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Dynamical Loecalization in the Hydrogen Atom.

D. L. SHEPELYANSKY
Budker Institute of Nuclear Physics - 630090 Novosibirsk, Russia

1. = Introduction.

During the last years a great number of works were devoted to the ereation
and investigation of highly excited atoms[1]. In such an atom the electron is
moving relatively far from the nuelens and its interaction with other electrons
is relatively small. Due to that the properties of any highly excited, or so-called
Rydberg, atom in many respects are similar to the properties of the states of
the hydrogen atom with large principal quantum number. For these states the
radiative lifetime is quite long and, due to large values of the dipole matrix ele-
ments, the atom effectively interacts even with small external fields. These
properties have allowed the ereation of very sensitive detectors of infrared and
microwave radiation (see, for example,[2]). Among other applieations of Ryd-
berg atoms it is possible to mention their use for the ereation of a maser (3], for
metrology [4] and astrophysies [5], for isotope separation[6].

The creation of tunable lasers and the development of the atomic-beam tech-
nique now allows us to excite atoms in a state with required quantum numbers,
The highest principal quantum number achieved in our days in a laboratory ex-
periment is near n» = 500 [7]. However, the states with the highest values of n
have not been created in a laboratory but, as unexpectedly happened, they sim-
ply exist in the space plasma[8], so that in the highest states registered there
were carbon atoms with n = T32[9]. Such observations allow us to obtain inter-
esting information about space plasma [8-10].

An interesting physical problem is the problem of ionization of highly exeit-
ed atom in a monochromatie field. This process gives an example of an unusual
photoelectrie effect for which ionization at a frequency much smaller than the
ionization energy (few<<]) goes much faster than for the one-photon fre-
quency [11]. The researches in this field were initiated by the experiment of
Bayfield and Koch[12] in which they had observed a strong ionization of an
atom with principal quantum number n = 66 in a linearly polarized mierowave
field with a field strength ¢ ~ 10 V/em and a frequency w/2r =9.9 GHz. In this
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case the value of : was much less than the value at which ionization takes place
in the static electric field, =, =0.13/=*. Also for ionization it was necessary to
absorb approximately 100 photons (here and below we use atomic units).

For an explanation of the results of these experiments in[13] a hypothesis
ahout the diffusive mechanism of ionization was suggested. On those grounds
the diffusion rate in energy and the estimate for a ionization time were ob-
tained. In ref.[14,15] the authors, on the basis of the fact that the principal
quantum number was n3>1, applied for the description of ionization the
method of numerical solution of the equations of the eclassical electron motion.
As a result they obtained a satisfactory agreement between the ionization prob-
ability of the classical atom and its experimental value. The explanation of the
appearance of the diffusion and ionization in the classieal system was given
in[16]. In this paper the authors showed that for a field strength above some
critical value the overlapping of the resonances[17] took place and the motion of
the electron became chaotic leading to its ionization[16]. It is necessary to
stress here that the field is strictly monochromatic and there are no random
forees acting on the atom. Further laboratory and numerical experiments were
made for different values of the initially exeited level n and for different values
of the field strength[18, 19]. They showed that the ionization probability ob-
tained in the experiment was close to its classical value and in such a way con-
firmed the classical pieture of the ionization process. These results led the au-
thors of [14-16, 18, 19] to the conclusion that the ionization process, except for
some fine details, is perfectly described by classical mechanies and that the
quantum effects had s important influence.

Since the ionization happens due to the appearance of the dynamical chaos in
the classical system, the question about the role of quantum effeets for an atom
in a microwave field is closely related to the fundamental problem of quantum
chaos. One of the important directions of research in this new field of physies is
the investigation of the excitation of quantum systems by the periodic field.
The most interesting effect here iz the effect of guantum diffusion limitation
which leads to a suppression of classieal diffusion exeitation by quantum inter-
ference. For the first time this phenomenon has been discovered in numerical
experiments with the quantum kicked-rotator model[20]. Further investiga-
tions have allowed us to understand the reason of the diffusion limitation and to
relate the number of effectively excited states with the diffusion rate in the
classical system [21-24]. In [25,26] it was established that in some sense this
phenomenon is analogous to the Anderson localization in the solid state. Ae-
eording to this analogy the unperturbed-level number corresponds to the spa-
tial coordinate (site number in the lattice). However, in spite of this analogy it
is necessary to stress that the phenomenon of quantum loealization of chaos is
different from Anderson localization due to the absence of randomness.

The investigations of the simple models of quantum chaos have allowed us to
understand the physics of the phenomenon and to apply the results obtained
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there for the solution of the problem of microwave ionization of a highly excited
atom. It was shown that, in principle, quantum effects play an important role
for an arbitrarily large quantum number # and can lead there to the localization
of diffusive exeitation and to a deerease of the ionization probability in compari-
son with its classical value[11, 27-33). However, for a sufficiently strong field
and low frequency the localization length in energy, measured by the number of
photons, becomes comparable with the number of photons required for ioniz-
ation. This condition determines the delocalization border above which the
quantum excitation is close to the classical one.

The analysis of the experiments [12, 18, 19] shows that one part of them was
made for a frequency much shorter than the Kepler frequency. Therefore, the
ionization takes place there for a field strength close to the static-field border
and does not go in a diffusive way. Another part with a frequency comparable
with the Kepler frequency (wy = wid =05+ 1.1, where n, is the initially excit-
ed-level number) was in the delocalization region and, therefore, the laboratory
results were in agreement with the classical numerical simulations. The under-
standing of the physics of the quantum localization of the diffusive ionization in
the hydrogen atom [11, 27-33] has allowed us to find the conditions at which
ionization in the quantum system would be strongly suppressed in comparison
with the classical case. Further experiments [34, 35] have confirmed the theor-
etical predictions and showed that the quantum ionization border is larger than
the classical one. Since the diffusive ionization takes place mainly for wy > 1, we
will discuss ionization in this region. The analysis of the properties of ionization
for e, < 1 can be found in[36]. A recent review of the last experimental and the-
oretical results is given in[37]. In the following I will present the main results
and ideas of the quantum localization theory for the hydrogen atom in a mi-
crowave field which have been developed in [11,27-33,38-40]. The most
detailed derivations of the results are given in [31,33,41].

The classical dynamics depends only on the rescaled values of the field
strength =, = enj and frequency wy, = wny. For a transition from the atomic
units to the physical quantities it is convenient to keep in mind that for ny = 100
the frequency «/2= = 10 GHz corresponds to ey =1.51998 and the field strength
£=514485V /em corresponds to g = 0.1,

2. - Classical dynamics.

We will start the analysis of the classical dynamies from a quite general case
when the vector of a linearly polarized field lies in the plane of the electron or-
bit. Then the Hamiltonian has the form

pi Py 1
1 =2 0 4 reosat,
(1) 2 2 (@ + y* )~ =
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where the field is polarized along x. After the introduetion of the action-angle
variables for the unperturbed motion this Hamiltonian can be written in the

form [186, 33, 41]

+ent casmﬁ[cos—fﬂ[ge -2 E z, c{)ﬁ.{gﬁ}} + sin-,tu{ﬂ 2 3, sin [sﬁ}”.
i=1 g=]

Here (n, #) are the principal quantum number and the conjugated phase, [ is the
orhital momentum and ¢ is the conjugated phase given by the angle between
the field and the orientation of the unperturbed ellipse, € = \/1 — {* /n? is the

eccentricity and the coefficients x,, y, are given by the Fourier components of
a(t) (see[42]):

J, (se) (1 - e®)'2J,(se)
(3) £y = z = s .

The condition of the resonance has the form wn®=s For a high frequency
wn®= 3> 1 it is convenient to use the following representation for the Bessel

funetion [42]:

@ J,(se) = é(%]m@[(g]mu —,ﬁ}]: %( wiﬁ ]”";p[(%)mp},

where @ is the Airy funetion. Since ®(x) decays exponentially for »>> 1, the res-
onant harmonies are negligibly small for the orbital momentum,

5) 1>~ (2)",

and the motion there is stable. Due to that, in the case when condition (5) is sat-
isfied, ionization can take place only for very strong field when the amplitude of
the electron oscillations becomes comparable with the distance between the
electron and the atom: 2¢/w® = n®(1 — ) (see[43] for details). In the case of ex-
tended orbits with ¢ = 1 from (3), (4) we obtain the convenient expression for
the resonance amplitudes:

i p18 | (0
g~ £ 2D L 2R LD gurl Lo
: ﬁns*m n gi/d

(6}

1 g
ay, = — =, (ze) = = -
g2 de’ e=1 VE o gt giR

=3

_ge e o4 (1 + t_)
2n*®
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3. - One-dimensional model.

For the orbits extended along the field direction the dynamies is described
by the Hamiltonian of the one-dimensional hydrogen atom

2
(7 H=~;;——%+sxc03m5, =0,

which in action-angle variables has the form

(&) H= ——LE + en® cos wl 3 -2 Z i, cos (s6) |,
2n 2 i=1

The resonant values of n are determined from the resonant condition w = 36 =
= g/n} = s(2,. For small field strength near the resonance s we can keep only the
resonant term and, after the eanonieal transformation, we reduce the problem
to the Hamiltonian of the pendulum (see details of such approach in[17]),

_qg_{n—na}z

2
5 = — en} @, cos (A},
]

(9} H, =
where j = # — wi/s and the first term on the right-hand side is given by the sec-
ond-order expansion of the unperturbed Hamiltonian. The separatrix curve of
(9) corresponds to H, = — en’xr,. The half-width of the separatrix in action is
equal to

dnd = 172
(10) An = [.ﬁ'&mh Em(ﬁi)] S I Wy
d 2 sh=n Vg

and its half-width in frequency is

(11) = %vs e,

7t s

Aecording to the Chirikov ecriterion of overlapping resonances [17,44] the mo-
tion becomes chaotic after the overlapping of unperturbed resonances. The
overlapping parameter is equal to

':12:] Sn(ma+ms+]}ﬁ{ﬂﬁﬁuaflj-

Since AL, = A2, and £, — 2,,, = w/s®, from (10)-(12) we obtain the condition
of global chaos:

(13) K=2582=49nts"?>1,

where the empirical numerical factor 2.5 takes into account the effect of the
higher-order resonances and the finite width of the chaotic layer[17]. Since K
grows with the increase of n, the classieal ionization border coincides with the

156 - Hendicowtt SLF. - CXIX



226 D. L. SHEPELYANSKY

chaos border [31,33,41]:

1
i — i TR ——
(14) . it el T

4. - Kepler map.

Another approach to the description of the motion is based on the construc-
tion of an approximate canonical map. For the derivation of such a map it is con-
venient to introduce the «eccentric anomaly» according to

z=n2(1—-cosf),
(15) wht = am®(E—sind) + &,
f=F—gin&,
where ¢ is the phase of the field at the moment when the electron passes near

the nuelens (£=10). Then from the Hamiltonian equations and (15) it fol--
lows :

(16) ¥ ﬁ=—§-§- -m%ua«isinf%.

Assuming = to be small, we can use in the right-hand side the unperturbed
values of the variables and after the integration over one orbital period of the
electron (from aphelion to aphelion with f= + z) we get the change of the

action:

(17) An = en® sing I sin (x(= — 8in £)) sin £d% = 2=en® sin ¢J, (x),

where x = wn® and J,(x) is the Anger function. For integer values of x
it coincides with the Bessel function and for x >> 1 it decays as J, (x) = 0.41/x%%,
Therefore, the number of absorbed or emitted photons is equal to
AN = Anfam® = AE[w = kA(x)sin &, with A(x) = x¥*J} (x)/0.411 and k =2z
-0.411 :/e*?. Since for x >>1 the coefficient A = 1 (even for x =1 A = (0.8) we
obtain the Kepler map for one orbital period of the electron [30,33, 45]:

(18) N=N +ksing, ¢=¢+2na]-2uN]"¥2,

where the second equation gives the change of the field phase during the Kepler
period and the bar denotes new values of the variables, The map obtained is the
area-preserving map. The change of the energy happens only when the electron
passes near the nueleus since there the motion has a singularity. This change
takes place during a short interval of time Af, which is of the order of 1/x, as is
seen from (17). The numerical check of the validity of the map (18) has been
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1y
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Fig. 1. — Numerically computed funetion g(£,) (dots) compared to the theoretical curve
sin (full curve) for the case =, = snf =0.04, wy= wnf =15

done in the following way [30,33)]. By the numerical solution of the Hamiltonian
equations [7] the phases of the field at the perihelion were computed. Then the
check was made by computing N;= —[(¢; — ¢;_;)/2rw]** /2w, the function
9(¢;) = [N;;, — N;]1/k and plotting g against ¢; (see fig. 1 where a comparison
with the theoretical curve g = sin ¢ is also shown). An example of the phase
plane for the Kepler map is shown in fig. 2.

To understand the properties of the dynamics of the map (18) it is conve-
nient, following the method of[17], to approximate it locally by the standard
map. For that we can linearize the second equation near the resonant (integer)
values w(—2wN,) ** = s and after that we obtain the standard map

(19 N=N+ksing, ¢=¢+TN
ﬂ.{]1 T 7
E, S - 2
—I:I.2: . : + . . -.
_0_4_ .- ..'I s
[ —— :
08F s o e ki
Eol L . £ ¥
0.8
—— —_— _—
ST ] SR S
el B >
0 1 2 3 4 5 45 6

Fig. 2. — Phase space plane for the Kepler map (18) in the variables E; = wNwng, ¢. Par-
ameter values are s, =0.03, w;=3.5. Six regular and one chaotic trajectories are
shown.
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with T' = 3(A4£)/8N = 6me®n®. According to[17] the global chaos arises for K =
= kT = 1 that leads to the critical field strength (14) obtained above by another
method. Sinee the value of K grows with =, it is possible to neglect the correla-
tions between the different values of ;. Then the diffusion rate is given by the

random-phase approximation

ANPY g2 o &
&

20 D= z ~ 8 s

where the time is measured by the number of orbital periods. The important
property of the obtained expression is that the diffusion rate (20) does not de-
pend on #. To estimate the ionization time we need to take into aceount that the
number of photons required for ionization is equal to Ny = 1/2nfw. Then the
ionization time measured by the number of orbital periods is

NI el
21) gLl oney
' D 13

where the last inequality gives the condition of applicability of the diffusive de-
seription. By recomputing this time by the number of microwave periods , we
obtain

-
gl

{22} T ™ g rtI = 7
' £

The exeitation process in real time is described by the Fokker-Planck equation
for the probability function fin):

L 1( a_fJ
=) 3 " 2 om\D" 3 )’
where the diffusion rate now depends on n:

(An)® N
{24} 'D.'! = '—'-'; = Dtl.r'ﬂ. ‘-3..33 cu?lm n- .

To solve eq. (23) it is convenient to introduce the variables y = n/n, and T = D=
Then the Green function of (23) is equal to

ZEq

Wy

with z =1/ Vs 20=1/Viem %=L Using the asymptotic behaviour of the

exp[—(z% + 28)11.,(222,)

(25) Gy o) =
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modified Bessel function I, = exp[z]/V2=r, we obtain for T<1,z>1 and
TVy <1 [31,38)

S e B
26) fly, D)= P[ (ﬁ I)I];y‘”“p[@(v_ Vi I)K‘

where the second term takes into account the boundary condition 3f/an|; =0,
corresponding to the absence of flux from the chaotic to the regular region
n<n (§ =7n/ny). The obtained solution (26) describes the effective spreading
over unperturbed levels with time.

Finally let us note that the Kepler-map deseription (18) ean be applied for
tap > 1 and for not a very strong field. The last requirement is satisfied if the
change of the energy ke after one kick in (18) is larger than the energy of free
oscillations of the electron (s/m)* /2 (see[33, 38]). This gives ¢ < 5u'%,

¥

3. — Photonic localization.

The numerieal solution of the quantum problem shows that quantum effects
lead to the suppression of the classical diffusive excitation for some values of the
parameters of the system [27,28 31-33]. An example of such a suppression is
shown in fig. 3. As is seen, the classical distribution spreads in a diffusive way
in agreement with the theoretical prediction (26), while the quantum distribu-
tion is localized near the initially excited level. According to the results ob-
tained for the kicked rotator [21,23,24,46] the localization for the steady-state
distribution is equal to the diffusion rate (24):

ﬂ
27 l,=D =333 —n nt| o,

n=py, n=m,

where [, gives the localization length in the number of unperturbed levels and
the diffusion rate is computed per period of perturbation. If we measure the lo-
calization by the number of photons, then from (27) it follows that the localiza-
tion length is equal to

& £ k2

(28) l,=—— =333 == >1,
BT 193 2

Since [: does not depend on n, the quasi-energy eigenstates in average are expo-
nentially localized in energy: UN) —exp[— |N — Ny | /L] with Ny = —1/2n5 w.
The obtained expression is applied when ay > 1 and when L > 1, since in the
derivation of relation (28) it was assumed that the diffusion rate is quasi-classi-
cally large (see[46]).

Another way of derivation of (28) is the quantization of the Kepler map. In
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log f(n)
L
T

-7+ J | JIJ IJJI\ “Jb‘ I~ / / ']\
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40 60 80 100 120 140 160 ﬁa?nam B0 80 100 120 140 160 180

Fig. 3. - Classical (dashed curve) and quantum (solid eurve) probability distribution f{n)
averaged over 40 periods of = for the case g = 66, awy =25, 5, =0.04. In a) the average
within the interval 80 < r < 120 and in &) the average within the interval 560 < « < 600
are given. The dotted lines in both figures represent the analytical solution (26) of the
Fokker-Planck equation which fairly agrees with the classical numerical results. The ar-
rows with integers show the positions and the principal quantum numbers of the

peaks.

this case (N, ) become operators with the eommutation rule [N, ] = —i and
the map (18) then can be considered as the map for the Heisenberg operators.
Due to periodicity of the perturbation in ¢ the fractional part of N is the integral
of motion (like the quasi-momentum). This means that the excitation goes by
absorption and emission of an integer number of photons. The Hamiltonian gen-

erating the map is
(29) H =27 —20(Ny + N,)] 7' + kcos 25t —m),

where 0 < ¢ <2z, N.= —i3/34. It corresponds to some kicked rotator with
modified unperturbed spectrum and the period of kicks equal to unity. After in-
tegration over the period we obtain the map for the {-funection:

(30} $=exp|:—i%]Pexp[—ikcusvﬂcxp[—i%]kb,

where Hy = 2=[—2w(N, + N.)]""* is the unperturbed action, P is the projec-
tion operator on the subspace in which N is negative (the subspace of bounded
states N. < Ny), i.e. on the subspace where exp[—if,] is defined. Locally (29)
can be reduced to the quantum standard map and, therefore, the localization
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length in the number of photons is equal to L = D = k* /2 in agreement with
(28).

By iterating the quantum Kepler map (30) we obtain the distribution in the
number of photons. This is a different kind of distribution than the usual distri-
bution over the unperturbed levels that would be produced by iterating the
Schridinger equation. The connection between the two types of distribution
can be established by noticing that the photonic transitions generate peaks in
the distribution over the unperturbed levels. Therefore, a given photon state
corresponds to the total probability in all unperturbed levels lying within a sin-
gle one-photon interval around the piven peak.

A comparison between the numerical solution of the Schrédinger equation
and the numerical iteration of the quantum Kepler map (30) is shown in fig. 4. It
iz seen that the peaked distribution over unperturbed levels is well described
by the quantum Kepler map especially near the initially excited level where the
probability is maximal. On the tail the agreement persits only in average,
which is connected with two factors. The first one is that the Kepler map is an
approximate deseription and it is difficult to expect agreement for exponential-
ly small probability far on the-tail. The second reason is connected with the
more serious problem of different physieal time intervals of the orbital period at
different energies, We will return to the discnssion of this problem later.

In order to check the theoretical prediction for the localization length (28),
the whole range of N. was divided into one-photon intervals and in each interval
the maximum of the distribution was taken. The numerieal value of the localiza-
tion length was then found as the slope of a straight line fitting the obtained
points (for N. = 0). The agreement between the numerical results and the the-
oretical expression has been checked in an interval of ten orders of magnitude of
field intensity for l. > 1 (see fig. 5).

Fig. 4. - The distribution, averaged from 80 to 120 periods of the external field, vs. the
number of photons N.= N| - 1/2r%w. Here ng= 100, :=0.04,w,=3. For each integer
value of N. crosses (+) indicate the probability in the interval N, — 1/2, N. + 1/2. The
straight line is the result of a least-square fit. Points were obtained by iterating the quan-
tum map (30).
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Fig. 5. - Plot of the logarithm of the rescaled experimental localization length
log (L' /3.33) ve loge®. The solid line is the theoretical dependence from formula
(28).

6, = Delocalization.

"In the case when the localization length is [, <N, the steady-state distribu-
tion of probabilities is exponentially localized in photon number N, and, on the
grounds of the analogy with the quantum standard map, we can write the dis-
tribution in the form

] *M* = 1 i - a "
T Bung  2em”

(31} f(N.)= 1 1+2I£ exp —2Ii
= o L. I,

Due to the localization the ionization probability in the quantum case is much
less than in the classical system. However, for L. > N; the localization is de-
stroyed and strong ionization takes place. From this condition we derive the ex-
pression for the delocalization border

mgf'h B

(32) >e, = = f
& Bbn, V66

above which the excitation is close to the classical diffusive process.

For a comparison with the laboratory experiments [34,35] it is necessary to
take into account that there the ionization probability was defined as a probabil-
ity of excitation above some unperturbed level #.. Then from the condition
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l;>N,=(1/nf — 1/n2)/2x we obtain the modified delocalization border

1/6 2 \1/2
(33) sqt:%mu(l—%) .

For an even more specified comparison with the experiment we can define the
10% ionization border from the econdition that the ionization probability W) eom-
puted from the steady-state distribution (this assumes that the interaction time
is long enough to achieve it and that ionization is sufficiently weak and does not
modify it) is equal to 10%:

(34) W= | fIN.)dN, =0.1

e

with f from (31). However, due to the sharp exponential dependence of f on N,
this leads only to a slight modification of the numerieal factor in (34):

T M8 nd |2
(35) G = Z—ay|1l - =
; o '-.,H'E%( nf)

showing that the 10% border is not very sensitive to the type of steady-state
distribution. Also we need to keep in mind that the theoretical expression gives
only the average behaviour for the 10% border and that it ean be applied only
when [. > 1.

The comparison of the border (35) with the experimental results[34, 35]
shows the satisfactory agreement between both. However, a much better
agreement takes place if we compare the experimental data[34] with the results
for the 10% border obtained from the numerical simulation of the quantum Ke-
pler map [39] (fig. 6). This comparison shows that the quantum Kepler map re-
produces in a quite good way even the fluctuations observed in the experiment
and gives one more confirmation that this map deseribes the real physical pro-
cess of execitation. On the basis of the mapping of the dynamieal problem on a
solid-state model (see[24-26, 39]), we may conclude that these fluctuations are
analogous to the mesoscopic fluctuations of the conductance in the solid state
(W; iz proportional to a current)[39].

It iz interesting to compare the rate of ionization in the delocalized region
with the one-photon ionization rate[11, 31]. According to (22) for w, =1 this
rate is equal to yp —<j (ionization rate per orbital period). For the same field
strength the one-photon ionization rate (wg=my/2) is equal to y, =
= (k/2)* Jesy ~ £ /ng"®. From this relation we obtain that the diffusive ionization
rate is much larger than the direct one-photon ionization:

(36) i e

e ——— e e e—
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ﬂ.ﬂl]i"'-- 1y [T T N O . i i
10 15 20 25 10 15 2.0 25

ng @ (scaled frequency forwm/2r=36.02(GHz))

Fig. 6. - Scaled 10% threshold fields from experimental results (taken from fig. 2a of
vef. [34], w/2% =36.02 GHz, eircles) and from numerical integration of the quantum Kepler
map (full eireles)[39]. Curves have been drawn to guide the eye, The dashed line is the
quantum delocalization border (35). The dotted curve is the classical chaos border. The
cases of two different eut-offs are shown (n, = 90(a)), n, = 175(b)).
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Fig. 7. — Ionization probability W, = 2 Sfin) vs. field frequency wy after a time = 40y

which corresponds to the same physu:al I;:Lme t for all frequencies, n, = 66, 5, = 0.05, n, =
= 09, Classieal numerieal results are given by the dashed line, quantum results ave given by
the full line.
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The numerical results obtained from the solution of the Schrédinger equation
are in agreement with this analytical prediction (fig. 7).

7. - Quantization of the Kepler map and the scattering problem.

The problem of quantization of the Kepler map is connected with the differ-
ent physical time scales for orbital periods with different energies. This prob-
lem ean be solved in the following way. In expressions (29), (30) we can consider
the quantity Ny as some unknown guasi-energy E, which is the constant of the
motion. Then the map for ¢ after one orbital period will give the new quantity J
which must be equal to ¢ since the motion over the orbit is a eyelic motion. This
leads to the guantization condition [38]

BT T= exp[-ir—2E - 20N,]"*| P-
-exp[—fkcos¢lexp[—ix[ - 2F — 2uN.1""V2ly=U_y=1¢.

The obtained nonlinear eigenvalue equation allows one in principle to determine
the guasi-energies E = E, — il'/2 which will have a real (F,) and an imaginary
part (—il"/2) due to absorption in the continuum. The same equation for quasi-
energies but in a slightly different form was derived in[47], however the ab-
sence of the physieal picture of the process did not allow one to understand the
properties of the solutions of (37).

Another way of deriving (37) can be found from the scattering problem. In
this approach one passage near the nucleus is given by the unitary evolution
aperator

(38) [/ = explidy]exp[—ikcos ¢l exp[isy],

where ¢y are the scattering phases for eleetrons with positive energies Ey =
= F + «N = 0 and for negative energies Ky < 0 they are classical actions (dy =
= — =(—2Ey)"'2). Then the evolution operator can be presented in the form

(39) U = [—— i. ......... 5

where {7, and [J_ give the transitions in the continuum and discrete parts of
the spectrum and B and B, give the transitions from the continuum to the dis-
crete part of the spectrum and baek correspondingly. Then the scattering ma-
trix can be written in the form

@) S=U,+R.(A+U_+U*+U+. IR =U, +R, ;=5 R
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where the summation over all powers of [/_ comes from the sum of all passages
near the nucleus in the discrete part of the speetrum. The equation for the poles
of the S-matrix determines the complex quasi-energies and coincides with
eq. (37). It is possible to show that the unitarity of the matrix IJ (38) involves
the unitarity of the S-matrix (40).

It is also interesting to make an estimate for the absorption cross-section in
the scattering of an electron on an atom in the presence of a microwave field.
For that we need to know the properties of the dynamies in the 3-dimensional
case. The analytical and numerical analysis carried out in[31, 331 has shown
that, due to the degeneracy of the hydrogen spectrum, the exeitation in energy
for | = 1, (5) still could be deseribed by the Kepler map with the constant & mul-
tiplied by zome H < 1 slightly dependent on ({,). Therefore, roughly a half of
the electrons with [ < [, will be captured after a passage near the nucleus if their
energy £ < kwm. On those grounds we obtain the estimate for the absorption
cross-section:

(1) N -
e T TR p? Wit g

For E~ kw we obtain that the absorption cross-section is quite large:
7, ~ 1fe ~ 10" 7em?® for & = 10 Viem.

9, - Conclusion.

Using the ideas and the physical understanding of the kicked-rotator model
we were able to understand the proeess of ionization of a highly excited hydro-
gen atom in a microwave field. Unexpectedly this system happened to be con-
nected with many lines of modern development in physies including Anderson
localization, quantum and elassical chaos. Only few experiments [34,35] have
been made in the localization regime, actually they only started to feel the sup-
pression of chaos, and it will be quite interesting to carry out experiments in a
deeper localized regime. Another interesting line of research is being developed
in the Munich group of Prof. H. WALTHER with microwave ionization of
Rydberg atoms. There arises the question about the classieal simulation of
atoms with quantum defect. There is also an interesting question about the de-
struetion of the Coulomb degeneracy that can lead to the 2-dimensional localiza-
tion problem (a more detailed discussion of the properties of 3-dimensional
atoms in a microwave field is given in[33]). The open problem is the statisties of
the ionization rates {°, in the chaotic regime. A first step in this direction was
made in[48] by the investigation of the ionization rates in the kicked-rotator
model with absorption.

At the end we present the pieture of the ionization borders (fig. 8[38]). For
wy = 1 there are the chaos border (14) and the quantum stability border & < 1
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Fig. 8. - Ionization borders for wny, = 200.

below which the probability of one-photon transition is small. The last one is in
fact the Shuryak border of chaos[49] below which chaos is suppressed by the
quantum perturbation theory. The highest and, therefore, the most important
iz the delocalization border (32). For wy < 1 the highest is the static-field bor-
der. For the hydrogen atom there is also the border of mixing of adiabatie levels
(z tug 2y = 1.5) below which the probability remains on the adiabatic Stark level
corresponding to the instant field strength. This border in fact was for the first
time discussed in[36]. However, for alkali atoms the possibility of the crossing
of levels with different orbital momenta leads to a sharp decrease of the ioniz-
ation border for wy,<<1 (3gn, = 1)[50].
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