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CLASSICAL CHAOS, QUANTUM LOCALIZATION AND 
FLUCTUATIONS: A UNIFIED VIEW 
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The localization phenomenon plays an essential role in the excitation of hydrogen atoms in 
microwave fields. The similarity of this phenomenon to Anderson localization, which has 
been established and discussed in previous papers, is here demonstrated in a transparent way 
by reducing the quantum dynamics to a one-dimensional pseudo-Anderson model. The effect 
of slight changes in the driving frequency on the ionization probability is numerically 
investigated on the quantum Kepler map; huge fluctuations are found, which persist down to 
a very fine frequency scale and have a qualitatively random nature. It is argued that such 
fluctuations are a counterpart of the mesoscopic fluctuations of solid-state physics, and that 
similar fluctuations should be expected any time, when some classical chaotic diffusive process 
is quantum-mechanically suppressed by dynamical localization. 

1. After some ten years of investigations on the quantum dynamics of classical- 
ly chaotic systems, the basic question whether in quantum mechanics anything 
survives of the impressive manifestations of classical chaos has not yet been 
answered clearly. If a general indication is to be drawn from the analytical, 
numerical and experimental results obtained up to now, it is that classical chaos 
is suppressed or at least strongly inhibited by quantization; as a consequence, 
“quantum chaos” - a widespread denomination for this research area - is still 
considered a questionable concept. In any case, the state of affairs is quite far 
from being satisfactory; should the above indication be confirmed, then this 
would imply that chaos is absent in our microscopic world and the different 
fluctuation phenomena observed in quantum systems would have no relation 
with deterministic chaotic motion. 

As a matter of fact, theoretical analysis and numerical simulations have 
confirmed an important feature of quantum motion which was discovered many 
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years ago [l]; namely, quantum interference sets severe restrictions on the 
diffusive excitation which would be started in a classical system upon entering 
the chaotic regime. This phenomenon is similar to the Anderson localization in 
solid-state physics [2,3] and is, therefore, called ‘dynamical localization’. 

Besides that, strong empirical evidence has been obtained that the quantum 
evolution is very stable, in sharp contrast to the extreme sensitivity to initial 
conditions which is the very essence of classical chaos [4,5]. This fact demon- 
strates that, at least insofar as the measurement process is not taken into 
account, quantum dynamics is much more predictable than classical dynamics. 

The above picture has been confirmed by the analysis of the microwave 
ionization of highly excited hydrogen atoms. A theoretical analysis based on 
the concept of dynamical localization and on extensive numerical simulations 
has provided a fairly good understanding of that problem; more than that, it 
has yielded some predictions about the effect of dynamical localization in this 
particular system. Unexpected though these predictions may have been at their 
first appearance [6-lo], they were confirmed by recent experimental results on 
the microwave ionization of hydrogen atoms [ll, 121. In ref. [12], a comparison 
was made between experimental results, numerical results obtained from the 
solution of the Schrodinger equation and theoretical predictions from the 
dynamical localization theory. It was found that experimental and numerical 
data agree fairly well with the localization theory and at the same time 
appreciably deviate from classical predictions. The experiments described in 
ref. [12] were precisely designed for the purpose of checking localization 
theory; as a matter of fact, special care was taken so that numerical computa- 
tions could simulate as closely as possible the experimental conditions. There- 
fore, they provide experimental evidence of the quantum suppression of the 
classically chaotic diffusion due to the localization phenomenon. 

In fig. 1 a comparison of the theory with the experimental data obtained by 
Galvez et al. [ll] is presented. The circles represent the experimentally 
observed threshold values of the peak-field intensity for 10% ionization. Here, 
the microwave frequency w/27r = 36.02 GHz, l 0 = eni is the resealed peak-field 
intensity, w0 = CC& is the resealed microwave frequency and IZ~ is the principal 
quantum number of the initially excited state. The dotted curve is the 
classical-chaos border while the dashed line in fig. la is the theoretical 
prediction of localization theory for the 10% threshold value which was derived 
as shown in the appendix. Both in the experiment and in the quantum 
numerical computations, the ionization probability is defined as the total 
probability above a cutoff level n,. Unlike the previous case of ref. [ll], 
numerical data here (full circles) were obtained from the numerical simulations 
of the “quantum Kepler map”. In such simulations the interaction time, 
including the switching on and off of the microwave field, was chosen as in 
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Fig. la, b. Scaled 10% threshold fields from experimental results (taken from fig. 2a from ref. 
[12]), (circles), and from numerical integration of the quantum Kepler map (full circles). Curves 
have been drawn to guide the eye. The dashed line is the quantum theoretical prediction according 
to localization theory (see appendix). The dotted curve is the classical-chaos border. 

actual experiments. Each numerical point in figs. 1 was obtained by averaging 
over 11 values of the frequency in an interval Av = 10m3 around the given value 
of o,,. Indeed, due to strong fluctuations (see below) such an averaging is 
necessary in order to simulate more closely the experimental conditions. 

The agreement between experimental and numerical data is the more 
remarkable, in that the quantum Kepler map is but a crude approximation for 
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the actual quantum dynamics. In particular, from fig. 1, it is seen that when the 
principal quantum number n, of the initial state is increased, the data follow 
the predictions of localization theory. 

Though the numerical model was one-dimensional, in actual experiments the 
initially excited state corresponds to a microcanonical distribution over the 
shell with a given principal quantum number. The classical counterpart for this 
would be a microcanonical ensemble of orbits. Nevertheless, the experimental 
data fairly well agree with the predictions of the one-dimensional quantum 
Kepler map. The reason of this agreement was found in ref. [lo]: due to the 
existence of an approximate integral of the motion, the main contribution to 
excitation turns out to be given by orbits which are extended along the 
direction of the (linearly polarized) external field. For such orbits, the use of 
the one-dimensional model is fully justified (see, e.g., fig. 18b in ref. [lo]). 

2. We recall that the quantum Kepler map, which was introduced in refs. 
[9, lo] as a convenient approximation of the actual quantum dynamics of the 
H-atom in a microwave field, is closely related to the quantum-kicked rotor, 
i.e., to the very model where dynamical localization has been first identified 
and unambiguously related to Anderson localization; therefore, the quantum 
Kepler map is just the theoretical link between Anderson localization and the 
suppression of chaotic diffusion which takes place in the H-atom. 

Nevertheless, the agreement with localization theory holds only “in the 
average”. Indeed, it is seen from fig. la that both the numerical and the 
experimental data exhibit more or less sensible deviations from the average 
prediction. The same was found in ref. [12]. This is hardly surprising, because 
the dynamical localization theory was just meant to yield a gross description of 
the quantum dynamics; actually, as it was pointed out in ref. [lo], one would 
expect even stronger fluctuations than were actually observed. Indeed, accord- 
ing to theory, the quantum distribution is strongly fluctuating around its 
average exponential shape, and “. . . these fluctuations will affect also the 
ionization rate which will have a very irregular fine structure” (ref. [lo], p. 
1429). Similar predictions were also put forth in ref. 19. 

The discussion of these fluctuations is the main object of the present paper. 
We shall demonstrate on numerical data (from the Kepler map) that they are 
actually much more erratic than one could guess by just inspecting fig. 1. As a 
matter of fact, they persist on much finer scales. Because of them, the 
ionization probability (at fixed time and field intensity) depends in such a 
complicated way on the microwave frequency, that it could be even called a 
chaotic function of the latter; of course, the word “chaotic’ is not a technical 
term for the time being. We shall show that localization theory provides a 
natural and very general setting for understanding these fluctuations. Indeed, 
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they represent a peculiar kind of sensitive dependence on parameters that 
should be expected to appear any time, when some classical chaotic diffusion is 
suppressed by quantum localization. 

In the following we will briefly recall the connection between the localization 
in the hydrogen atom problem and the localization phenomenon for one- 
dimensional disordered lattices. This will lead to assimilate the fluctuations in 
the hydrogen atom problem to the mesoscopic fluctuations which are attracting 
much attention in solid state physics. 

In the Kepler map formulation, the excitation of a one-dimensional hydro- 
gen atom in a microwave field is described by a quantum map which acts on 
suitable wave functions. In an appropriate representation, these wavefunctions 
are defined on a one-dimensional lattice, where the nth site corresponds to the 
absorption of n photons by the atom. The problem of finding eigenvectors and 
eigenvalues of the Kepler map can be reduced, as shown in ref. [18], to the 
solution of 

where & is the wavefunction at site n, v is an eigenvalue of 
function H,, is defined as 

H,(1) = 27r[-2w(l- nr)]_“’ 

the map, and the 

with n, the number of photons required to go to the continuum from the initial 
hydrogenic state. Finally, W,, er are Fourier coefficients of co_s( ik cos 0) and 
of sin(k cos 0), respectively; therefore, W, - J,(k/2) and W, - J,(k). This 
implies that in eq. (1) a number of sites -k are coupled. On the other hand, 
H,(I) is not defined for I> 11,. This means that the approximation leading to 
(1) is only justified when k + nI. 

Eq. (1) has a definite resemblance to the equation for eigenfunctions of a 
particle in a one-dimensional disordered lattice. The disorder is here associated 
with the pseudo-random nature of the “potential” tan(( v - H,,(I)) /2). Since, as 
remarked above, only sites l< nI can be considered, eq. (1) establishes a 
definite connection between the problem of ionization of hydrogen atoms in 
microwave fields and the problem of localization in one-dimensional finite 

samples. 
An important remark is that a change of the microwave frequency w will 

modify the pseudo-random potential in (1) so that different values of o for ooze 
given atom correspond to difierent samples in the solid-state model. In other 
words, even a slight change in o will produce a completely different realization 
of the pseudo-random potential. 
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3. The above formalism demonstrates that the problem of microwave excita- 
tion of H-atoms is essentially a localization problem (at least, in the case where 
the frequency is larger than the level spacing). The essential feature of this 
problem is that the localization problem is actually a problem for a finite 
lattice, because just a limited number of photons can be absorbed before going 
into the continuum. We have, therefore, two characteristic lengths (in number 
of photons); one is just the maximum number of photons, and the other the 
photonic localization length. The theory we have developed [9, lo] rests on the 
basic assumption that the excitation process and the ionization probability are 
essentially determined by the ratio of these two characteristic lengths. When 
this ratio is large, the localization effect will preclude ionization even when the 
classical dynamics is totally chaotic; in the opposite case, one should expect 
strong ionization. 

When compared to the theory of Anderson localization, this assumption is 
just the basic ansatz of the scaling theory for localization in finite samples [17]. 
That theory aims at providing a description of how the conductance of a finite 
sample depends on the size of the sample at very low temperature, and it was 
found to give a satisfactory average picture. Nevertheless, the actual behaviour 
of a given sample was found to exhibit wild fluctuations around the average 
scaling behaviour. For example, the dependence of the conductance of a given 
sample on the number of electrons in the sample (which determines the Fermi 
energy) is so wild that it has been described as “reproducible chaos” [14]. 
These fluctuations are qualitatively understood as the result of quantum 
resonances which take place when the Fermi energy happens to coincide with 
the energy of some eigenstates of the sample, which behaves like a macro- 
scopic quantum object, with well-defined eigenstates, as soon as the tempera- 
ture is low enough. The point is, of course, that while these eigenstates are 
individual and reproducible, they are, nevertheless, random in structure - in 
other words, they exhibit random fluctuations around their average exponen- 
tially localized shape. Since the conductance is determined by the transmission 
coefficient across the finite sample, it is also affected by analogous fluctuations. 
In the hydrogen-atom problem, the ionization probability is determined by the 
rate of exponential decay of those quasi-energy eigenfunctions which have a 
significant overlap with the initially excited states, over a distance (in number 
of photons) determined by the experimental conditions. This rate is determined 
by the localization length. For the average of the latter we have a theoretical 
estimate [6]; the theoretical line in fig. 1 was just obtained from that estimate, 
as shown in the appendix. Nevertheless, the actual decay rate of q.e. eigen- 
functions will fluctuate around the average. Then the Kepler map formalism, 
suggests that the ionization probability at fixed interaction time and field 
intensity should display the same kind of fluctuations as conductance does. 
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We tested this prediction by numerical iteration of the quantum Kepler map 
under the same conditions as in fig. 1. We investigated the dependence on the 
scaled frequency w,, of the ionization probability; the latter was identified with 
the total probability over the level n, = 92. Whereas, when producing numeri- 

cal data for fig. 1, the change in w0 was obtained by changing the starting level 
n, at tixed microwave frequency, here n, was fixed at 63 and o was changed 
instead. Fig. 2a shows the results of 1000 such computations of the ionization 
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Fig. 2. Ionization probability P as a function of the scaled frequency o,, for fixed n, = 63, 
l 0 = 0.043. P was obtained by iterating the quantum Kepler map. Fig. 2a shows 1000 values in the 
interval 1.364 < o, < 1.374; fig. 2b shows 100 values in the interval 1.368 < w,, < 1.369. 
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probability P, for 1000 different values of w0 in the range 1.364-1.374. Small 
variations in o, caused P to change by two orders of magnitude; the overall 
picture displays very sharp and narrow peaks. Such a structure persists even on 
changing o, on much finer scales; fig. 2b shows P for 100 values of w, in the 
interval 1,368-l .369. These fluctuations can be numerically observed down to a 

scale AV - 10e6; on smaller scales they disappear. On purely qualitative 
grounds, the dependence of P looks random; however, whether this qualifica- 
tion would survive a technical analysis is a question which requires more 
numerical data and which we are currently investigating. The cases of figs. 2 
correspond to an average localization length I - 8 and to a maximum number 
of photons N- 12. 

4. The above described results point at a peculiar type of quantum fluctua- 
tions, which seem intimately connected with the localization phenomenon. 
However, whereas in the Anderson case the randomness of the fluctuations can 
be ultimately traced back to the “external” randomness of the potential, in the 
hydrogen-atom case the only possible source of such fluctuations can be just 
classical chaos. It is interesting to remark that we have here a kind of 
“structural” instability, i.e., one which shows up upon changing some external 
parameter; in the classical case, no such instability can appear (at least, on such 
small scales), because of the smoothing effect of phase-averaging. One may be 
tempted to say that the quantum suppression of chaotic diffusion which is 
produced by quantum interference is being paid at the price of such intrinsical- 
ly quantum instabilities. 

It will be also interesting to ascertain whether and to what extent the 
fluctuations produced by these instabilities are random; the concept of “mild 
chaos” introduced by Gutzwiller in connection with fluctuations in the phase 
shift in quantum scattering problems [15] may be relevant here. In the same 
vein, it would be interesting to know whether also the Ericsson fluctuations of 
nuclear physics, for which a relationship to classical “irregular” scattering has 
been suggested [16], can be reduced within a common, possibly broader, 
formulation, together with the above discussed ones. 

Appendix 

We shall here describe the theoretical derivation of the dashed line in fig. la, 
which was first presented in ref. [13]. According to localization theory 
[9,10,13] the quantum excitation process evolves in time towards a (quasi-) 
stationary distribution which is given in the average by: 
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(A.11 

where N is the number of absorbed photons (starting from the initially excited 
state of principal quantum number n,) and I is the localization length, given by 

1% 3.33E2w-10’3 . 64.2) 

The condition for 10 percent ionization can be identified with the condition for 
10 percent probability above the cutoff level n,; therefore, it reads 

I f(N) dN = 0.01 , 

NC 

where 

Nc=~(~--j). 
c 

From eqs. (A.l-3) we get 

(A-3) 

(A.4) 

The dashed line in fig. la is just eq. (A.4) with II, = 90. In experiments, n, was 
in the interval 86-92 for the case of fig. la and in the interval 160-190 for the 
case of fig. lb. In the latter case a higher field is required, the excitation is 
larger and the localization picture underlying eq. (A.l) is no more valid, 
because a non-negligible amount of probability flows into the continuum. In 
that case we have no theoretical prediction for the 10 percent threshold. 
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