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Stability of Rydberg atoms in a strong laser field
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On the basis of a classical treatment, we present analytical and numerical evidence that Rydberg
atoms in a strong laser field are stable provided the orbital momentum is sufficiently large. We sur-
mise that this effect persists in the quantum case also and we suggest its observation in laboratory ex-
periments. The possibility that such atoms may radiate high-frequency photons is discussed.

PACS number(s): 31.50.+w, 32.80.Rm, 42.50.Hz

The investigation of the behavior of atoms under the ac-
tion of a strong laser field is important for the understand-
ing of fundamental physical phenomena concerning the
radiation-matter interaction. In this connection new in-
teresting experimental possibilities arise due to the
presently available powerful sources of laser radiation [1].

Some interesting attempts to investigate these phenom-
ena via numerical simulation have been made recently
[2-4]. So far the analysis has been focused on the action
of laser fields on atoms which lie in their ground state. In
particular, the existence of long-living states in intense
laser fields has been demonstrated [4]. In this situation,
however, the field frequency is comparable to the atomic
frequency (about 27 eV or 1 a.u., which we will use in the
following). Such frequency is very high, and this renders
experimental analysis too difficult.

A different line of investigation is concerned with the
behavior of Rydberg atoms in microwave fields. The ex-
perimental work was initiated by Bayfield and Koch [5]
and the theoretical analysis and understanding of this
problem has been strongly connected with the manifesta-
tions of classical chaos in quantum mechanics [6,7]. Due
to the high initially excited state with principal quantum
number ng, the quantum excitation process is approxi-
mately described by classical mechanics until the rescaled
microwave frequency wo=wng is less than or approxi-
mately equal to 1. For wo>1 it has been shown that
quantum interference effects inhibit the classical diffusive
excitation mechanism; as a consequence, the field strength
required for ionization is higher than the classical one [6].
The theoretical analysis has been largely based on the
reduction of the microwave ionization problem to an
area-preserving map, the so-called Kepler map. It was
shown [6,8] that chaotic diffusive excitation takes place
only when / < (2/w) ', where [ is the orbital momentum;
this is also the condition for applicability of the Kepler
map. The theoretical predictions for diffusive ionization
and its quantum suppression have recently been confirmed
by laboratory experiments [9-11]. In such experiments
with no~60, wo~ 1, strong ionization takes place for field
strengths e~ 10 V/cm.

In the present paper we analyze situations in which, as
we will show, it is possible to have stable, nonionized,
atoms in the presence of field intensities even 6 orders of
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magnitude higher. In order to understand how such a pos-
sibility may arise, we recall that if the field frequency is
much larger than the Kepler frequency (or the distance
between two consecutive levels) then the excitation can
take place only if the electron passes close to the nucleus.
In the opposite case, when the electron never comes close
to the nucleus, the Fourier components of the dipole mo-
ment are exponentially small. A more detailed analysis
shows that exponential decay of these components takes
Flac]e when the orbital momentum / satisfies the condition
6,8
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For / <., the change in the electron energy after one pas-
sage near the nucleus is described by the Kepler map and
it is approximately given by AE~2.6¢w . If this
quantity is larger than the ionization energy then ioniza-
tion will take place after approximately one orbital period
of the electron.

A completely different behavior takes place for /> /.
Indeed, in this case the electron remains far from the nu-
cleus; classical resonances do not overlap and the electron
exhibits oscillations around the unperturbed Kepler orbit.
This size of these oscillations is of the order of Ar
~2ew "% If Ar is less than the size of the Kepler orbit
which is of order n2, then one expects that the global
motion will be stable and that the switching on of the field
will not ionize the atom.

However, for very strong fields, condition (1) is not
sufficient to guarantee the stability of the atom. Indeed,
in such a situation, the typical value of the velocity of the
electron is of the order of ¢/w; therefore the distance 7 at
which the Coulomb energy becomes comparable with the
kinetic energy of the electron is 7~ (w/€) 2. It follows that
the interaction time t with the nucleus is 7 —~wr/e
~(w/€)? and the change in the field’s phase durin; this
interaction is ~w?*/e3. Asa consequence, if €> w*3, the
change in this phase is small and the interaction of the
electron with the nucleus is similar to a collision with an
elastic ball: After one such collision, the increase of elec-
tron energy is of order (¢/w)? and the atom will ionize
[6]. From the above discussion it turns out that in order
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to have a stable atom it is necessary that the distance r be-
tween the electron and the nucleus is larger than the size
Ar of the oscillations in the free field. Since r =n?(1 —e),
where e =(1 —/2/n?)"? is the eccentricity of the orbit, it
follows that the condition for the stability of the atom is

1/2
Ve ] . @

€

(i e
Therefore we expect the atom to be stable if the initial or-
bital momentum / is larger than the maximum of the two
values given by (1) and (2). Of course, a necessary condi-
tion is 2e/w®<nd or €< wd/2, where wo=wng and
€0 =¢€ng are the usual rescaled field frequency and intensi-
ty, respectively.

In order to check the above predictions we integrated
the classical equations of motion for a hydrogen atom in a
linearly polarized electric field. We restrict ourselves to
states with zero value of the projection of the orbital an-
gular momentum along the field direction (magnetic
quantum number m =0). Due to the symmetry of the
Hamiltonian this projection is an integral of the motion
and the orbits of the electron lie in a plane. The Hamil-
tonian has the form

pxz Pv2 1

H=7+—2—-—W+excoswt. 3
We have chosen an initial distribution of trajectories cor-
responding to fixed principal and orbital quantum num-
bers, ng and /, and with uniform distribution in the conju-
gated phases, A and y. We organized the computer code
in such a way as to have efficient computations in both op-
posite cases when the electron is close or far from the nu-
cleus. The switching on (and off) of the field ¢ has a sine-
square shape (sin’wt/N) and takes place in a number of
periods of the external field N =50. However, we checked
that changing the switching time NV does not appreciably
influence the results.

A characteristic feature of the motion are the fast oscil-
lations in the strong laser field superimposed on the slow
motion along the Kepler orbit. A typical example is
shown in Fig. 1(a). Since the size of the oscillations is less
than the distance from the nucleus, the strong laser field
does not lead to ionization. In Fig. 1(a) we show only a
few periods of the orbit; however, we checked the stability
of the atom up to a thousand orbital periods of the elec-
tron. In the opposite case, when the size of the oscillations
is comparable to the distance from the nucleus, after a few
orbital periods the electron collides with the nucleus and
the atom ionizes [Fig. 1(b)].

In Fig. 2 we plot the survival probability W, (the frac-
tion of nonionized atoms) as a function of the field
strength € for fixed initial //n=3/4 and fixed frequency
wo=50. The survival probability W; is equal to unity up
to a quite large critical value &. This means that the
atom remains stable even in a very strong field provided
that the orbital momentum is large enough. We may
compare this critical value € with the ionization border
(which coincides with the chaos border) e.=1/50wd"?,
which is correct for trajectories with a small value of an-
gular momentum (/ </.). The ratio of the two critical
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FIG. 1. (a) A classical trajectory for a stable Rydberg atom
in a laser field with éo=400, wo=50; the eccentricity of the or-
bit is e = 0.5(//n = 0.85). 250 field periods are shown. (b) An
ionized classical trajectory for the same field strength o and fre-
quency wo as for (a). The eccentricity is € = 0.9(//n = 0.45).

field values for ionization gives /e, ~10°.

For the case of Fig. 2 the analytical estimate (2) gives
€0==420 in agreement with numerical results. For ¢ < &
the energy of the electron after the laser pulse was near its
initial value. For €y > & practically all trajectories ionize
and the transition around & is quite sharp. Moreover, for
almost all trajectories, ionization occurs after only 1-3
passages near the nucleus corresponding approximately to
50-150 field periods. We checked that the remaining very
few trajectories which for €9>> € are not ionized during
the interaction time are due to the fact that after one pas-
sage near the nucleus the electron energy becomes very
close to the ionization border, so that the orbital period at
that energy is larger than the interaction time.

We also checked that this survival probability remains
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FIG. 2. The fraction of nonionized atoms W, vs the field
strength € for wo=>50. Solid circles correspond to initial orbital
momentum //n =0.75; asterisks correspond to //n=0.8. The in-
teraction time with the field is equal to 5000 field periods, and
the switching on and off of the field is equal to 50 field periods.

at the same level with increasing field intensity up to
€0==25000. Therefore we may conclude that above the
critical border (2) the atom is completely destroyed after
one or two Kepler periods.

We would like to stress the important difference be-
tween our results and previously published papers [1-
4,12-16]. In our case there is no atom stabilization:
Above the ionization border (2), which is quite high, the
atom is destroyed. However, our considerations were car-
ried out for the classical atom and the conditions for their
applicability to real atoms are no>1 and ng *<Kw<1.
Due to this fact our results do not contradict the numeri-
cally observed stabilization for the hydrogen atom with
w=l.

The asterisks in Fig. 2 give the survival probability W;
for the case //ng=0.3 </./ng. Since stability conditions
(1) and (2) are violated, ionization takes place for all
values of €p, down to the chaos border ¢p~0.1.

The above numerical results support the theoretical pre-
diction that stable states in strong fields can exist only for
relatively large values of orbital momentum.

The properties of the motion in the case of stable states
can be understood on the basis of an averaging procedure
over the fast oscillations of the electron. To this end it is
convenient to move to another reference frame in which
no field acts on the electron, and the nucleus oscillates ac-
cording to the law (e/w?)coswt [1,6]. In this frame the
potential is

1
= ' 4
v flx — (¢/w?) coswt]?+y 3 /2 @

Under the assumption that the amplitude of these oscilla-
tions is small and averaging over the fast oscillations (like
in the case of the Kapitza pendulum), one obtains the
effective Hamiltonian H.y, which describes the average
motion of the electron far from the nucleus,
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Since wo> 1, the last term in Eq. (5) can be neglected.
The preceding one is small in comparison with the usual
Coulomb potential and mainly leads to a regular preces-
sion of the ellipse with fixed angular velocity and fixed
value of the orbital momentum (the problem is equivalent
to the motion of a sputnik in the field of a compressed
earth) [17]. The frequency of precession is equal to
wpr=3€2/8w*n>I*. Our numerical measurement of the
precession rate for the averaged motion were in agreement
with this value.

As to the possibility of laboratory experiments, a con-
venient choice seems to be a CO, laser with w=0.1
eV=3.7x1073 au. With such frequency, the case of
Fig. 2, where wo =50, corresponds to atoms with ny=24.
According to the data of Fig. 2 the atoms will remain
stable up to a field intensity é=é&/nd=~6x10° V/cm.
Another convenient case for the experimental observation
of the effect predicted in this paper could be, for example,
no=>50; for a CO; laser wo= 450, and the atoms with or-
bital quantum number / = 30 will be stable up to a field
intensity e= 3% 10*/n§ =2.5%107 V/cm. Since there is
a well-developed technique to create Rydberg atoms
[9-11], the observation in laboratory experiments of the
stable states predicted here should be quite possible. At
first glance, the existence of such stable states in strong
laser fields appears to be quite unexpected since the ener-
gy of photons is larger than the ionization energy. How-
ever, it turns out that for large values of orbital momen-
tum the matrix elements for coupling with the continuum
become very small. This fact can be understood on classi-
cal grounds; indeed, the matrix elements are determined
by the Fourier components of the classical motion which
are very small for classical stable states where the electron
moves far from the nucleus.

An interesting consequence of the existence of stable
atoms in strong field is the fact that there is a large shift of
energy (AE = ¢’w ~%/2) for high principal quantum num-
bers, while there is a practically no shift for the ground
state of the atom, for which the field acts as a small per-
turbation (e and wo<< 1). For the case considered above
no=>50, the difference in energy is near 34 eV. In princi-
ple, the transition from the excited state to the ground
state can take place and one can observe photons with this
energy. A possibility to have relatively high probability of
such transitions is to have stable atoms which interact
with the laser field during a long time. Another possibility
is to increase the intensity of the laser field in such a way
that the electron will pass near the nucleus, where the
probability of being captured in the ground state is rela-
tively high.

Note added. After submission of this paper a new in-
teresting paper was published [18] in which, on the base
of quantum computations, stabilization was found for
w<1. We would like to stress that this is not in contra-
diction with our classical results, since in our case m =0
while in [18] m =5. Moreover, our present computations
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show that the value of m is of crucial importance for the
stabilization problem.
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