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LOCALIZATION AND DELOCALIZATION OF QUANTUM
CHAOS

Dima Shepelyansky

Institute of Nuclear Physics
630090 Novosibirsk, USSR

INTRODUCTION

A great success in understanding of the properties of quantum chacs has been
achieved by investigation of the dynamics described by maps. A wellknown exam-
ple is the quantum standard map [1]. In this model quantum effects lead to localization
of classical chaos that is a dynamical version of Anderson localization [2]. Intensive
investigations of the model allowed to establish the connection between the localization
length I and the classical diffusion rate D: I = D/2k* [3]. In this paper it will be
shown that such maps can describe the dynamics of real physical systems. Also the
investigation of maps has led to a discovery of systems for which quantization doesn't
suppress classical diffusion.

KEFPLER MAFP

One of the systems where quantum localization of chaos takes place is highly excited
Hydrogen atom in a microwave field. The pioneer experiment of Bayfield and Koch [4]
had shown that ionization of such atom happened for relatively small field strength.
The theoretical investigation of this problem (see [3] and Refs. there in) has established
its close connection with the problems of classical and quantum chaos. Moreover,
the extensive numerical and analitical investizations showed that in the case of high
microwave frequency {wn® > 1, here and below we use atomic units) the dynamics of
the system, which originally is ruled by the continuous Hamiltonian equations, can be
described by the Kepler map [6]:

N=N+ksing, ¢=¢+ 2rw(—2wN)" (1)

Here k = 2.58¢/w®3, N = E/w has the meaning of the number of absorbed or emited
photons (£ is the energy of the electron), € is the field strength, ¢ is the phase of
microwave field at the moment when the electron passes near the nucleus. The bar
denotes the new values of the variables after one orbital period.

The physical reason due to which the motion can be quite accurately [6] described
by the simple area-preserving map is the following: when the electron is far from the
nucleus mircowave field leads only to a small fast oscillations which doesn’t modify
the avarage energy and the Coulomb trajectory of the electron. The change of energy
happens only at perihelion where the Coulomb singularity leads to a sharp increase of
the electron velocity. Ionization takes place when the energy of the electron becomes
positive after a pass near the nucleus N > 0. Then the electron goes to infinity and

#1

P, Cvitansvid ot al. feds.). Quantum Chags — Ouantiem Measurement, 81-87.
€ 1992 Kluwer Academic Publishers, Printed tn the Netheriands,



#2

never returns back. Therefore for the map (1) ionization is equivalent to absorbtion of
trajectories with & = 0.

The Kepler map (1) can be locally reduced to the standard map [7]. For that one
needs to linearize the second equation in (1) near the resonant (integer) values of wn®
that gives: ~ B ~
N=N+ksing, ¢=0+TN (2)
with T' = 6ww?n®. After quantization the variables (N, $) become operators with com-
mutation rule [N, ¢] = —i, the fractional part of N is constant and the system is locally
equivalent to the quantum standard map (quantum kicked rotator). On this basis we
come to the conclusion that diffusive excitation takes place if K = kT = 49eguig?’? > 1,
where €5 = eng?, wy = wny® and ng is the principal quantum number of initially excited
level. The diffusion rate is equal to D = k*/2 and according to [3, 6] the localization
length for the steady-state distribution, measured in the number of photons, is equal
to ly = D = 3.33¢* /w'®, The difference from the localization length for a quasienergy
eigenfunction is connected with strong fluctuations at the tail (see [3]). If the localiza-
tion length is less than the number of photons required for ionization Ny = 1/2n4w
then the ionization rate will be exponentially small: W ~ exp(—2N;/ls). In the op-
posite case Iy = I} > Ny the delocalization takes place and the process of ionization
is close to the classical one. Numerical simulations with the quantum Kepler map [8]
reproduce the 10%-threshold for ionization obtained in the laboratory [9].

SUMETSKY-KUCHIEV-SUSHKOV (SKS) MAP

Another physical problem dynamics of which in some approximation can be reduced
to a simple map is highly excited hydrogen atom in a homogeneous magnetic field,
During last years many interesting results were obtained for this problem [10] - [12].
However, here we will concentrate on the analyse of the properties of extended arbits
in this system. The first analitical results for such states were obtained in 1982 by
Sumetsky [13] but in the further investigations it somehow happened that this paper
has been avoided and unrefered. However, recently after observation of long-living
states in the continuum [12] the interest to such extended states has been renewed
[14]. The physical reason for that is that ionized trajectories are always extended. Due
to that it’s possible to expect that the approach of [13] can help to understand the
dynamics for positive energies.
[ For magnetic quantum number m = 0 the Hamiltonian of the system has the form
10] - [14]:

2 T 1.3
Pe _.._1_.17; + Pe_ + e
2 @+ 2 2
Here z is the direction along the magnetic field H, p is the perpendicular direction,
w = H/2. For extended orbits the electron can be far from the nucleus, so that
z >> p. Then the first two terms in (3) give the Coulomb energy (Ey = —1/2n?) and
the last two give the energy of Larmor rotation (E; = wny), where ng is Landau level
number and n is the principal quantum number. The sum of these terms is equal to the
total energy E = const. The classical dynamics depends only from one dimensionless
parameter x = 2E/(H/c)*/®. The orbit is extended if z ~ n? >> p ~ (ng/w)'/? that
leads to the condition: ng << wn'. The condition of hard chaos has the form wn® >> 1
or | k| << 1.

Let's now consider the orbits with so small Larmor radius p that for it the Coulomb
energy near the nucleus is bigger than the Larmor energy:

H= (3}

1 1
; = F:UE, ng << T (4]
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Then far from the nucleus the motion is described by the approximate Hamiltonian:
2 F 2
B LB Fea 1
Hﬁ‘z z+?+?{w+z”} (5)

and near the nucleus the electron moves over a parabolic trajectory. The general solu-
tion of the equations with the Hamiltonian (5) have the form of linear combinations of
Bessel functions [13], [14]:

p=y171(adsell 7 1)+ 8Iysell 7)) (6)

where 7 = wt and a, b are arbitrary real constans. Far from the nucleus (r >> 1) this
solution describes the usual Larmor oscillations and near the nucleus (r << 1) it gives
the motion over parabola, since there z = (9/2)"/2#*/%, Therefore (6) is also functionally
correct near the nucleus. The junction with real parabolic solution for small z shows
that the parameter b changes sign after the passage near the nucleus (b — —b with
—7 —+ 7). From this junction and the direct solution (6) it follows that the change of
E“ happens in the region near the nucleus. Let's introduce the phase of Larmor motion
# 1n such a way that at the turning point for z << 1 radius p ~ cos(#) (at the turning
point for z >> 1 p ~ cos(f — wT'[2), where T is the Kepler period with given Ej)
and the conjugated action (Landau quantum number ng). Then from the junction and
the equation (6) we obtain the SKS map for one orbital period of the electron around
the nucleus:

fig = ng (7 + 43 sin(20))

# = arccotan(cotan(f + E} +2v3) + % ~ 2xw( -2 E — wiiy))"¥? (7)

The last term in the second equation gives the free change of Larmor phase during the
Kepler period T' = 2x(—2E;;)~*? and the first one gives its change during the passage
near the nucleus. An example of numerical test of applicability of this map is shown
on Figs. 1,2 for x = —0.03. The full curves are the theoretical lines from (7}, the dots
are from the numerically obtained phases of Larmor motion at the turning point with
z >> 1 (y = In(ng), T(ng) = 2x(—2(E — wng))~*?). The map is area-preserving for
any function T'(ng).

There are few interesting features of the derived SKS map. One of them is that
the change of ng after one orbital period is quite big (1/13.928 < sip/np < 13.928)
[14] and that the map doesn't contain small parameters. Another property is that
for E < 0 and small values of ng (wny << | E |) the second equation in (7) doesn't
depend on ng. Then the #-motion has a simple fixpoint attractor if the equation
8 = 6 has a solution. Since, 8/80 = ny/a; the value of ny will grow exponentially
in this case. If the solution is absent then the motion is stable and the action ng
remains small. The regions of stability are determined from the conditions: # = # and
86/86 = 1 (touching). This gives, in agreement with [13], that the motion is stable
for g+ 1/3 < (=2E)"**H/c < g+2/3, where ¢ > 0 is an integer. However, the direct
numerical iteration of the SKS map shows that the measure of the stable regions is
quite small.

Since the change of the energy happens during the passage near the nucleus therefore
the map describes also the dynamics in the continuum (E > 0) (for extended states). No
regions of stability were observed in this case and variations of # looks to be chaotic. For
E = 0 the value of the maximal ionization rate [pee can be obtained by the calculation
of the relative number of the trajectories lossed after one iteration. For the initial state
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ng at the ionization border (E — wnp = Ejj = 0 and homogeneous destribution in #)
the loss of probability is equal to Affx, where Af is the size of the interval for which
figfny < 1. From (7) Af/x = 1/6 and therefore T'poon® = Do/ AE = 1/12x << 1.
This expression for [ma= is in agreement with the quantum computations of [14]. The
small value of I',., can explain the observation of narrow lines in the continuum [12].

It is interesting to ask how fast will be ionization in the case Inx >> 14. In
this case it's possible to assume that the motion is chaotic for ng in the interval
Elw < np < w™? where the right inequality corresponds to the condition that the
Larmor frequency becomes much less than the Kepler frequency of z-motion. Then the
phase # becomes complitely random and the dynamics in ng can be described by the
Fokker-Plank equation for y (< Ay >= 3.218, < (Ay)? >= 6.893). Since the total in-
terval of diffusion in y is of the order of In & therefore the ionization time (in the number
of orbital periods) will be of the order of In*(x). However, in the real physical time the
main contribution in life-time comes from the time of the last orbital period. Further
investigations are required for a better understanding of jonization process. Due to the
exponential growth of ny quantization will not lead to localization of states which will
be ergodic inside the chaotic component.

HARPER MAP

Since 1979 [1] it was considered that quantum effects leads to a localization of chaos.
In [15] it was found an example of chassically chaotic system in which the quantization
does not suppress the diffusion and can lead even to a much faster excitation. The
classical dynamics is given by the Harper map:

f=p+ Ksinz, £=z— Lsing (8)

where K and L are positive parameters and bars are for the new values of the variables
after one iteration. The quantized motion of the kicked Harper model (8) is described
by the following Hamiltonian:

H = Lcos(hit) + K cosz §(t) (9)

where we used units for which & is the dimensionless Plank constant, & = —idfdz, p =
hn and §,(t) is a periodic delta function of period one. If in (9) to put unity instead
of 8,(t) we will obtain the well known Hamiltonian of the Harper model, which in
some approximation describes a motion of an electron in a 2D cristal in the presence of
perpendicular magnetic field (see [16] and Refs. there in). The classical motion of the
Harper model is integrable that easily explains the transition from localized (K < L)
to delocalized (K > L) states in n for the quantum case (we consider states with fixed
quasimomentum in z-direction).

For the kicked Harper model the classical dynamics looks completely different: start-
ing from K, L == 4 there are no noticeable regions of stability and excitation is char-
acterized by diffusion in p and z directions with different diffusion rates. For K = L
dymanics is symmetric. Numerical investigations of the quantum dynamics [15] showed
that for K = L the second moment < (An)? > grows diffusively with time (for irra-
tional k/x and fixed quasimomentum 8 in = direction). During some time interval ¢
the excitation was the same as in the classical case but the assimptotical diffusion rate
was different from the classical value (usually approximately 2 times less). However
these results were obtained for not very small values of & ~ 0.5 and what will be the
ratio between the quantum and classical diffusions for A — 0 is an open question. On
thezsame grounds as for the kicked rotator [3] it’s possible to expect that ¢° scales as
1/&%,
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For K > Lin all tested cases excitation goes in a ballistic way with < (An)? > /t* =
v = const and for K < L in the most cases there was suppression of excitation [15],
In the corresponing classical cases the phase space is completely chaotic and excitation
is diffusive. However, as it was mentioned in [15], there were some cases for which the
excitation was ballistic also for £ < L. Here are two examples:

1) K=31,L=6k=2r/T618., v 0.3 and for exchanged values of K and L

= 0.5;
¥ D K=7 L=8H%=2xf4d618.., v == 0.35 and for exchanged values of K and L
- 7= 0.01.
The values of 4 were determined over 5000 kicks for @ = 0 and initially excited level
n= .

For the case K = L the recent results obtained in [17] show that the diffusive
excitation is connected with a Cantor spectrum of quasienergies which on small scales
has the same type of level clustering as in the Harper model [16]. However, as it is
secing from the above examples the situation for K # L is different from the Harper
mode] and its understanding requires further investigalions.

It is interesting to mention that in the systems without timereversability a ballistic
excitation can take place in the symmetric case, For example, in the system with the
Hamiltonian:

H = L{cos(p) - gsinl:ﬂp)] + K{cos(z) - gsinqzz))mm (10)

the ballistic excitation takes place for K = L =2, A= F = 1.5, h = 2=/7.618... with
7 7= 0.1 for the same conditions as for the two above examples. It is interesting to note
that such possability is not a priori excluded by the general mathematical theorem [18).

I kindly aknowledge (.Sushkov for stimulating discussions of the problem of H-atom
in a magnetic field. L
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