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Diffusion over localized adiabatic states
in a modulated quantum kicked rotator
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The introduction of a slow, time-dependent modulation in the kicked rotator problem is shown to produce diffusive excitation,
with the diffusion coefficient depending on the small modulating frequency according to a power law. The exponent of this de-

pendence is related to the quasi-energy level statistics.

It is now well established that deterministic clas-
sical systems subjected to time periodic perturba-
tions show qualitatively different behaviour depend-
ing on the strength of the perturbing field. If tue
perturbation is larger than a critical value called the
chaos border, the trajectories display a very irregular
chaotic behaviour, leading to diffusion in the action
space.

During the last decade, a great deal of investiga-
tions have been devoted to the quantum dynamics
of such systems. A most interesting and drastic dif-
ference has been observed between the classical and
quantum behaviour, namely, the classical chaotic
diffusion is suppressed by quantization [1]. This
quantum suppression has been christened dynamical
localization, thus stressing both its analogy and its
diversity from the Anderson localization of solid state
physics [2]. As a matter of fact, no external random
element is responsible for the dynamical localiza-
tion; in a sense, the randomness is self generated in
the system during the time evolution.
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Although the theoretical picture of dynamical lo-
calization of classical chaos was originally outlined
for the kicked rotator model [1-3], the localization
phenomenon turns out to be quite general for sys-
tems under time periodic perturbations. A well
known physical example exhibiting this effect is the
microwave excitation of hydrogen atoms [4,5].

It is highly interesting to study how and under what
conditions the localization effect can be destroyed,
because in this way some important physical pro-
cesses may be started, such as, e.g., the “diffusive”
ionization of hydrogen atoms in the example re-
ferred to above. In this line of thought, we study here
what happens when the amplitude of the external
perturbation is slowly modulated in time. The idea
is that the slow modulation may produce a slow dif-
fusive excitation, due to the occurrence of avoided
crossing between the instantaneous quasi-energy lev-
els. Such an effect of slow modulation on localiza-
tion has a distinct physical interest; for example, as
will be recalled in the conclusive part of the present
paper, the effect of a small constant electric field su-
perimposed on the microwave field in the above
quoted problem of microwave excitation of hydro-
gen atoms can be approximately reduced to a slow
modulation in a one-dimensional localization
problem.
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The basic object of our investigation is described
by the following Hamiltonian,

H=1ip*+K(t) cos 0 5-(t) , (1)
where

()= ¥, 6(1—mT)

K(t)=k(1+e€cos8,), 0,=0/T.
The corresponding classical map is
Dma1 =Dm +k(1+€cos mQ) sin 6, ,
Oms1=0n+Dms: T, (2)

where p,,,, and 6, are the values of the momen-
tum and the angle variables immediately after the
mth kick. Eq. (2) is the classical map for the mod-
ulated kicked rotator. The original kicked rotator
corresponds to the case of K(¢)=const in eq. (1),
i.e., to €e=0. In this case, if kT>> 1, the classical mo-
tion is chaotic and exhibits diffusive behaviour.
Instead, the quantum motion is localized around
the initially unperturbed excited state n, and, after
a while, it settles (on the average) to a steady state
probability distribution over the unperturbed levels:

finyx 3 (1421 n=ro) 1)

Xexp(1-2|n—ng| /1), (3)

where / is the localization length. It has been shown
[3] that /~}k? and that the quasi-energy eigen-
functions are exponentially localized with a locali-
zation length =14/

This picture, which presents important analogies
with the one-dimensional Anderson localization, is
sharply modified by the introduction of a modula-
tion. For 2~ 1 and e~ 1, the behaviour of the quan-
tum model (1) is best understood by assimilating it
to a two-dimensional solid state model. The possi-
bility of such an identification is easily realized if one
considers the extended phase space with additional
conjugate variables p;, 6,. Upon introducing such
variables, the modulated kicked rotator can be iden-
tified with a two-dimensional rotator of the unper-
turbed Hamiltonian

Q
H= %p2+ Tpl ’
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subjected to strictly periodic kicks. Then the analogy
with the theory of two-dimensional localization in
solid state dictates the following picture [7]: the
quantum dynamics is still localized in contrast to the
unbounded classical diffusion, with the localization
length exponentially growing with the diffusion rate:

Inlc Dy~ $k2(1+4€?) .

However, in the quasi-classical region k?>>1 and /
is very large, much larger than any reasonable basis
size one could take in numerical simulations. There-
fore, such simulations are expected to show a dif-
fusive spread of the wave packet and a Gaussian dis-
tribution over the unperturbed levels.

In the present case of slow modulation, namely
Q<« 1, the perturbation may induce transitions be-
tween instantaneous quasi-energy eigenstates over a
distance \/.?2 (see below and also ref. [6]). If 2 is
very small, this distance is much less than the av-
erage distance between quasi-energy levels, which is
of the order of 1// where [ is the localization length
for 2=0. It thus follows that it is possible to jump
from one level to the next only thanks to any fluc-
tuations which may bring the levels closer.

Quantum numerical simulations of model (1)
when Q<< | show an average linear increase of the
kinetic energy (fig. la):

p*(t)>=~DYT, 4)

with superimposed almost regular oscillations. Fig.
1b shows that the distribution over unperturbed lev-
els after 40000 kicks agrees with a Gaussian
distribution:

(n—mp)?

1 -
fin, )= ;ZzzptZTexP(_ 2D1/T ) ()

Therefore figs. 1a and 1b provide a good empirical
evidence that the slow modulation destroys the one-
dimensional localization and that the quantum mo-
tion is diffusive over the inspected time interval. We
shall now sketch a theoretical analysis of this dif-
fusion, based on the statistics of avoided crossings of
quasi-energy levels. This will lead to a prediction
about the diffusion coefficient D, that will be found
to agree with numerical data.

Let the wave function at (integer) time 1 be given
by |w(1)>=S.lw(t—1)) where S, is the quantum
map over one period of the kicked rotator with the
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Fig. 1. The average unperturbed energy {p?) as a function of
time measured in number of mapping iterations (a). Probability
distribution over the unperturbed momentum states after
m=40000 mapping iterations (b). Here k=10, €=0.5, T=5/3.5,
£2=0.001.

instantaneous value K(t) of the kick strength. In-
stantaneous quasi-energy eigenfunctions ¢, (*adi-
abatic™ states) are defined by

St|¢/1f> =exD(Mr> I¢).z> . (6)

We shall now use a well-known method for the anal-
ysis of the adiabatic regime. First we expand the wave
function over the instantaneous quasi-energy base
according to
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W)= T e exp(i z A,)lm .

A standard procedure based on first-order pertur-
bation theory can now be applied, the only differ-
ence from textbook derivations [6] being that uni-
tary propagators are here involved instead of time-
dependent Hamiltonians. As a result we find that if
the initial wave packet coincides with ¢;, then for
small £:

¢, (1) ~1keQV , (n—~A)~"
x{exp[~i(A—p)]-1}"". (7

The subscripts of the quasi-energy eigenvalues have
been neglected here, on account of the slight depen-
dence on time of the eigenvalues. V, is the matrix
element

Viu= (@ lcos 8|¢,>
=1y o1(n)[du(n+1)+0,(n—-1)], (8)

where n labels the momentum eigenstates of the un-
perturbed rotator. Eq. (7) yields the following con-
dition for significant transitions between the adi-
abatic quasi-energy states corresponding to quasi-
energy eigenvalues A, u:

(A—n)?<d3~keQV,, . 9)

We now recall that any eigenfunction ¢,(n) is ex-
ponentially localized around some site 7,, with a lo-
calization length /s~ }D,. Therefore the matrix ele-
ment given by (8), which depends on the overlap of
the quasi-energy eigenfunctions ¢, ¢, will be negli-
gibly small, unless these eigenfunctions are localized
not too far from each other, within some “effective
distance” of the order of the localization length.
Transitions between adiabatic quasi-energy eigen-
states occur when the spacing of the corresponding
quasi-energies satisfies the estimate (9). On the other
hand, only quasi-energy eigenstates which are local-
ized within an effective distance of order / should be
considered, for otherwise the matrix element (8)
would be exponentially small. Therefore, the fre-
quency of such transitions is determined by some
“effective level spacing statistics” of quasi-energy ei-
genvalues, constructed by taking into account only
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those pairs of eigenstates which lie (roughly) within
one effective distance from each other.

Let this statistics be described by a probability
density P(X) where, as usual, the spacings X are
given in units of the mean level spacing, which in
turn is given by d~/—'~Dg'. The probability of
transition will be, in order of magnitude,

Xo

W~ jP(X) dx, (10)

0
where X, is given by eq. (9):
X0~Ao/d~AOD0~D0,/€Q. (11)

In deriving the above estimate, we considered the
matrix element (8) as a sum of ~/ random vari-
ables, each of order ~/—!, which yields a rough es-
timate V~/[""2xDg'/2,

Though the level spacing statistics for all the spac-
ings of quasi-energy levels of the kicked rotator is
Poissonian, the “effective’ statistics, which is taken
over a finite effective distance, exhibits some degree
of repulsion, due to the overlap of localized states.
Therefore, the effective statistics P(X) will behave
as X7 for small X. This yields (from (10) and (11))

W~ Dt (e2)0+172

It is then reasonable to assume that the diffusion
coefficient depends on £2 according to the same law,
i.e. (putting € ~ 1) that

D~ WDy~ (D§Q)*D, , (12)
with
a= j(y+1).

From the above estimate it turns out that, for fixed
D, and sufficiently small Q, the diffusion is smaller
when the level repulsion is increased.

The above prediction (12) was checked by nu-
merically computing the diffusion coefficient D. In
our simulations we initially excited one momentum
eigenfunction, and we computed the evolution for
different parameter values k, 7, 2. In all cases, D
could be computed either from fig. 1a and formula
(4), or from fig. 1b and formula (5), with approx-
imately the same results. Fig. 2 shows the values of
D thus obtained, for different values of 2 and D, and
the same value of e=0.5. The power law (12) agrees
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Fig. 2. The diffusion coefficient as a function of the modulating
frequency £ and of the classical (quasilinear) diffusion coeffi-
cient Dg. (A) k=5,T=2; (o) k=7, T=5/3.5; (@) k=10, T=5/
3.5; (O) k=12, T=0.35. In all cases, €=0.5. Dy=4k2(1+1€?)
is the classical diffusion coefficient. The slope of the interpolat-
ing dashed line is a ~ 0.6.

with numerical data. A best fit of numerical data gives
a~0.6 which leads to y ~0.2. The latter is the value
of the characteristic exponent for the repulsion of
neighboring quasi-energy levels which are approxi-
mately inside one localization length. The obtained
numerical value y~0.2 shows that the repulsion be-
tween such levels is relatively small (in comparison
with the Wigner distribution). The theoretical der-
ivation of the value of this exponent requires further
investigations.

Finally, let us briefly recall how the above de-
scribed results have a relevance for the problem of
microwave ionization of hydrogen atoms. It has been
shown [4,5] that the quantum dynamics of a H atom
in a microwave field is localized if the microwave
intensity is less than a threshold value

ey 7L6
~ , 13
a J6.6n, (13)

which is called the quantum delocalization border.
Here ny is the principal quantum number of the ini-
tially excited state, ¢;=¢€ny and wy=wng are the re-
scaled field and frequency respectively. Although the
border (13) was first established for a one-dimen-
sional model, it holds for a two-dimensional atom,
too [5].
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It was argued [5] that localization in the two-
dimensional atom in a microwave field might be
possibly destroyed by the introduction of a static
electric field, which would eliminate the Coulomb
degeneracy. The classical excitation process in the
presence of such a field is approximately described
by the mapping [5]

N=N—k[(1+2(ny/ny) cos wt]sin &, (14a)
6=6-2nw(—20N)~ 2, (14b)

where N=E/w=(—-2wn*)~! and n,, is a parabolic
quantum number of the initial state; moreover,
k=0.82new %3, w,~6mend (€, is the static field
strength).

On linearizing eq. (14b) the following map is
obtained,

N=N—k[1+2(ny/ny) cos w,t] sin O, (15)
6=6+TN,

where T=6mnw?n3. Eq. (15) is a standard map with
a modulated kick strength, just like the one which
has been discussed in this paper. Therefore, our re-

sults about the slowly modulated quantum kicked
rotator yield information about the effectiveness of
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the static electric field as a means for producing
strong excitation in the H atom in a microwave field.
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