders of magnitude into 
more precise ones; it should be adjusted by numerical ex- 
periments. 

The above estimate for the localization length is correct 
if D does not depend on the level number n (homogeneous 
difusion) or at least if D does not change appreciably on 
the scale of 1 defined by (1). Otherwise, the formula A n  
- ( D T ) ' / ~  would not hold. In the case of homogeneous 
diffusion, some definite prediction can be made about the 
form of the steady-state distribution; indeed, the (time- 
averaged) population of unperturbed levels should be 
given by 

f n  a ~ X P  { - 2 / n  - ' ~ o l / f }  ( 2 )  

where no is the initially excited level.' 
The exponential form of the stationary distribution (2) 

can be explained by a general argument. Suppose we wish 
to determine the QE eigenfunction associated with a QE 
eigenvalue A. If we expand the unknown eigenfunction in 
unperturbed eigenfunctions with amplitudes U,!, then we 
must solve an infinite linear system of equations of the 
form 

+ m  

ut, = c VI,,,, ( A 1 4,. ( 3 )  
i n =  -m 

The external perturbation does effectively excite-in one 
period-only a finite number M of unperturbed levels: this 
implies fast decay of the matrix elements V,,,,, for 1 n - 
ml > M .  Therefore, with a good accuracy, we can re- 
place the system ( 3 )  with 

(4)  

I U n + I  I 
where M is a 2M x 2M matrix depending on n .  In many 
cases of interest, each M,, matrix is a canonical one. It is 
then a known fact [20] that the asymptotic behavior of 
solutions of (4) is determined by the minimal Lyapunov 
exponent associated with the infinite sequence of matrices 

'A more precise formula will be used in Section V 
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M,; if this exponent is positive, then physically accept- 
able (i.e.,  nonexponentially diverging) solutions of (4) 
must decay exponentially for n ---f fm, and the locali- 
zation length of these solutions (QE eigenfunctions) will 
be given by the inverse of this Lyapunov exponent. Pos- 
itivity of the minimal Lyapunov exponent depends in gen- 
eral on how the matrix M ,  depends on n. In localization 
theory, it is proven that, if the sequence M ,  is a stationary 
random sequence of matrices, then the minimal LE is pos- 
itive; in general, however, the same can be expected even 
when M ,  is a sufficiently irregular sequence, stationary in 
a statistical sense. For example, this has been shown nu- 
merically to happen in the kicked rotator case. Notice that 
the identification of the inverse localization length with 
the minimal LE provides an efficient way for numerically 
determining the localization length itself [ 191-[2 1 1 .  

Numerical results obtained in this way and comparison 
to exactly solvable models indicate that the factor a in (1) 
should be given the value 1 / 2  in order to give the correct 
localization length for QE eigenfunctions [ 111. 

The exponential localization of QE eigenfunctions en- 
tails exponential decay of the steady-state distribution 
also. However, according to numerical results, in order 
that (1) may yield the correct localization length for the 
distribution, the value CY = 1 should be used. This is due 
to strong fluctuations of the actual QE eigenfunctions 
around the average exponential law [ lo] ,  [ 191. 

The localization phenomenon just discussed is a dy- 
namical version of the well-known Anderson localization. 
Indeed on a formal level (4) may be interpreted as the 
stationary Schroedinger equation for a particle on a lat- 
tice, in which n numerates the lattice sites. In the Ander- 
son model, a random potential is present, thanks to which 
the matrices M, make up a truly random sequence-which, 
as already hinted, is enough to guarantee positivity of the 
minimal Lyapunov exponent and hence exponential lo- 
calization of eigenstates. The formal analogy between lo- 
calization in periodically perturbed systems and Anderson 
localization was pointed out in [7].  We wish to stress, 
however, that in our case no random element is intro- 
duced from outside. 

Equation ( 1 )  provides a quantitative estimate for the lo- 
calization length, once the diffusion rate D is known. In 
order to determine D, we proceed as follows. The change 
An produced by a one-photon transition is A n  = pw. 
Then, if W is the one-photon transition rate, we get 

D = ( (An) ’ ) / .  = 2 p 2 w 2 W 2 r / w  ( 5 )  
where the factor 2 accounts for transitions in both direc- 
tions. 

According to Fermi’s Golden Rule, W = ( r / 2 )  
c’p I p( E ,  E + w )  1’ where p is the dipole matrix element 
and E is field strength. Now (1)  becomes 

I = 2r2p22p’w ( 6 )  

of absorbed photons: 

1, = l / p w  = 2r2p’ t2p2 = 2rD,p ( 7 )  
where D, = rp’c’p is the diffusion rate in the number of 
photons, i.e.,  the squared number of absorbed photons 
per unit time. 

We should at this point recall that (7) was derived under 
the assumptions Vp = pep >> 1 and V > W .  The mean- 
ing of the first assumption is now clear: it implies 1, >> 
1 and therefore corresponds to a quasi-classical regime in 
which a large number of photons is absorbed and a large 
number of levels is excited. The second assumption, 
which reads pt > w ,  may now be clarified. Indeed, pc is 
an estimate for the critical detuning from the resonant Rabi 
frequency. Then pt > w means that the level width as- 
sociated with one-photon transitions is larger than the 
spacing of the levels involved in such transitions. Since 
our final result (7) for 1, does not depend on the external 
frequency w ,  we may suspect that (7) holds even for ~ L E  

< w. Indeed, even though the argument leading to (1)  
does not work when p c  < w ,  and the result (6) for the 
localization length in the number of levels is no more cor- 
rect in that case, we shall now show how that argument 
can be modified so as to work also when pc < w ,  yielding 
again the result (7) for the localization length in the num- 
ber of absorbed photons. 

The number N of photons absorbed at time t grows dif- 
fusively: N - ( D , t ) ’ / ’ .  However, since p c  < w ,  only 
levels close to resonant ones will now be excited; there- 
fore, the excitation will not spread over all levels around 
the initially excited one, as we previously assumed; in- 
stead, it will concentrate on a chain of equidistant (in en- 
ergy) narrow excited zones of width A V  << w .  Thus, the 
number of levels excited at time t will now be A n  = 
NpAv .  In order to estimate rD-i.e., the time after which 
diffusion stops-we need the spacing A u  of QE eigenval- 
ues, because then tD - l / A u .  We are now using real 
time, and not, as before, the number of periods; there- 
fore, these eigenvalues are to be taken mod W .  Exactly 
resonant energy values would then correspond to the same 
unperturbed QE eigenvalue. Since all excited levels lie in 
zones of width Au around resonant values, QE levels can 
be assumed to lie within a single band of width AV in (0,  
w ) .  Therefore, their average spacing will be A u  - A v / A n  
- 1 / N p .  This leads to to - D,p2 = r p 2 t 2 p 3  and I, - 
N - (D?tD)’/’ - 2.?r2p2e2p2 which is the same as (7). 

In deriving this result, we estimated Au by the Rabi 
frequency p c ,  which characterizes the critical detuning 
from resonance. It might appear more natural to estimate 
Au by the one-photon transition rate r: AV - r - p’t’p 
[17]. This would be indeed the correct result when con- 
sidering transitions from one level into a single zone. 
However, in the presence of many resonance zones, the 
average rate of transition r must be renormalized as shown 
in [22] and yields r = ( I ’ / p ) ’ ’ 2  = pe. Anyway, the above 

1 is here the local length in number of unperturbed levels. 
For reasons that will be explained below, it is more con- 
venient to express the localization length in the number 

expression for I ,  does not depend on A V  and is valid also 
for pc < w .  In this case, the distribution over unperturbed 
levels will display a chain of equidistant (in energy) peaks. 
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Moreover, if l4 does not depend on energy, then expo- 
nential localization in the number of photons must be ex- 
pected in the sense that the probability enclosed in the Nth 
peak would be approximately fN - exp [ - 2  I N - 

An important case in which this situation occurs is pro- 
vided by the H atom problem that we are now going to 
discuss. 

No I /U 

111. CLASSICAL DYNAMICS OF A ONE-DIMENSIONAL 
HYDROGEN ATOM IN A MONOCHROMATIC FIELD: 

THE KEPLER MAP 
We shall now study the diffusive excitation occurring 

in a classical hydrogen atom in a monochromatic, linearly 
polarized, electric field. We shall first discuss a simplified 
one-dimensional model, in which the electron moves 
along a straight line in the direction of the field. Besides 
greatly simplifying the theoretical and numerical work, 
this model was also found to correctly describe the exci- 
tation of true, i.e.,  three-dimensional, H atoms initially 
prepared in very extended states along the field direction 
[3], [23]. This fact was actually of crucial importance 
since the study of the 1-D model has led to a clear phys- 
ical picture of the excitation process of the H atom in a 
monochromatic field. Moreover, since such extended 
states (with parabolic quantum numbers n I  >> n2 and 
magnetic quantum number m = 0 )  can be produced in 
laboratory experiments [24] the one-dimensional theory 
can be subjected to experimental tests. 

The one-dimensional Hamiltonian in atomic units is 

H = p 2 / 2  - 1 / ~  + EX COS U t  (X  > 0) ( 8 )  
where E and w are the field strength and frequency. 

The classical dynamics described by (8) were investi- 
gated in several papers [3], [25]-[30]. A theoretical anal- 
ysis based on the Chirikov criterion [18] shows that for 
wo = wni  > 1 and for field strength above a critical value 
E,. = 1  OW;/^), the electron enters a chaotic regime of 
motion, marked by unlimited diffusion leading to ioniza- 
tion. Numerical analysis confirms these estimates and 
provides empirical evidence that the diffusion is ruled by 
a Fokker-Planck law [3], [31]. For wo < 1, numerical 
results show that the critical field for the chaotic transition 
approaches the threshold value for ionization in a static 
field when wo + 0. 

Here we shall describe a new approach to the classical 
problem, which allows for a very simple theoretical and 
numerical analysis and which exposes in a transparent way 
the connection between the H atom problem and the 
kicked rotator. In subsequent sections, we will show that 
this approach leads to a simplified quantal description, and 
also how the same approach can be generalized to a num- 
ber of dimensions higher than 1. 

The idea is to describe the dynamics by a map rather 
than by the Hamilton equations. This map gives the 
change of the appropriate dynamical variables over one 
orbital period of the electron, and, as we shall see, it can 
be given a simple analytical form, thanks to an important 

peculiarity of the problem. Indeed, it will appear that the 
external field fully develops its perturbing influence on 
the free Keplerian motion of the electron mostly when the 
electron itself is in the vicinity of the perihelion. This is 
a consequence of the Coulomb singularity and leads to a 
kick-like influence of the external perturbation. 

In order to obtain the map, we rewrite (8) in action- 
angle variables ( n ,  8): 

H = -1/2n2 + en2 
m 

. cos 3/2  - Jl(s)s- l  cos (9)  [ s = l  

where Ji are the derivatives of Bessel functions. For large 
s, s-IJ,’ (s) = 0.41 l s -5 /3  which even for s = 1 is correct 
within 20 percent. We now introduce the “eccentric 
anomaly” t ; ,  according to 

t = n3(t;  - sin t ; )  

x = n2( 1 - cos t ; )  

8 = t; - sint; 

and also define a new time q ,  in which the unperturbed 
motion is uniform. Then we get the following set of equa- 
tions 

dn/dq  = --En2 sin 

dt; /dq = n-3  + 2en(cos ut)( 1 - COS 4 )  
cos at 

d t /dq  = 1 - COS 5 .  ( 10) 

We wish to use these equations for the purpose of evalu- 
ating the change An in action between two subsequent 
passages at the aphelion ( t ;  = w ) .  Since we want to per- 
form this evaluation at first order in E ,  we shall neglect E 

in the second and third equations (1 0). 
By integrating the equations thus obtained, we get 

9 = 4n3 + wn3 

wt = wn3(t; - sin t ; )  + 6. 
The integration was started with q = 0, = - w ,  i .e.,  

at the aphelion, at a time to; therefore, 6 = w ( to + wn3 ), 
that is, 4 is the field phase at the perihelion. 

We now substitute this result into the first equation (10). 
The next passage at the aphelion after to will occur for t; 
= w ,  so that 

An = -en5 1’ cos ( ~ ( 4  - sin 4 )  + 4 )  sin 4 d [  
-7r 

= 2 d ~ ; (  x) sin 6 (x = an’) ( 1 1 )  
where 

+7r 

&(x) = 1/2w 1 sin ( x ( t ;  - sin E)) sin E d t  

is the derivative of the so-called Anger function [34]. 
It is convenient to introduce a variable N = E / w  = 

- 1 /2n2a. In the quantum case, the change of N would 
give the number of absorbed photons. The change in N 

-7r 
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corresponding to the change in rz given by (1 1) is 

A N  = A n / ( n 3 w )  = (27rcn2/w) Jk(x) sin 4. ( 1 2 )  
For integer values of x ,  the Anger functions coincide with 
ordinary Bessel functions, and for x + 03 they have the 
same asymptotic behavior. That is, on defining 

N X )  = (X2/”0.411>J,I(X), 

we have A ( x )  = 1 for x >> 1. (See the above given 
asymptotics ofJE (s).) Instead, for x + 0, J i ( x )  - x / 2 ;  
the behavior of A ( x )  is illustrated in Fig. 1.  We can re- 
write (12 )  as 

A N  = k A ( x )  sin 4 k = 0 . 8 2 2 7 r ~ w - ~ / ~ .  (13) 

A stationary-phase analysis of (1 1) shows that for large 
x. the main change in action occurs within a small interval 
A t  - x-’ l3  << 1 near the stationary phase point 4 = 0. 
Therefore, as we anticipated above, for large x the mono- 
chromatic perturbation is mainly effective when the elec- 
tron is very close to the perihelion. 

Now we shall regard N ,  4 as a pair of canonically con- 
jugate variables and seek for a canonical map connecting 
the values of N ,  4 at consecutive passages at the aphelion. 
The above developed perturbation theory yields (13) for 
the change in N at first order and A 4  = 2aw ( -2wN ) -3 /2  

for the change in 4 at zero order. Following a standard 
procedure [35], we can now look for a generating function 
G ( N ,  4 )  such that the map defined by 

- 

N = ac/a+ 4 = ac /aN 
coincides at first order and zero order, respectively, with 
our perturbative result. 

This function is 

G ( N ,  4)  = N$ + 2 ~ (  - ~ w N ) - ” ~  + k A ( x )  COS 4 

(14)  
with 2 = w( -2wN)-’ l2 .  It generates the following map 

= N + k A ( 2 )  sin 4 
- 
4 = 4 + 2TW( -2WN)-”* 

+ 3kw’( - ~ W N ) ~ ~ / ~  A ’ ( % )  cos 4. (15) 

Notice that the implicit character of (15) cannot be 
avoided if a canonical (area preserving) map is required. 
For the same reason, the second equation ( I S )  contains a 

first-order correction to the above perturbative result for 
A N ,  A+, 

Since A ( x )  - 1 for x >> 1, the map (15) is greatly 
simplified in the region of large x ,  i.e., of large wo- where 
it takes the form of the following “Kepler map:” 

= N + k sin 4 
- 
4 = 4 + 2nw( - 2 w R ) - 3 / 2 .  ( 16) 

On the other hand as can be seen from Fig. 1, A (x) is 
already close to 1 for x = 1 ; therefore, the map (16) pro- 
vides an acceptable description of the motion for wo B 1.  
Notice that even though the map (16) is canonical, hence 
area preserving, it is not defined on all bound states ( N  
< 0); indeed, it carries some bound states into the posi- 
tive energy region, where 4 is no longer defined. When 
this happens, the electron escapes to infinity and ioniza- 
tion occurs. 

The effect of a small static field E ,  superimposed to the 
monochromatic field would essentially be a change in the 
Kepler period. Then for small E ,  only the second equation 
(16) should be modified by adding a term 

- ~ T w E , (  -2wN)-’/’. 

We obtained a numerical check of the validity of the map- 
ping (16) as an approximate description of the dynamics, 
by the following procedure. By numerically solving the 
exact equations of motion (lo),  we computed the se- 
quence c$] = wtJ of the phases at passages of the electron 
at the perihelion. Next, by computing N, = ( - 2 w ) - ’ [  (4 
- 4 J - l ) / 2 ~ u ) ] - 2 ’ 3  we found g ( 4 ] )  = k - ’ [ N ,  - N,, , I  
and we plotted this against 4, for several values of k .  The 
comparison of the result to the theoretical prediction 
k - ‘ [ N , , ,  - N,] = sin 4J is given in Fig. 2;  even for wo 
= 1.5, the agreement between numerical and theoretical 
data is very good. 

IV. DIFFUSIVE E X C I T A T I O ~  A N D  IONIZATION I N  THE 

l -D CLASSICAL MODEL 
The mapping (16) allows for a straightforward estimate 

of the critical field value required for the transition to cha- 
otic motion. By linearizing the second equation (16), we 
obtain the map 

N = N + k sin 4 
- 
4 = 4 + T N  (17) 

where T = 6aw2ni (an unessential constant has been 
dropped in the second equation). Equation (17) is the cel- 
ebrated standard map. As is well known, the onset of sto- 
chasticity for this map occurs when the stochasticity pa- 
rameter K = k T  becomes larger than l .  

Then, defining E ,  by K = E ~ / E , ,  we obtain the condition 
for unlimited chaotic excitation in the form > E , ,  with 
E ,  given by 

E ,  1/(49w:/’). (18)  

This estimate follows from the simplified map (17) which 
is a good approximation to the true dynamics when uo > 
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I I, 
0 0.5 1 

Fig. 2. Numerically computed function g(4,) (dots) compared to the the- 
oretical curve sin @ (full curve) for the case eo = en: = 0.04, wo = 
w n i  = 1.5 

1. Instead, for wo < 1 we must use the complete map 
(15). By linearization, we get again a standard map like 
(17) with k A  in place of k (the first-order correction in the 
second equation (16) is small and can be neglected). This 
leads to the new estimate 

E ,  = 1/(49wA/’A(wo)). (18a) 

For example, for wo = 0.6, A ( w o )  - 0.45 so that (18a) 
yields E ,  = 0.05 in satisfactory agreement with the nu- 
merically obtained value. (See [ 3 ,  Fig. 51.) For much 
lower values of wo, the critical field becomes too large and 
the mapping description of the dynamics becomes inade- 
quate. For such very small frequencies, the critical field 
approaches the threshold value for a static field: E ,  = 0.13. 

An example of a phase-space picture obtained by iter- 
ating (16) is shown in Fig. 3 ,  which exhibits the typical 
structure of area-preserving maps. The islands around Q, 
= a correspond to main resonances, whose position in N 
is determined by the condition 2 a s  = 2aw ( -2wN ) -3/2.  

The scattered points in the figure belong to a single cha- 
otic trajectory. 

During the chaotic excitation process described by (16), 
the stochasticity parameter K grows. The phases Q, take 
random and independent values and the trajectory in N 
becomes similar to a random walk, with the diffusion rate 

D = ( A N ) 2 ) / A t  = k 2 / 2  = 3 . 3 3 ~ ~ / w ” / ~  (19) 
where t is measured in number of iterations. 

As we already mentioned, ionization will occur as soon 
as a kick carries the orbit into the positive energy region. 
Then, typically, the orbit will proceed to infinite in phys- 
ical space and never return back to the nucleus. This is 
due to the fact that far from the nucleus, the external field 
produces only small oscillations of the trajectory around 
its average Kepler motion (ellipse or hyperbola). (From 
this picture, we may conclude that transitions in the con- 
tinuum and from continuum into bound states are negli- 
gible small. This is the reason why our initial quantum 
computations [ 2 ] ,  [23] carried out in the discrete basis 
give a correct description of the excitation process.) 

Since the change in energy due to a single kick is I wk,  
the energy of the ionized electron will lie in the band 0 
< E < 0.822ae/w2/’ .  From this result, we can draw the 
following conclusion: if a beam of electrons passes close 
to the nucleus in the presence of a monochromatic field, 
only electrons with energy smaller than 0 . 8 2 2 a ~ w - ~ / ’  can 

‘> 
0.0 t 6.  d 

Fig. 3 .  Phase space portrait for the map (16) in the variables E(, = w Nni 
= - n i / 2 n 2 ,  @. Parameter values are to = 0.03, wo = 3.5. Six regular 
and one chaotic trajectory are shown. 

be captured. (For a more detailed discussion see Section 
IX.) 

Also, in order that ionization may occur after just one 
kick (i.e., after one orbital period) it is necessary that k 
> NI = 1 / ( 2 w n i )  (in quantum terms, NI is the number 
of photons required for ionization) which gives eo > 
~ ; / ~ / 5 .  For example, if oo = 10, then EO = 0.93 >> E,. 
Therefore, in a monochromatic field with eo = t s ,  ion- 
ization may be negligible even after several Kepler pe- 
riods (see also below). 

The time tl required for ionization can be estimated as 
the time required to reach the region N > - k ,  from where 
the electron is thrown into the positive energy region by 
just one kick. 

From (19) we obtain 

tl - N : / D  = ( 1 / 1 3 ) ~ : / ~ / & .  (20) 

Consider an ensemble of points initially concentrated 
on a given value of N with uniformly distributed phases. 
At a later time t << t i ,  this ensemble will be distributed 
in N according to a Gaussian law 

f ( N ,  t )  = ( a k 2 t ) - ’ / 2  exp [ - ( N  - N 0 ) ’ / k 2 t ] .  (21)  

In order to correctly interpretate this result, we must re- 
call that “time” t is here the number of mapping itera- 
tions, i.e., the number of orbital periods. In real time, the 
diffusion coefficient depends on the value of the action 
and in order to find how the distribution in action space 
evolves in time, an appropriate Fokker-Planck equation 
should be solved, as in [3]  and [3 11. For the same reason, 
in order to evaluate the physical time required for ion- 
ization, a conversion of (20)  must be made, from the 
number of iterations to the number of field periods. 

In strictly mathematical terms, this average ionization 
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time diverges even though every individual stochastic or- 
bit ionizes in a finite time. In fact, the average waiting 
time before the last ionizing kick is jp ( -2wN )-3/2f( N ) 
dN which is infinite, because f ( N  ) does not vanish at the 
ionization border. From a physical viewpoint, however, 
it is sufficient to consider the time needed to reach states 
very close to the ionization border, because these states 
will be ionized by any small perturbation. Therefore, the 
divergent integral above should not be started from zero, 
but rather from some value to be chosen on the grounds 
of physical considerations. One possible choice may be 
to compute the ionization time as the time needed for 
changing N by a factor two. In this way, one gets a ion- 
ization time 

71 - oot, - *;/”/E; ( 2 2 )  
which coincides with a previously given estimate 131. 

V. QUANTIZATION OF THE ONE-DIMENSIONAL MODEL; 
EXPONENTIAL PHOTONIC LOCALIZATION 

The Kepler map formulation of the H atom dynamics 
discussed in the previous sections predicts diffusive ex- 
citation above the chaotic threshold. We now turn to the 
question of what kind of behavior would be predicted by 
quantum dynamics for the same 1-D model. According to 
our general discussion in Section 11, we should expect also 
here the important phenomenon of quantum localization 
which, indeed, was theoretically predicted and numeri- 
cally confirmed in 121, [ 3 ] ,  1121, [23] and 1311. 

The analysis developed in these papers provided a clear 
general picture of the quantum mechanism of excitation, 
but was not able to explain the multiphoton peak struc- 
tures which appear on high levels according to numerical 
experiments and could not therefore provide estimates for 
the quantum ionization rate. 

Let us now see how does the 1-D H atom problem fit 
into the general picture of localization discussed in Sec- 
tion 11. In order to use the estimate (7) for the localization 
length, we need the expression for dipole matrix elements 
and for the level density p .  Semiclassical values of the 
dipole matrix elements are given by the classical Fourier 
amplitudes of the perturbation [32] .  The latter can be read 
directly from (9), so that the semiclassical formula sought 
for is 

p = n’s-’J;(s) = 0.411n-30w-5/3 ( 2 3 )  
Since we are interested in matrix elements for one-photon 
transitions, we have puts  = on3; moreover, we have used 
the asymptotic formula already introduced in Section 111. 
The above expression (23)  coincides with the one given 
in [ 3 ] .  Substituting 1231 and p = n3 into (7), we obtain 
the localization length in the number of absorbed photons 

6 -  t w  . 

Our general discussion (Section 11) also leads us to predict 
the shape of the distribution on levels. Since according to 
(24), the localization is homogeneous, the distribution 
should be exponential in the number of absorbed photons. 

(24)  1 - 3.33 2 - l o p  

However, on high levels the perturbation strength I/ - 
tu-5/3n-3 becomes much smaller than U ;  therefore, the 
excitation there will mainly proceed via resonant one- 
photon transitions and a corresponding peak structure will 
appear. 

An independent derivation of this exponential photonic 
localization can be obtained by direct quantization of the 
Kepler map (16). The classical variable N is energy di- 
vided on u;  on the other hand, 4 = ut varies from -00  

to + 00,  so we can represent quantum mechanically N:nd 
by the canonical pair of operators N = - i d / d 4 ,  4 = 

?(  -00 < 4 < + 0 0 ) .  Then replacing N ,  4 in (16) by N, 
4, we get the quantum map that describes the discrete- 
time quantum evolution corresponding to the classical 
Kepler map (16 )  in the Heisenberg description. In order 
to get the quantum map in the Schroedinger description, 
we first notice that (16) can be factorized as the product 
of two simpler maps. The first is a “kick” which changes 
N but not 4, followed by a “free” evolution that would 
be produced by the Hamiltonian Ho = 27r [ -2uN ] - ‘ I 2  in 
the unit time. 

According to the chosen representation for the opera- 
tors N, $, we can now write the quantum map for wave 
functions 11, ( c p )  ( - 00 < cp < + 00 ) in the following form: 

-‘Hope - ikcos 4 $ ( 2 5 )  
- 
$ = e  

is the projection operator on the subspace in which N is 
negative, (the subspace spanned by bound states), i .e.,  
on the subspace where e-iHo is defined. The map (25)  can 
be significantly simplified by properly exploiting the pe- 
riodicity in 4. Due to this periodicity, the map commutes 
with translations p f  4 by multiples of 27r, that is it com- 
mutes with e-Zn”. This entails that the “fractional part” 
of N is unchanged under the action of the map and is 
therefore an integral of the discrete-time motion defined 
by the map itself; it may be called the “quasi-momen- 
tum” associated with the coordinate 4. If the value of the 
quasi-momentum is known, the map, can be simplified as 
follows. We first rewrite (25 )  in the N representation, i.e., 
we write the map for the Fourier transform $(  v )  of $ (4 ) :  

li/ = e - Z a i [ - Z w v ] - ’ / 2  O ( - v )  1 d v ’ $ ( v ’ )  K(v - v’). 

8 is the unit step function and represents the projection 
p ;  E is the Fourier transform of e -Jkcosf  and has the form 

+ m  - 

-a 

( 2 6 )  

K(v) = ( 2 4  c g,6(v - m )  
111 

where g ,  are the Fourier amplitudes for e-‘kcos4 in  [0,  
27r]. 

Substituting this into (26) and writing v = No + N6 with 
No = - 1 /2n& and N$ integer, we get 
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We see that 5 at a given point X is uniquely determined 
by 5 at points with the same No,  which shows again that 
No is an integral of the motion. Therefore, if No is known, 
then 5 is completely specified by its values at points No 
+ m, and the state is uniquely defined by a new wave 
function in ( 0 ,  27r) 

The quantum map for such wave functions is 
- 

rl. ( 2 7 )  
rl/ = e - ~ H ~ P e ~ k c ~ l s O  

where now Ho = 2 n [  -2w(N0  + N,)]-1’2, N ,  = 
-ia/dO in (0, 2 a )  with periodic boundary conditions, 
and P is the projection on bound states (N, < -No) .  
Notice that, given the initially excited state no, No is just 
equal to - 1 / 2 n &  = -no/2wo.  

The quantum Kepler map (27)  establishes a close con- 
nection between the hydrogen atom problem and the 
kicked rotator. We can define quasi-energies X for this 
map by $ = elh$ but, unlike the rotator case, X will have 
a nonvanishing imaginary part describing absorption in 
the continuum. We remark that an equation for quasi-en- 
ergy eigenfunctions close to 7 = e”$ [with 5 given by 
( 2 7 ) ]  was derived from the Schroedinger equation by Ber- 
sons [36]. 

The existence of quasi-momentum suggests the inter- 
esting prediction, that the distribution of the (real parts) 
of the quasi-energy levels for the H-atom problem should 
not show any level repulsion, even in the region of strong 
classical chaos. To our knowledge, this would be the first 
physical example of absence of level repulsion in the re- 
gion of classical chaos. 

By iterating the quantum Kepler map (27), we obtain 
the distribution in the number of absorbed photons. This 
is a different kind of distribution than the usual distribu- 
tion over the unperturbed levels that would be produced 
by integrating the Schroedinger equation. A link between 
the two types of distribution can be established by notic- 
ing that the absorption of the different number of photons 
generates different peaks in the distribution over the un- 
perturbed levels. Therefore, for a given number of pho- 
tons, we shall identify the probability obtained by means 
of the Kepler map, with the total probability over all un- 
perturbed levels lying within a single one-photon interval 
around the peak determined by the absorption of the given 
number of photons. 

Since the diffusion rate for the Kepler map is constant, 
D = k 2 / 2 ,  then the photonic localization length I ,  = D 
= k’/2 is likewise constant. 

Therefore, the picture would be the same as in the 
kicked rotator model, were it not for the dissipation intro- 
duced by the projector P .  However, for I ,  << N I ,  the 
corresponding ionization rate is negligible so that homo- 
geneous exponential localization is to be expected also in 
this case. In particular, a prediction about the form of the 
steady-state distribution can be borrowed from results ob- 

tained for the rotator model [ lo], according to which 

f N  - (1 /2 l+ ) ( l  + 21N - NoI/l,) 

. exp ( - 2 1 N  - Nol/ l , ) .  ( 2 8 )  

The value of 1, just obtained is the same already obtained 
by a more general argument in Section 11. 

By multiplying 1, by the number of unperturbed levels 
wn3 lying within a one-photon interval, we obtain the pre- 
viously derived [ 2 ] ,  [3] value of localization length (( 1 1) 
of [3]), with a slight difference in the numerical factor. 
As explained in [3], this difference is due to the particular 
choice of a numerical factor in the classical diffusion coef- 
ficient which was made in [ 2 ] .  Anyway, we wish to em- 
phasize that the previous theory was able to justify the 
form of the steady distribution in a restricted neighbor- 
hood of the initially excited level. Instead, the above pre- 
sented theory yields an approximate description for the 
overall distribution, including its peak structure. 

If the photonic localization length is large enough, the 
peak structure will determine a sort of plateau in the dis- 
tribution over unperturbed levels [ 2 ] ,  [3]. Even more im- 
portantly, if I ,  is comparable to the number of photons 
required for ionization: NI  = 1/2n,$~, then strong ion- 
ization will occur. The condition I ,  = N,  yields a critical 
value of the field 

Across the “delocalization border” defined by (29) ,  a 
qualitative change occurs, from a regime of localized 
quantum motion with very small ionization, to a diffusive 
ionization very similar to the classical one. This “delo- 
calization phenomenon” has been predicted and de- 
scribed on somewhat different grounds in [ 2 ] ,  [3] with the 
same estimate (29)  for the delocalization border. 

The simple form of the quantum Kepler map is very 
convenient for estimating ionization rates. The simplest 
case is that of single-photon ionization in a small field, 
which corresponds to k << 1. 

From (25 ) ,  we get immediately the loss of probability 
after one orbital period: y, = ( k / 2 ) 2 .  In order to obtain 
the ionization rate F, in physical time, we must divide 
this y, by 27rni, i.e., by the orbital period. Thus, we find 

F, = y , (2an i ) - ’  = 0 . 2 6 5 ~ ~ w - ’ ~ / ~ n i ~  ( 3 0 )  

which is exactly the standard perturbation-theoretic result 

In the localized regime, when N I  > 1, > k > 1, the 
probability that is removed to the continuum after one kick 
is approximately equal to the total probability on photonic 
levels with N,  - k < N ,  < N I .  Therefore, the ionization 
rate (in discrete time, i.e.,  in number of iterations) is 

131, f121. 

Ni 

f N  - k fN,  
’@ - N=N,-I; 

where fN is the averaged distribution on photonic levels. 
In physical time, we obtain 



CASATI er al. :  HYDROGEN ATOM I N  MONOCHROMATIC FIELD 1429 

kf,(kw)”’ - ( w 5 I 4 /  &) ( E ~ / E , , ) ~ ’ *  

where (28) has been used. 
The tail of the distribution is very sensitive to small 

changes of parameters such as, e .g . ,  the field strength. In 
the average, the distributionf, will conserve the form (28) 
but its value at any fixed value of N will fluctuate strongly. 
Since for eo << eq the ionization rate is determined by an 
interval of width A N  - k in the tail of the distribution 
[see (31)], and since this interval is smaller than the lo- 
calization length, these fluctuations will affect also the 
ionization rate, which will have a very irregular fine struc- 
ture as a function, e.g., of the field strength. 

In the case eo > cy, localization never takes place and 
the process of excitation is close to the classical one 131, 
[3 11. The characteristic time of the decay of probability 
is determined by the time t, needed to reach the continuum 
[see (20)]. 

Finally, from the quantum Kepler map, we can extract 
a prediction on the energy distribution of ionized elec- 
trons, when k >> 1. Indeed, using the expansion 

we see that, after one kick, the probability that the elec- 
tron has an energy N u  - 1/2ni  will be P ,  = 
I IN- IN,) ( k )  1’ where [ N , ]  is the integer part of NI < N ;  
this is in agreement with results of [36]. The effect of 
several subsequent kicks will be an averaging of this value 
of P ,  over different NI’s within an interval A N ,  - k ;  any- 
way, for N - N ,  > k ,  PN will decay sharply (this corre- 
sponds to the classically forbidden region). 

All the above theoretical results were checked by com- 
puter simulations of the quantum H atom, performed by 
means of the numerical technique described in [3] in the 
parameter range 1 < wo < 3.5, 0.02 < eo < 0.16, with 
initial conditions no = 30, 45, 66, 100, 200, 400, 500. 
In each case, we computed the steady-state distribution f, 
and we analyzed its dependence on N ,  = NI - 1 /( 2n‘w). 

Examples of such distributions are given in Fig. 4(a)- 
(c). The chain of peaks equally spaced at one-photon in- 
tervals is here evident, as well as the exponential char- 
acter of the distribution. 

In order to compute the localization length, the whole 
range of N6 was divided into one-photon intervals and in 
each interval the maximum of the distribution was taken. 
The numerical value of the localization length was then 
found as the slope of a straight line fitting the points thus 
obtained (for N, > 0). 

In order to check the exponential localization, we plot- 
ted the maxima of the distribution against the rescaled 
number of photons X = 2Nd/1, where 1, is the numeri- 
cally obtained value of the localization length. We also 
subtracted the constant part of InfN, so that perfect ex- 
ponential localization would correspond to Inf, = - X .  
Such a plot for 47 different distributions is shown in Fig. 

5. Even though there is some scatter of points, the expo- 
nential behavior is fairly evident. 

In order to check the theoretical prediction (24) for the 
localization length, we plotted the rescaled, numerically 
obtained, localization length as a function of field inten- 
sity. The agreement between the numerical results and the 
analytical expression (24) (which is represented by the 
straight line in Fig. 6) has been checked in an interval of 
ten orders of magnitude of field intensity, for 43 cases 
with theoretical I ,  > 1, and it appears quite satisfactory. 

Another type of check is shown in Fig. 7 where we 
plotted the ratio R of the experimental value 1, to the the- 
oretical one for the same 43 cases above. The scatter of 
points around the value R = 1 mirrors the strong fluctua- 
tions in the steady-state distributions (see Fig. 5 ) .  This 
scatter is larger, the larger the value of the localization 
length, because of the small interval of change of In fAr 
and of the strong fluctuations in one-interval localization 
length. The obtained averaged value of R is 1.23 f 0.08 
to be compared to the theoretical value R = 1.  

We also compared the steady-state distribution ob- 
tained by numerical simulation of the continuous time 
Schroedinger evolution, with the steady-state distribution 
obtained by iterating the quantum Kepler map (Fig. 4). 
This was done by computing the total probability in each 
one-photon interval N ,  - 1 /2 ,  N ,  + 1 /2  according to 
the first distribution and by matching the “photonic” dis- 
tribution obtained in this way with the second distribu- 
tion. There is a much better agreement around the initially 
excited level ( N ,  = 0 )  than in the tails of the distribu- 
tions, which agree only in the average. This fact may be 
connected with the already mentioned sensitivity of the 
tail to small parameter changes. The steady-state 
“Schroedinger” distribution was obtained by time aver- 
aging over 50 microwave periods (with 450 < 7 5 500); 
instead, the “Kepler” distribution was averaged over 15 
iterations, from the 135th to the 150th, which approxi- 
mately corresponds to the same physical time. Anyway, 
in the localized regime ( I ,  < N , ) ,  the exact averaging 
interval is inessential, provided it is not too small or too 
large. 

Since eo and wo have the same value in the three cases 
illustrated in Fig. 4, these three cases correspond to the 
same classical behavior, which is shown in Fig. 4(b). In 
contrast to the quantum case, the classical distribution 
spreads over the unperturbed levels, and strong ionization 
occurs after a time t ,  << ( 2 ~ n $ ~ ) - ’  with F, as in (31). 

Strictly speaking, the theory discussed in this section 
refers to the region wo > 1. However, above the classical 
chaotic threshold, the value of wo = on3 grows during the 
process of excitation and it eventually becomes larger than 
1 on sufficiently high levels. Therefore, we feel justified 
in using the same expression (24) for the localization 
length (that does not depend on the level number n ) even 
for wo = wni  < 1. As a consequence, even the delocal- 
ization condition (29) still holds. On the other hand, for 
small wo, the quantum delocalization border is lower than 
the classical chaotic border; then the latter alone deter- 
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Fig. 4. Probability distribution on unperturbed levels averaged from 450 
to 500 microwave periods (full curve) versus the number of photons N, 
= ( 1 / 2 n i  - 1/2n')/w for the same parameters to = en: = 0.03. 0,) 

= an(: = 3.5 as in Fig. 3 .  The straight-line results from a least squares 
fitting of the maxima of the distribution in each photon interval. The 
crosses ( + ) show the total probability in the interval N,, - 1 /2.  N, + 
1/2 .  The dots (-) give the steady-state distribution, averaged from 135 
< f < 150, obtained by iterating the quantum map (27). (a) no = 100. 
(b) no = 200. ( c )  no = 400. For comparison. the classical distribution 
over unperturbed levels is also shown in (b) (dashed curve). 

M 
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Fig. 5 .  Dependence of In Jz versus rescaled number of photons X = 
2N,/I,. Here I, is the experimental value obtained by least squares fits 
of 47 distributions as described in Fig. 4,  for different values of E,,, wo, 
no. The constant parts in  In fN have been substracted, so that perfect 
exponential localization would correspond to Infn = - X  which is also 
drawn in  the figure (full line). 
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Fig. 6 .  Plot of the logarithm of the rescaled experimental localization 
length log ( I ,  w'"'/3.33) versus log e' .  The solid line gives the theo- 
retical dependence (24). The points are obtained from numerical data of 
43 different distributions, with I, > 1. 
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Fig 7 The ratio R = I $ / / :  of the experimentally obtdined localization 
length 1: over the theoretical value / T ~  from (24) verw\ log for the 
same 43 cases of Fig 6 The average value of R IS ( R ) = 1 23 * 0 8 

mines the ionization threshold, above which the quantum 
process of ionization is close to the classical one. 

In conclusion, a large amount of numerical data yield 
satisfactory agreement with the above developed theory 
in a broad parameter range. This theory can therefore be 
assumed to provide a fairly complete description of the 
process of excitation and ionization of 1-D hydrogen at- 
oms in a monochromatic field. 

In closing this section, we wish to add some comments 
of a more general character about the conditions that must 
be fulfilled in order that a deterministic quantum system, 
assumed to be classically integrable in the case of zero 
perturbation, may develop a mechanism of chaotic exci- 
tation (compare the discussion in the previous section). 
The parameters k and T in  the Kepler map can be written 
as 

k = 2apEp T = z T w a p / a ~  = z T W 2 a p / a ~  
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so that the criterion for classical chaotic excitation takes 
the form 

K = kT = 4 W 2 p E W 2 p a p / a ~  > 1. 

We already stressed that this criterion is, generally speak- 
ing, much more restrictive than the so-called quantum 
border of stability, that essentially requires the perturba- 
tion to be larger than the unperturbed level spacing. This 
is now clearly evident because this stability border is de- 
fined by 

2 ~ p ~ p  = k - 1. 

In order to have strong excitation, we have not only to 
satisfy k > 1, but also K > 1. In that case, the local- 
ization length is 1, = 27r2p2e2p2 (7). 

VI. THE KEPLER MAP FOR THE TWO-DIMENSIONAL 
CLASSICAL HYDROGEN ATOM 

We turn now to the analysis of the two-dimensional 
case. The main results of this analysis were presented in 
[15]. We shall show that, insofar as the excitation in en- 
ergy is examined, the more realistic 2-D model can be 
reduced to the 1-D one, even for not strictly 1-D initial 
states. We shall then conclude that the 1-D theory pro- 
vides an understanding of the main essential features of 
the dynamics not just of the 2-D case, but even of the real 
3-D case. Indeed, in that case, the component m of the 
angular momentum along the field direction is conserved. 
Thanks to this conservation law, the essential characters 
of the 2-D motion will not be essentially modified by the 
addition of the third spatial dimension. 

In our study of the classical 2-D case, we will follow 
the same strategy successfully used in the 1-D case; 
namely, we shall seek for a simplified description of the 
2-D dynamics by means of a map that describes the change 
of appropriate canonical variables between consecutive 
passages at the aphelion. Our 2-D case is obtained by set- 
ting m = 0, i.e., by assuming the orbital momentum to 
be normal to the direction of the field. The Hamiltonian 
in action-angle variables can then be written as [27], [37], 
1381 

H = -1/2n2 + en2 cos wt ( 3 / 2 ) e  cos $ - 2 
m i 

* C (x, cos s8 cos $ + 
5 = I  

- y ,  sin s8 sin $) + (3/2)e5n2e cos $. (32)  

Here e is the eccentricity, connected to the orbital mo- 
mentum I by e = ( 1  - 12/n2)’ /* ,  and 

1 
x, = s-’J:(se)  yS  = [ ( l  - e2)”2/se]J,y(se). (32a) 

The last term in (32) describes the effect of a static electric 
field, collinear with the microwave field. 0 is the angle, 
conjugated to the action n ,  and $ is the angle variable 
conjugate to I ,  i.e., it is the angle between the major axis 
of the ellipse and the direction of the external field. 

The map we look for shall describe the change, during 
an orbital period, of N (energy divided by a), of the con- 
jugate phase cp, which is just the product of -w and time, 
and of I, $. This map will therefore be a four-dimensional 
generalization of the 2-D Kepler map discussed in the pre- 
vious section, and will be found much in the same way, 
i.e., by approximate integration of the Hamilton equa- 
tions over one period of the unperturbed motion. 

Moreover, we will be mainly concerned with the case 
wn3 >> 1. Resonant terms in the Hamiltonian (32) will 
then correspond to s >> 1, so that we shall use asymp- 
totic expansions of the Fourier amplitudes x , ~ ,  Y , ~  fo r s  >> 
1. Since these expansions will turn out to be valid down 
to s - 1 within a 20 percent accuracy, the results thus 
obtained will have some validity throughout the region 
an3 > 1 .  In order to obtain such expansions, we start 
from the following formula 

(33)  J,(se)  = ( 1 / ~ ) ( 2 / s ) ” 3 + [ ( s / 2 ) ~ ’ ~ ( 1  - e’)] 

where + is the Airy function. 
In our approximate integration of the equations of mo- 

tion, the main contributions will be given by resonant 
terms, i.e.,  by terms with s = wn3. For such terms, 

J ,  (se) = ( 1 / ( 2  /s ) I ” +  ( [ ( w /2  )‘”I 12)  
and, since + ( x )  decays exponentially as x -+ +a, we 
shall consider the case in which ( ~ / 2 ) ” ~ /  < 1,  i .e . ,  

I < (2 / a )1 /3 .  (34)  

If (34) is satisfied and wn3 >> 1, then I << n so that the 
eccentricity e is close to 1.  We can therefore write 

y,  = ( 1 / ~ ) ( 2 ~ ’ ~ / ~ ) ~ ~ ~ / ~ q 5 ( 0 )  = (I/n)0.447/s4” 

having used the value q5 ( 0 )  = 0.629. 
In order to estimate x,, we use 

./:(se) = J , i ( s )  + s(e - l ) J ; ( s )  

= J : ( s ) (  1 + 12/2n2) 

together with 

= - (2’ /3/&)+~(0)/s1? 

x , ~  = ( 0 . 4 1 1 / ~ ’ / ~ ) ( 1  + / 2 / 2 n 2 )  

Thus, we finally get 

(35) 

(we used the value +’(O)  = -0.4587). We are now ready 
to compute the map by a first-order perturbation theory. 
To this end, we substitute the unperturbed motion in the 
field dependent terms and we integrate the approximate 
equations thus obtained over one unperturbed period, 
keeping just the resonant term. We find 

2rm3 

An = - dr a s l a 8  = kwn3[ -( 1 + 12/2n2) sin 4 

* cos $ - 1 . 0 9 ~ ’ ’ ~ l  cos q5 sin $1 
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where 4 = - w t  + $6 is the value of - wt at the perihelion 
( e  = 0) and k = 0 . 8 2 2 7 r ~ / w ~ / ~  as in the l -D case. 

Analogously, we also find 

A I =  -1 d t a H / a $ = k [ - ( l  + ~ / 2 n 2 ) c o s 4  
2xn3 

0 

* sin $ - 1 . 0 9 ~ ' / ~ 1  sin 4 cos $ 1  + 
+ 3 7 ~ c , n ~ ( n ~  - z 2 / 2 )  sin 11/ 

A $  = k [  - ( l /n2)  cos 4 cos $ + 1 . 0 9 ~ " ~  sin 4 sin $1 
+ - 3m,n31 cos II/ 

A~ = -2awn3. 

This transformation is defined by 

tgx = ( B / A ) t g $  0 = 4 + x 
I 

J + N = dl '  A B / ( A 2  sin2 x + B2 cos2 x )  1, 
A = 1 - N12w, B = 1 . 0 9 ~ " ~ 1 .  ( 3 8 )  

In these new variables, the generating function becomes 
- -1/2 G ( N ,  e; j, x )  = j X  + Ne - 2 T (  - 2 w ~ )  - 

- kH(5 + N, N, x)  cos 0 

+ 3 4  - 2 w ~ ) - 5 i 2 [  1 + w ~ 1 2 ~  cos + 
( 3 9 )  

By introducing a new variable N = - 1 /( 2n2w), we where in the last term 1 = i ( N  + J, x )  and 
can easily write a set of equations yielding A N ,  AI ,  A $ ,  
A , .  These equations give a map from the values taken by 

H 2 ( N ,  J ,  x )  = A2 cos2 $ + B2 sin2 $. (40)  

NI I, $, 4, at a passage throigh the perihelion to their 
values N ,  1, $, 4 at the next passage. However, as in the 
l -D case, this map would not be a canonical one. In order 
to get a canonical map, we shall first write the generating 
function 

Let us consider the case with no static field E ,  = 0. Then 
from the generating function (39), we obtain the map 

% = N - k H s i n 0  

e = 8 - 27rw( - 2 w N )  
- - 3 / 2  

- k(dH/aN) cos 0 
5 = J + k COS eaa/ax 

= - k COS eaa la5 .  

- - 1 / 2  G ( N ,  i; 4, $) = Iv+ + 1$ - 2 ~ (  - 2 w ~ )  + 
(41) 

- 
- k [ (  1 - W B 2 )  cos 4 cos $ 

- 1 . 0 9 ~ ' / ~ 1  sin 4 sin $1 + 
- - 3 / 2  + 3 m , (  - 2 w N )  [( - 2 w N ) - '  

- 1 2 / 2 ]  cos )b. ( 3 6 )  

From this generating function we deduce, according to 
the usual procedure, the map 

7V = N - k [ ( l  - w N t 2 )  sin 4 cos $ 

+ 1 . 0 9 ~ ' / ~ 1  cos 4 sin $1 
- -3/2 - 

6 = 4 - ~ R W (  - 2 w N )  + k J 2  COS 4 COS $ 

As we will see below, under appropriate conditions, the 
dependence of H on N can be neglected and the changes 
A J, A x  after each iteration are so small that for J, x we 
may use a continuous time approximation, i .e. ,  we may 
assume the second couple of equations (41) to yield the 
time-derivative of J and x.  

A decisive simplification of the dynamics described by 
(41) is achieved under these assumptions-the validity of 
which, we repeat, we shall discuss below because they 
allow for a sort of decoupling of the ( N ,  19) motion from 
the ( J ,  x )  motion. The latter, in the continuous time ap- 
proximation, is described by the differential equations 

- - 1 / 2  + ~ T C ,  COS 1 1 / [ 5 ~ (  - 2 w N )  - &/dt = k COS % dH/dX; d x / d t  = - k  COS 8 dH/dJ  

- ( 3 / 2 )  wi2( - ~ W N ) ~ " ~ ]  
i = 1 - k [ ( l  - w N i 2 )  cos 4 sin $ 

+ 1 . 0 9 ~ ' / ~ 1  sin 4 cos $ 1  + 
+ 3m,(  - 2 w N )  - - 3 / 2  [( -2wN)-I  - / 2 / 2 ]  sin $ 

- 

$ = $ + k [ 2 w N 1  cos 4 cos $ + 1 . 0 9 ~ ' / ~  sin 4 sin $ 1  
(37) 

- -3/2- 
- 37r~,( - 2 w N )  1 COS $. 

This map is canonical, hence measure preserving, and 
for this reason it gives values of A N ,  A / ,  A $ ,  A +  slightly 
different from the previously computed ones. 

A simpler version of this Kepler map can be obtained 
by going over to a different set ( N ,  8, J, x ) of canonical 
variables defined by a transformation that was used in 
[37], [38 ]  in order to get a description of the motion near 
the main resonance s = 1. 

where t is time measured in number of iterations. Defin- 
ing a new time variable o by 

d a / d t  = k cos 0, (42) 

these differential equations take the Hamiltonian form 

&/do = dH/ax dX/do = -dH/dJ.  (43)  

Then H is an integral of the ( J ,  x )  motion and can change 
in time only due to changes in N .  Then, if the dependence 
of H on N can be neglected, the ( N ,  e )  motion reduces to 
the map (16)  with kH in place of k .  The ( J ,  x )  dynamics 
which, in the variable o, do not depend on the ( N ,  e )  
motion, can also be described in the variables (1, $). Ac- 
cording to ( 3 8 )  and (40): 

H = [ ( I  + / '/2n2)? cos' $ + ( 1 . 0 9 ~ ~ ~ ~ 1 ) ~  sin' $ ] ' I 2  

where n, according to the made assumption, is constant. 
(44) 
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Depending on the value of the Hamiltonian H ,  the ( I ,  
$) motion has different qualitative features. If H < 1, we 
shall have bounded oscillations of the phase $ around $ 
= 7r/2; instead, for H > 1, we will have phase rotations. 
These two types of motion are divided by the separatrix 
H = 1. We shall now analyze the (1, $) motion in two 
interesting limiting cases, corresponding to the regions 
around the unstable fixed point (1 = 0, $ = 0) and the 
stable one (1 = 0, $ = 7 r / 2 ) .  

The first of these limiting cases corresponds to very ex- 
tended orbits along the direction of the field, i.e., to 1 < 
< n ,  $ << 1. In this case, (44) can be approximately 
written 

H = 12/2n2 - ( 1 / 2 ) 1 , b ~  + 1. (45 1 
This Hamiltonian describes an unstable motion, with ex- 
ponential growth of the variables and subsequent disrup- 
tion of the original extended state 

$ = $0 ch (U/.) + ( l o / n )  sh (U/.) 

1 = n$o sh (U/.) + Io  ch (U/.) (46)  
where lo, $o are the initial values and 5 = n is the char- 
acteristic instability time. Of course, (46) is a linearized 
solution around the unstable fixed point $ = 1 = 0. When 
I ,  $ become large enough, this linear approximation be- 
comes untenable and the original Hamiltonian (44) must 
be used, which describes a periodic motion of period T 
- 4T1n(1/$o) .  

Introducing parabolic action variables n , ,  n2,  we may 
also write T - 2: In ( n / n 2 )  (see below). 

In the quantum case, extended states will be specified 
by a parabolic quantum number n2 << n. In order to make 
contact with the quantum formulation, we must, there- 
fore, go over to parabolic action angle variables ( n l ,  n2, 
v l ,  q 2 ) .  A connection between these variables and the po- 
lar variables used up to now is given by the relation 

( n l  - n 2 ) / n  = ( 1  - 1 * / n y 2  cos $. 

n2 = 1/4(12/n + a$*) 

lo = 2(n*on)l’2 cos 70 

(47)  
We also recall that n = n l  + n2 (since we have assumed 
m = 0) .  For n2 << a, this relation gives approximately 

(48 1 
so that we can write 

112 . 
$0 = 2(n*o/n) sln rlo 

and (46) and (48) yield 

n2 = n2,[ch ( 2 a / n )  + (sin 2q0) sh (2a /n) ] .  (49)  
When we shall discuss the numerical results of the com- 
puter simulation of the 2-D H-atom in which an initial 
state corresponding to assigned values of no and n20 
evolves under the action of the microwave field, we shall 
need, for comparison, certain statistical quantities related 
to the classical evolution. In order to define these quan- 
tities, we assume that the quantum evolution of an unper- 
turbed eigenstate with given n,  n2 = azo, corresponds to 

an ensemble of classical trajectories with a fixed value of 
n20 and phases r/20 uniformly distributed in [0, 27r).  We 
can then use (49) to compute the dependence on time U of 
the first two moments of the distribution in n,: 

p1 = ( n2 - n20)  = n20( ch ( 2 a / n )  - 1 )  

P2 = ( (n2  - ( n 2 ) ) ? )  = (n :o /2 )  sh2 ( 2 a l n )  ( 5 0 )  

P 2 / / 4  = n20. (51)  

From these formulas we see that, for 2a << n ,  

Instead, in the opposite case 2a >> n ,  we obtain 

( n z ) / (  n2)’ = 3/2 .  (52)  

The results (49)-(52) have been deduced from the Ham- 
iltonian formulation of the (x, J ) dynamics that was made 
possible by the introduction of the new “time” U .  In or- 
der to refer to the old time t (defined by the number of 
iterations of the Kepler map), (42) must be used. This 
equation shows that the connection between U and t is de- 
termined by the time evolution of the phase I9 which, in 
turn, is ruled by the first couple of equations (41). Under 
our assumptions, these equations describe a mapping in 
the ( N ,  19) variables, very similar to the map discussed in 
the previous section. As the value of the perturbation pa- 
rameter kH is increased, the ( N ,  19)  evolution undergoes 
a stochastic transition that will deeply modify the depen- 
dence of I9 on time. 

Let us first assume that the ( N ,  0 )  motion is regular. 
Then the average Cos I9 = A # 0 and therefore we may 
assume that, in the average, the connection between U and 
t will be given by U = kh t .  Then the instability in the ( I ,  
\k) motion near the unstable fixed point I = $ = 0 will 
have a characteristic time 

t R  = Z / k h  = n / k X  = ~ ; / ~ / ( 2 . 6 c ~ h )  (53)  

which is in agreement with the instability time obtained 
in [38]. 

Instead, in the case of completely chaotic ( N ,  0 )  mo- 
tion, I9 depends on t in a random way; therefore, a is a 
random function of t ,  with 5 ( t )  = 0 and = ( k 2  / 2  ) t .  
Then the mean-square value o f h e  argument of the hy- 
perbolic functions in (46) is (U/.)’ = k 2 t / (  2 n 2 )  and the 
characteristic time of instability can now be estimated as 

t, = 2 ( n / k ) ’  = ~:~/ ‘ / (3 .3c ; )  

t , / t l  = 4 4  >> 1. 

(54)  

so that t, >> t R ,  and also t, >> I!, [ I ,  is the time of 
ionization given by (20 )  ] : 

( 5 5 )  
Therefore, the instability in the ( I ,  $) motion develops so 
slowly that the extended nature of the initial state cannot 
be seriously affected. This instability is not relevant for 
the ( N ,  0 )  motion. 

The condition that allows us to use the continuous time 
approximation in the (x, J )  dynamics is satisfied in the 
regular region for t R  >> 1 which is always the case, be- 
cause wo > 1 and eo, h < l .  In the chaotic region, t, is 
even larger than t R .  



CASATI er ol. :  HYDROGEN ATOM IN MONOCHROMATIC FIELD 1435 

Instead, in order to check our assumption of negligible 
dependence of H on N ,  we notice that, for arbitrary states, 
the main change of H [see (40)] is due to the change of 
Nl’w. Since w6N - I / n 2 ,  we have 6H - ( l / n ) 2  << 1 
for extended states. Notice, however, that numerical re- 
sults of ours in cases when I / n  is not very small indicate 
that the essential result of our analysis, i .e.,  the small 
effect of the ( I ,  $) dynamics on the ( N ,  0 )  one, also holds 
for more general states. 

Up to now, we discussed the ( I ,  $) dynamics near the 
separatrix H = 1 .  Let us now turn to the case H < 1. 
From ( 3 8 ) ,  we get the following approximate expressions 
for I ,  $: 

should not substantially modify the above described pic- 
ture of the excitation process. 

We conclude this section by briefly analyzing the effect 
of the static field E ,  that was hitherto assumed to be zero. 
Neglecting again the dependence of H and 1 on N ,  we can 
get again the map in the variables ( N ,  19; J ,  x )  in a par- 
ticularly transparent form. To this end, we use one more 
approximation; we substitute, in the ( x ,  J ) equations, the 
average value X of cos 0, which will always be legitimate 
near to the center of the resonance of the ( N ,  0 )  motion, 
e = ~ , e = ~ .  

Then from (39)  we obtain the map 
- 
J = J + kX aa/ax - aF/aX 
- l 2  = 2 L  sin2 x / (  1 . 0 9 ~ ’ / ~ )  = - kX a H / a 3  + aF/a-J 

tg* = 1 / [ ( 2  

L = J + N  

1 . 0 9 W 1 ’ 3 L ) I ’ 2  ‘Os X I  where F is the last term in (39) .  The ( x ,  J )  dynamics are, 
therefore, ruled by the Hamiltonian H I  = F - k h H  
which, for extended states and in ( I ,  $) variables, has the 
form 

from which we obtain 

H 2  = 2.18 wll’L. H I  = 3 m , n S [ [ l  - (l’ /n2 + $ * ) / 2 ]  

- k X [ 1  + ( f Z / n 2  - r1 /2 ) /2] .  ( 6 0 )  
If we use the value X = 1 (corresponding to the center of 
the main resonance in the ( N ,  6 )  motion), we see imme- 
diately from (60) that the ( 1 ,  $)  motion becomes stable 

Now, since N is considered to be constant, L is conju- 
gated to x and plays the role of an action for the Hamil- 
tonian H .  Of course, (56 )  is just the leading term of the 
expansion in the small parameter L .  The next higher order 
correction to (56) would be equal to - 2 (  1.09 w ~ / ~ L ) ~  
cos2 x. for 

According to (56 ) ,  the period of the ( I ,  $) motion in 
the time (T is 

tu = 2 7 r ( a ~ / a ~ ) - 1  = 2 7 r ~ / ( i . 0 9  w 1 / 3 ) .  

As before, in the case of regular ( N ,  0 )  motion, we get 
the period in the number of map iterations 

tR = t,/kX 2.2(Wi’3/toh)H. ( 5 7 )  

If H is not too small, tR >> 1 which again legitimates 
the use of the continuous time approximation. Instead, if 
the ( N ,  0 )  motion is chaotic-and this, for H < 1 ,  will 
happen for c0 > 1 /( 49  w ;I3 H )-proceeding as above, we 
get 

t, = 2 t t / k 2  = l O ( ~ : / ~ / c i ) H ~ .  ( 5 8 )  

Also this value is much larger than 1 if H is not too small. 
7, is even larger than the ionization time tl, which for H 
< 1 is given by tl = 2 N : / ( k 2 H 2 ) :  

t,./tl = 130 w i l3H4 .  ( 5 9 )  
In conclusion, for practically all values of H (except for 
very extended orbits in the direction perpendicular to the 
field, for which I << n ,  $ = w / 2 ,  H << 1)  the (1, $)  
motion is very slow and does not affect the excitation in 
energy. Therefore, the latter process can still be described 
with a good approximation by the one-dimensional theory 
discussed in previous sections. The case m # 0 (3-D 
atom) requires that the Hamiltonian (32)  be multiplied by 
a factor ( 1  - m 2 / 1 2 ) ’ / >  [27]. In (40), we must change 
H 2  into H2(  I - m 2 / I 2 ) .  Insofar as m < I ,  this factor 

E , ,  = 1~,ni1 > ( 2 / 3 ) ( 0 . 4 1 1 / ~ ~ / ~ ) ~ , ~  ( 6 1 )  

in agreement with [39] .  
If (61)  is satisfied, H oscillates in the interval A H  - 

$: - n20/n  around H = 1 with the frequency w, = 
2 [ ( ~ T E , , ) ~  - ( X k / n ) ] 1 / 2 .  Then, if the static field is large 
enough, w, is essentially determined by E , ,  alone; in that 
case, the influence of the microwave on the ( I ,  $)  motion 
can be neglected, the approximation cos 6 - const is no 
longer needed, and the (1, r1/) and ( N ,  6 )  motion are ap- 
proximately decoupled. However, H becomes a periodic 
function of the iteration number t :  

H = 1 + (2n ,o /n )  COS ( w , t  - 270); W ,  =  WE,,, 

( 6 2 )  
Then, above the chaotic threshold, we shall have a dif- 

fusive excitation in energy. The ( I ,  $) motion will still 
have an essentially regular character; the chaotic part, 
which will be present in it, will be relatively small if E,,, 

>> h k / (  37rn).  The time scale of the regular ( 1 ,  $) mo- 
tion, which is ws-’, is nevertheless smaller than the char- 
acteristic time of the diffusion in n ,  which is of the order 
of t ,  (20) .  

VII. TWO-DIMENSIONAL QUANTUM THEORY A N D  

NUMERICAL EXPERIMENTS 
Whereas the l-D Kepler map was easily quantized and 

thus opened the way to a straightforward analysis of the 
quantum l-D problem, the quantization of the 2-D Kepler 
map is a much more difficult problem. However, the qual- 
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itative picture of the classical 2-D motion that was ob- 
tained in the previous section allows for the understanding 
of the essential features of the quantum 2-D problem. 

Thanks to the appropriate decoupling of the two de- 
grees of freedom, the (N, 8 )  dynamics should be very 
similar in the 2-D and in the 1-D case, provided that the 
perturbation parameter k is replaced by kH in the 2-D case. 
We are thus led to predict exponential photonic localiza- 
tion with a localization length 

I, = 3.33 e 2 H 2 / ~ 1 0 / 3 .  (63) 

Since H i s  only approximately constant, we are faced with 
the important question of what the relevance of small 
changes in H would be on the (N, 8 )  quantum dynamics; 
in particular, we should ask whether these changes might 
lead to delocalization. In order to answer this question, 
we must remark that localization would persist unless the 
time scale t ,  becomes comparable to the time td = I ,  re- 
quired for the quantum suppression of chaotic diffusion. 
As a matter of fact, the effect of the ( I ,  $) motion on the 
( N ,  8 )  motion would be just a broadening of the lines in 
the discrete spectrum of the (N,  8 )  motion, up to a width 
- 1 / t , .  Then, in order for delocalization to occur, it 
would be at least necessary-but perhaps not yet suffi- 
cient-that this broadening is larger than the average 
spacing of levels in the discrete spectrum, i .e . ,  we should 
require that ?,-I > 1 ; ' .  However, this condition cannot 
be met below the 1-D delocalization border, as can be 
seen from the following estimate of the ratio ?,/I,: 

where eq is the I-D delocalization border (29). Equation 
(64) shows that, if eo < e q ,  the ratio t,lT' is much larger 
than 1. 

In other words, the slow ( I ,  $) motion acts as an adi- 
abatic perturbation on the (N,  8 )  motion, and cannot 
therefore produce additional transitions in the latter. The 
ultimate reason of this adiabaticity is the Coulomb degen- 
eracy. To summarize: the 2-D delocalization border co- 
incides with the l -D one when H = l ,  and is larger by a 
factor 1 /H for H < 1. 

It is interesting to remark that in principle quantum lo- 
calization may be expected for the ( 1 ,  $) motion, too. 
Indeed, far in the chaotic quasi-classical region ( K  >> 
1 ) one has Cos 8 = 0 and since (T = k C cos 8,, a locali- 
zation in U may occur similar to the localization in the 
number of photons N = -k C sin Bi [map (41)]. 

According to the above qualitative picture, a possible 
way to destroy localization is the introduction of a strong 
static field E > ,  which would eliminate the Coulomb degen- 
eracy. According to (41) and (62), the excitation would 
be approximately described by the map 

N = N - k( 1 + (2n2,/n,) cos ( w s t ) )  sin 8 
- 

(65)  
- -312  

8 = 8 - 2 ~ ~ ( - 2 ~ N )  . 

The quantization of a similar map was investigated in [6] 
for U, - 1. According to results obtained there, a nec- 
essary condition for delocalization is k2n20/no 2 1, which 
gives 

(66)  
eo > wi/ ' /(6non2) I /2 . 

Strictly speaking, due to the approximate character of 
(65), this delocalization should be understood as a sharp 
increase of the localization length, up to NI, taking place 
above the border (66). Instead, if w ,  - 67reo% is much 
smaller than 1, the critical field will be larger and further 
investigations are needed. As a preliminary comment, we 
notice that for delocalization it would be at least necessary 
that the time to - I, of 1-D localization be larger than the 
slow-frequency period 27r/w,. On the other hand, if the 
spreading of the shell is comparable with the shell sepa- 
ration (U ,  - l )  then the 2-D border would still be given 
by (66). Notice that the static field term can stabilize the 
precession of stable orbits (8  = 0)  [39], but the ( I ,  $) 
motion can still contribute in delocalizing the N-motion. 

We shall now describe the numerical results we ob- 
tained by computer simulations of the classical and quan- 
tum 2-D models. Our algorithm for quantum computa- 
tions made use of an expansion over a basis of unperturbed 
eigenstates. The (complex) amplitudes of the expansion 
of the state vector over a basis of unperturbed eigenstates 
labeled by the quantum numbers n ,  I obey the following 
set of ordinary differential equations: 

where E ( ? )  = E cos w r  and z;;;'' are dipole matrix ele- 
ments. Selection rules restrict the sum over I '  to I '  = I -t 
1. 

In our numerical scheme, the sum over n' was truncated 
to n = 128, and the integration was carried out by the 
method described in (3). Most computations were per- 
formed by initially exciting levels with principal quantum 
number no = 66 and with a prescribed value of the para- 
bolic quantum number n2 chosen in the range 0 I n2 I 
30; the field strength and frequency varied in the ranges 
1 I wo I 2.5 ,0 .03  I eo I 0.06. Since a spherical basis 
was used in the computation, a conversion from the spher- 
ical to the parabolic basis was required. For this conver- 
sion, we used the Clebsch coefficients given in [32]. In 
comparison to the 1-D case, 2-D computations are much 
more difficult, because the dimension of the basis is on 
the order of n2/2 - lo4. For this reason, we had to re- 
strict the integration time to a relatively small number of 
field periods 7 = 120. 

For each considered case, we computed the probability 
distribution over parabolic eigenstates F (  n ,  n 2 ) ,  and the 
distribution over the principal quantum number f( n )  = 
E,, F ( n ,  n 2 ) .  We also computed the excitation probability 
W1.5 on states with n > 1.5 no, and we analyzed the de- 
pendence on time of the first two moments ( ( n  - 

- n20 ) . In order to suppress fluctuations, we averaged in 
(m2L ( n  - n o ) ,  p2 = ( ( n 2  - ( n d Y ) ,  p1 = ( n ?  
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time the distribution f (  n ) ,  typically over ten microwave 
periods. 

In our numerical simulations of the classical model, the 
initial conditions corresponding to the quantum case were 
given by an ensemble of 900 trajectories with fixed no, nzo 
values and homogeneously distributed phases in the in- 
terval (0,  2 ~ ) .  A numerical integration procedure which 
was able to avoid the singularity arising near the nucleus 
was devised in analogy with the 1-D case [3], [23], [30]. 

The essential result of our quantum computations is that 
in all cases we observed localization in satisfactory agree- 
ment with the 1-D estimate (24). In Fig. 8 we show, for 
a typical case, the comparison of classical and quantum 
second moments of the distributionf( n ) .  Here the param- 
eter values are wo = 2.5, eo = 0.04, and n20 = 15 which 
lie above the classical chaos border (18). The localization 
of the quantum motion is clearly apparent; instead, the 
classical diffusion approximately agrees with the theoret- 
ical estimate, represented by the straight line. 

Since in this case the stochasticity parameter is not very 
large ( K  = e c r / e o  = 2.66) ,  formula (19) for the diffusion 
rate must be corrected by an appropriate factor. Accord- 
ing to [ lo]  and [19], this fact is [0 .6  ( K  - 0.97)3/K2] 
= 0.41; the diffusion coefficient is then D = (k2/2)  (0.41 
wo) = 1.12. (The factor wo was introduced, because (19) 
yields the diffusion in the number of photons per iteration 
and we now need instead the diffusion rate in the number 
of levels per microwave period.) 

In Fig. 9, we compare the excitation probability Wl 
in the classical and quantum case for the same parameter 
values as in Fig. 8 .  We see that the quantum probability 
is three orders of magnitude less than the classical. This 
is due to the localization phenomenon displayed in Fig. 
10. Here we plot the distribution over unperturbed levels 
as a function of the photon number Nd = ( 1 / 2 n i  - 
1 /2n2) /w.  In the quantum case, the distribution appears 
to be exponentially localized, and the localization length 
agrees with the 1-D estimate (24). Instead the classical 
distribution over unperturbed levels diffuses according to 
the Fokker-Planck equation whose analytical solution is 
represented by the thin curve (see [3]). 

In contrast to the localization in energy, we observed 
the theoretically predicted delocalization in n2 thanks to 
which all levels inside the energy shell are excited. The 
moments of the quantum distribution in n2 are close to 
their classical values. The time dependence of the quan- 
tum and classical second moment of the distribution is 
shown in Fig. 11. For this case, the chaotic time scale in 
number of microwave periods is 7,. = w o t c  - lo4, i.e.,  it 
is much larger than the time of numerical computation. 
Therefore, in spite of the chaotic ( N ,  0 )  motion, the main 
contribution in the second moment p2 appears to be due 
to the regular component in the ( N ,  0 )  motion whose ex- 
istence is not surprising since the stochasticity parameter 
K = 2.66 is not very large. 

In order to check the theoretical prediction (50),  we plot 
in Fig. 11 the ratio p 2 / (  pl  nzo)  which, according to (51), 
should be roughly equal to one since in this case 2a /n  

Fig. 8. Dependence of the classical (dashed curve) and quantum (full 
curve) second moments of the distributionf( n )  on the number of micro- 
wave periods 7 .  Parameter values are n,, = 66. w,, = 2.5.  = 0.04. 
and nZo = 15. The straight, dotted line gives the theoretical estimate for 
the classical diffusion rate (see the text). 

7 
0 ...-_______... > 

l , , , , , , , . , I ~  , , I , ’ . ’  
0 50 100 T 

Fig. 9. Classical (dashed curve) and quantum (full curve) excitation prob- 
ability W ,  above the level n = 1 . S  n,, as a function of the number r of 
microwave periods for the same parameter values of Fig. 8. In the figure. 
the quantum probability is multiplied by a factor 100. 

h 

-10 0 10 
U 

Fig. 10. Classical (dashed curve) and quantum (full curve) distribution 
functions, averaged in the time interval I I O  < 7 5 120. versus the 
number of absorbed photons N = ( 1/2n~, - 1 / 2 n ’ ) / w  for the same 
parameter values of Fig. 9. The stralght, dotted line is the one-dimen- 
sional, quantum, theoretical exponential distribution; the dotted-dashed 
curve is the analytical solution of the Fokker-Planck equation. 

<< 1. Numerical results satisfactorily confirm this theo- 
retical prediction and allow us to extract the value of the 
characteristic regular time scale. Indeed, from (50) we 
have p2 = 2nio ( T/T,)* and from Fig. 1 1  we obtain 7, = 
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Fig. 11. Time dependence of second moments p2 of n2 for the classical 
(dashed line) and quantum (full curve) distributions for the same param- 
eter values of Fig. IO .  Here we also show the ratio of nz /nzo  to the first 
moment p ,  of n2 in the classical case (open circles) and in the quantum 
ca5e (full circles). It is seen that this ratio is close to one (right-hand 
scale) in agreement with the theoretical expression ( 5  1). 

10-17 A 

750. Then we can also find the corresponding value of the 
factor X = Cos I9 which according to (53) is given by X = 
n w o / ( k 7 , )  = 0.14. 

The relatively small value of X may be related to the 
fact that the value wo = 2.5 lies just between two main 
resonances, so that the stable region is relatively small for 
the chosen initial conditions. It follows that the regular 
time scale t, = 300 is much larger than the localization 
time t D  = 1, = 1 and even larger than the ionization time 
t ,  = 160. 

The distribution function F ( n ,  n 2 )  is shown in Fig. 12. 
In Fig. 13 we show the level curves F (  n ,  n,) = const for 
the quantum distribution F (  n ,  no ) ,  for four different cases 
with the same eo = 0.04, wo = 2.5, no = 66, and different 
values of n2. It is interesting to observe that the stronger 
excitation in energy occurs for extended states. The rea- 
son is that for such states the value of the integral H is = 
1 [see (40) and (41)]; instead, for states with n2 - n ,  the 
value of H becomes smaller than one and this decreases 
the localization length [see (63)]. 

All the obtained results show a localization phenome- 
non close to the 1-D case, and it is not affected by the 
strong excitation taking place inside the energy shell. The 
reasons of this behavior are the existence of the approxi- 
mate integral of motion H and the long time scale asso- 
ciated with the ( 1 ,  $)  motion. 

As previously noted, the reason why 1-D localization 
persists in the 2-D case is the Coulomb degeneracy. 
Therefore, in order to get 2-D delocalization one needs to 
destroy this degeneracy. One way is the introduction of a 
static field as described above. Another way would be to 
consider the ionization of Rydberg alkali atoms where the 
quantum defects eliminate the degeneracy of unperturbed 
levels. However, since for I 2 3, quantum defects are 
very small, even for such atoms 1-D localization should 
be expected in practice. We performed several numerical 
simulations of situations in which a quantum defect was 
introduced. We still observed localization in number of 
photons close to the 1-D value (24). At the same time, all 
levels within one shell were strongly excited. We excited 

Fig. 12. A n  example of a full quantum probability distribution F ( n .  n ) 
for the same case of Fig. 10. 

different initial conditions with a given value of I or with 
given parabolic quantum numbers. In both cases, practi- 
cally all the shell was excited; however, the excitation 
probability in energy W ,  ,5  and the moment of distributions 
over n were the same as without quantum defects. 

VIII. LOCALIZATION I N  ELLIPTICALLY POLARIZED 
FIELDS 

In the foregoing sections, we discussed the localization 
phenomenon for H atoms in a linearly polarized mono- 
chromatic field. We will presently show that the same 
phenomenon occurs in the case of elliptically polarized 
fields, too. 

Let the field vector, in ( x y z )  coordinates, be 

z = ( E  cos 01 cos ut ,  E sin 01 sin ut ,  0 )  

where cy is the polarization angle. It is convenient to use 
Euler angles cp, $, 8 related to the usual Euler angles p‘,  
$’, 8‘ introduced, e .g . ,  in [42] by cp = cp‘ + 7r/2, I9 = 
e ’ ,  $ = $’ - 7r/2. Then, taking into account that cos 0 
= m / l ,  we get the following Hamiltonian 

H = -1 /2n2  + enZ{ cos CY COS wt[(cos cp COS $ 

- ( m / l )  sin cp sin $) x’ + 
- (cos cp sin + + ( r n / / )  sin cp sin $) y r ]  + 
+ sin 01 sin wt[(sin p cos li/ + ( m / l )  

. cos cp sin $) x r  + 
- (sin p sin II/ - ( r n / ~ >  cos cp cos $1 y r ] }  

m 
where 

x r  = (3 /2 )  e - 2 c x, cos S O  
\ = I  

m 

y’ = -2 c y ,  sin s 0  
A =  I 
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Fig. 13. Level curves for the full quantum distributions F(n, n , )  (aver- 
aged over ten microwave periods) for parameter values eo = 0.04, wo = 
2 . 5 ,  no = 66 (a) n, = 0; (b) n, = 13; (c) n, = 15 which corresponds to 
Fig. 12; (d) nz = 30 l o - '  5 F(n, n , )  < 1 + lo-' 5 F ( n ,  n l )  < I O - '  

1 0 - ~  5 F ( ~ ,  n l )  < 
F ( ~ ,  n l )  < 1 0 - ~  +.  

x 

x ,  and yF are given in (32a); n ,  1, m are actions and 6' rl, 4 
their conjugate phases. 

By the same procedure of Section VI, we obtain the 
generating function of the map over one orbital period: 

5 F ( ~ ,  n , )  < io- '  0 io- '  5 

+ sin 01 1.09 w 2 / ' Z )  - 

- sin cp sin $(cos a (  1 - wN1 ' )  
. E / l  + sin 01 1.09 w"'l)] - 

sin 4 [cos cp sin $(cos 01 1.09 

+ sin cp cos $(cos a 1.09 
wl/3i  + sin a (  1 - wN1 ' )  ~ / 1 )  + 

Z 
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N ,  4, and k have here the same meaning as in Section VI. 
Again following the method of Section VI, we introduce 
a new phase 8 conjugated to N ,  and we finally get the map 

= N - k H s i n 0  
- 

(69) 
- - 3 / 2  0 = 8 - 27r( - 2 u N )  

where 

H 2  = [COS p COS $(COS a (  1 + 12 /2n2)  

+ sin a 1.09 u113m) - 

- sin p sin $(cos a (  1 + z2/2n2) 

. m / l  + sin a 1.09 ui /3 / ) ]2  + 
+ [cos p sin +(cos 01 1.09 ~ ” ~ 1  

+ sin a (  1 + 12/2n2)  m / l )  + 
+ sin p cos $(cos 01 1.09 u 1 l 3 m  

+ sin a ( 1  + 12/2n2))12. (70)  
Equation (69) was obtained from the much more compli- 
cated map described by the generating function (68), un- 
der the assumption of negligible dependence of H on N .  
In this approximation, the ( N ,  8)  motion is decoupled; 
instead, the ( I ,  +; m, p )  motion in the new time U = k S 
cos 8 dt is described by the Hamiltonian H. These dynam- 
ics, in principle, can be chaotic. (Notice that the 1-D case 
corresponds to p = 0, a = 0, m = 1.) If initially the 
plane of the motion coincides with the plane of the field 
( m  = 1, cp = 0) ,  then the microwave will not change this 
situation. Moreover, if the field is circularly polarized ( a  
= a / 4 ) ,  then H (70) simplifies to 

H 2  = (1 /&) [ (1  + 12/2n2) + 1.09 (71)  

Since (71) is independent of phase, the orbital momentum 
is an approximate integral of the motion. 

Therefore, we can conclude that the localization picture 
that was discussed for the 1-D model in Section I11 still 
applies, even in the general case of elliptically polarized 
fields, with the localization length in number of photons 
given by (63). 

It is interesting to remark that the classical model for 
the hydrogen atom in a circularly polarized field is for- 
mally very similar to a model for the motion of a comet 
in the solar system in which only the influence of the Sun 
and Jupiter is considered. Indeed, a map of the type (69) 
for the comet motion, in the case that the comet perihelion 
lies outside Jupiter’s orbit, was obtained in (43). The Hal- 
ley comet itself is described by a map very similar to (69), 
as discussed in [44] (in that case, however, sin 8 is re- 
placed by a sawtooth function). 

IX . CLASXCAL PICTURE OF ABOVE-THRESHOLD 
IONIZATION 

The distribution in energy of ionized electrons is now 
attracting much attention [45]. As we discussed in Section 
IV, our map description allows for some predictions about 
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this distribution. On the other hand, since the Kepler map 
was derived under the assumption of not too intense a 
field, that picture of the distribution of electrons cannot 
be expected to be valid for strong fields. We shall pres- 
ently analyze the conditions of applicability of the map 
and we will obtain a description of the distribution of ion- 
ized electrons in the complementary regime of a very 
strong field. It will appear that in this regime the distri- 
bution is sharply-peaked around some energy value which 
lies significantly above the ionization border. 

In the one-dimensional case, the map description, which 
reduces the effect of the field to “kicks” near the peri- 
helion, can only be valid when the individual kicks are 
large in comparison to the energy of the motion in the free 
field. A single kick corresponds to the energy k w  = 2.58 

[see (13)J. Therefore, since the energy of the free- 
field induced oscillations is -0.5 ( E / W ) ~ ,  the quantita- 
tive condition for the validity of the map is 

0.5 ( E / w ) ~  << 2.58 ~ u - ~ l ~ ,  i.e., E << eAT1 = 5u413. 

(72 )  

In the opposite case, when t >> a different picture 
is valid, that can be obtained by estimating the distance r 
from the nucleus at which the Coulomb interaction sig- 
nificantly influences the free-field motion: 1 / r  - ( E  / U ) * .  
Then the Coulomb interaction will be effective during a 
time t - r / u ,  where the velocity u is - ( E / @ ) ,  so that 
t - ( w / E ) ~ .  Therefore the change in field phase during 
the interaction is ut - ( u 4 / c 3 )  << 1. Then the inter- 
action with the nucleus looks like a collision with an elas- 
tic wall. This suggests that the ionization process can be 
studied on a model in which the electron interacts with 
the free field in the presence of an elastic wall. If the am- 
plitude x - ( € / a 2 )  of the oscillations in free field is much 
larger than the size of the unperturbed orbit, i .e.,  if 
( E / w ’ )  > n i ,  then the appropriate initial conditions for 
the wall model will be given by a point very close to the 
wall with a very small initial velocity. The average ve- 
locity of an electron escaping to infinity will be deter- 
mined by the initial phase of the field, which is supposed 
to be switched on suddenly. Moreover, we shall assume 
that the field is adiabatically switched off at infinity, be- 
cause this corresponds to the physical situation in which 
the electron slowly escapes from the interaction region. 
Then the energy distribution of ionized electrons will cor- 
respond to the energy distribution of escaping electrons 
that is obtained by varying the initial phases of the field E 

cos ( u t  + p).  
We obtained the dependence of the energy on the initial 

field phase by numerical simulation of the above de- 
scribed wall model (Fig. 14). This figure can be used to 
determine the distribution of final energies in an ensemble 
of homogeneously distributed initial phases, which cor- 
responds to the physical situation. The approximately 50 
percent initial phases that in Fig. 14 lead to the same final 
energy 0.5 ( E / w ) ~  corresponds to a &function in the dis- 
tribution, centered on that energy. In the region 0 < c~ 
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Fig. 14. Dependence of the ionization energy E on the field phase (o for 
the wall model. 

< 7r/2, the particles undergo a large number of colli- 
sions, increasing to infinity as p + 0. For 7r/2 < cp < 
T ,  there are no collisions at all. For P < cp < 3 ~ / 2 ,  the 
number of collisions ranges from 1 to 00 each number of 
collisions corresponding to a local maximum in the curve. 
From 3 ~ / 2  < p < 27r, the number of collisions is in- 
versely proportional to the initial velocity, which we as- 
sume to be very small. To check the predictions of this 
simple wall model, we carried out numerical experiments 
on the exact 1-D model. For each fixed phase of the field, 
we integrated a number -500 of trajectories with the 
same initial energy and homogeneously distributed field 
and orbit phases. Fig. 15 shows how the distribution 
changes as the field strength is increased. 

In Fig. 15(a), E << eATI  and we have a smooth distri- 
bution over a range determined by the strength of one 
kick. Fig. 15(c) corresponds to E >> t A T I  and the distri- 
bution is sharply peaked around the energy E = 0.5 
( E / w ) ~ ,  as in the wall model. The intermediate region is 
illustrated in Fig. 15(b), with E = t A T I .  The transition 
between the two opposite regimes is not a very sharp one; 
therefore we determined the interval of values of E in 
which it took place and compared its dependence on w to 
check the theoretical estimate (72). The result is shown 
in Fig. 16 which demonstrates a satisfactory agreement. 

In the quantum case, this classical picture of ionization 
will be valid when k >> 1 (if t << or, if t >> 
tATI,  when 0.5 ( E / w ) ~  >> w (one quantum). Indeed, in 
the latter case the quantum distribution would display sev- 
eral peaks spaced by one quantum, but the distance be- 
tween such peaks will be much less than the typical en- 
ergy 0.5 ( E / w ) '  of ionized electrons; therefore a sharp 
peak will still be observed at an energy significantly higher 
than one quantum. 

X.  COMPARISON WITH LABORATORY EXPERIMENTS 
The present-day experimental technique allows for 

preparation of atoms in states with principal quantum 
number n - 100. One procedure (Bayfield and Koch [24], 
[40], [46]-[49]) is to inject a 1 KeV proton beam through 
a noble gas; in this way, due to charge exchange, a beam 
of atoms with n - 10 is produced. Then high levels n - 

,n 
f 1 2 
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I 
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n I 
3 
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(C)  

Fig. 15. Distribution in energy of ionized electrons, for an ensemble o f  
500 classical orbits with homogeneously distributed field-and orbit phase- 
and scaled frequency wo = 2. (a) to = 1 << tOAri = 13; (b) to = 20. (c) 
eo = 80. Arrows show the amplitude of one kick. 

2 -  

L 

1 

log 00 

Fig. 16. Field intensity intervals (vertical bars) in which the transition from 
the Kepler-map regime to the wall-model regime was observed in nu-  
merical simulations of the exact, classical model of the hydrogen atom. 
The straight line is the theoretical estimate (72). 
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100 can be excited by means of a CO2 laser. The beam 
then passes through a microwave cavity. Static field ion- 
ization is finally used to analzye the quantum numbers in 
the beam emerging from the interaction region; the direc- 
tion of the static field is the same as that of the microwave 
field. Another procedure exploits two- or three-step laser 
excitation of alkali atoms in a thermal beam [50]. 

To the best of our knowledge, until now laboratory ex- 
periments (Bay field, Koch) have been camed out inside 
or close to the classical chaotic region. An essential fea- 
ture of these experiments was the relatively low frequency 
w/27r = 9.9 GHz (or even less); this means that for the 
practical totality of excited levels, the frequency wo is less 
than one, and indeed in most cases wo - 0.5. For such 
frequencies either one falls in the classically stable region 
( t o  < f c )  or, if the classical chaotic border is exceeded, 
the quantum motion is delocalized according to the anal- 
ysis given here (see also Fig. 17). Therefore, in both 
cases the quantum behavior is expected to agree with clas- 
sical predictions. For example, in a typical experimental 
condition, where wo = 0.5, to = 0.04, no = 66, the lo- 
calization length (24) is I, = 230 >> N ,  = 66. 

In Fig. 17 we plot recent experimental data [47], [48] 
for the field eo at which 10 percent ionization is obtained 
during the interaction time (7 = 300 field periods), with 
a fixed frequency w / 2 ~  = 9.9 GHz. The change in wo 
was obtained by varying no. These values of eo can be 
identified with the ionization border because, for wo < 1, 
the interaction time is long enough. In the same Fig. 17 
we compare the experimental results with two theoretical 
borders: the classical chaotic border E ,  and the quantum 
delocalization border tq. The value E, .  is given by formula 
(18a) which can be assumed to hold down to wo = 0.5. 
For smaller values of wo, we smoothly extrapolated to the 
critical value for ionization in a static field (dotted line). 
The quantum delocalization border for fixed w is given by 

c y  = (U'/'//) wo = 0.0417 U,,. (73) 
The actual ionization border for a given wo is determined 
by the highest of these two values. Fig. 14 indicates a 
satisfactory agreement of the existing data with the the- 
ory; unfortunately, there is no available data above wo = 
1 ,  where some deviation from the classical behavior be- 
gins to show up. Our prediction is that, by further increas- 
ing the initially excited level no, the localization phenom- 
enon should become more and more evident and the 
experimental data should deviate from classical predic- 
tions. However, actual experimental data should not be 
expected to faithfully reproduce the theoretical border (73) 
which gives the condition for strong ionization. Indeed, 
whereas (73) defines the threshold for strong excitation 
into the continuum, in actual experiments ionization is 
identified with excitation beyond some level E so that the 
experimental threshold may turn out to be even appreci- 
ably lower than (73), depending on the actual value of E. 
Nevertheless, we predict that they should be significantly 
higher than the classical threshold. Of course, our theory 
allows for estimates of experimental thresholds, once the 
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Fig. 17. The classical chaotic border equation 18(a) (full curve) as a func- 
tion of a rescaled frequency wo. Since ( I  8a) can be assumed to hold only 
down to wo = 0.5, the dotted line is an extrapolation to the critical ion- 
ization value in the static field. The points are experimental results and 
give the threshold field values for 10 percent ionization probability which 
is the total probability above a given unperturbed level n = n. The dashed 
curve gives the theoretical field value computed according to our quan- 
tum theory for 10 percent probability above level G = 180. 

actual values of E and of the percent excitation beyond F 
which defines the empirical threshold are known. We 
should also remark that the experiments of Fig. 17 used 
a microcanonical distribution inside the initially excited 
shell; nevertheless, we have shown in this paper that the 
1 -D approximation describes the excitation process suffi- 
ciently well. A numerical check of the quantum threshold 
for a wide range of frequencies wo is given in [51]. 

We also wish to mention that a discrepancy between 
quantum and classical predictions can be already ob- 
served for not very large values of wo. As an example we 
plotted in Fig. 18 the dependence of the excitation prob- 
ability on the number of microwave periods for wo = 1 
and no = 63, no = 66 at c0 = 0.03 in the 1-D case. Ac- 
cording to Fig. 18(a), for no = 63 the quantum excitation 
probability is higher than for no = 66 but is still smaller 
than in the classical case. For no = 66 the excitation is 
much smaller in the quantum than in the classical case. 

The quantum excitation for no = 63 was also computed 
by Bardsley [52] who obtained a slightly higher value. In 
that paper the critical field for 10 percent ionization was 
shown to be approximately the same in the classical and 
in the quantum case. There is no contradiction here with 
our Fig. 18; indeed, the ionization probability, close to 
the chaos border, is a steep function of field strength, so 
that a small change in the later may yield large discrep- 
ancies between classical and quantum probabilities [see 
Fig. 18(a)]. Fig. 18(b) shows that also in the 2-D case the 
quantum excitation is smaller than the classical. More- 
over, the l -D and 2-D excitation probabilities are close to 
each other, both in the quantum and in the classical case. 
We remark that, even though initially n2 = 0, after 7 = 
40 almost the whole shell no = 66 was excited ( p 2  = 
100) so that we are facing a truly 2-D case. As a matter 
of fact, we had here a short regular time scale t ,  = 13, 
and this led to fast mixing inside the shell. However, this 
mixing took place essentially in the regular component of 
motion (tch - 300 >> t , ) ;  therefore, the 2-D and 1-D 
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Fig. 18. Excitation probability Wl,5 as a function of the number of micro- 
wave periods 7 .  (a) One-dimensional case with eo = 0.03, wo = 1. The 
dashed curves give the quantum results for no = 63 and no = 66 ( Wl,5 
is averaged here over five microwave periods). The solid line represents 
the classical case. (b) Comparison between I-D and 2-D classical and 
quantum computations for eo = 0.03, wo = 1, no = 66. In the 2-D com- 
putations, n2 was set initially equal to zero. (0) Classical case I-D; full 
line: classical case 2-D; dashed line: quantum case, I-D; (0) quantum 
case, 2-D. 

probabilities were close, because the regular component 
does not contribute to excitation. 

XI. CONCLUSIONS 
In this paper we have attempted a general formulation 

of the theoretical reasons why we hold the quantum lo- 
calization phenomenon to play a central role in the micro- 
wave excitation of Rydberg atoms. 

Thanks to the “Kepler map” formulation of the dy- 
namics of highly excited H-atom in a microwave field, we 
have been able to give a simple description of this phe- 
nomenon for the simplified one-dimensional model, and 
then to demonstrate that the picture of the excitation pro- 
cess obtained in this way is essentially unaltered on going 
over to a more realistic 2-D model. The assumption that 
the main contribution to ionization is given by extended 
states thus receives theoretical grounds, but the relevance 
of our results goes beyond that. Showing that the heavy 
impact of localization on the excitation process originally 
predicted on the 1-D model is not just an artifact of the 
1 -D dynamics greatly substantiates the expectation that 
this phenomenon may be detected in laboratory experi- 
ments. 

A number of questions that are still open that should be 
analyzed in order that the physical relevance of localiza- 

tion may be exactly appreciated. For example, the sensi- 
tivity of localization to certain modifications of our basic 
model, such as, e.g., the introduction of noise, should be 
investigated. Our research work is currently developing 
in this direction. 
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