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We consider a kicked system on the cylinder obtained upon quantization of a chaotic area-preserving
map. We use the thermodynamic formalism to investigate the scaling properties of the fractal spectrum.
In time evolution we observe anomalous diffusion with an exponent closely related to the Hausdorff di-
mension of the spectrum, and dependent upon the parameters of the system.
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Periodically driven systems have been intensely studied
in the framework of quantum chaos: The kicked rotator
(see [1] for a review) is a typical system of this class (its
classical analog being the standard map), and the quan-
tum behavior is characterized by the suppression [2] of
classical deterministic diffusion which the standard map
exhibits in the chaotic regime [3]. This remarkable
phenomenon has also been invoked to explain experimen-
tal results, such as, for instance, peculiar behavior of
highly excited hydrogen atoms in a microwave field (see
[4,5] for a review).

Some light has been shed on this model by showing
that it bears significant analogies with Anderson localiza-
tion in 1D lattices [6]. Besides the classical perturbation
parameter, the dynamics of the quantum system is
governed by the ratio of the unperturbed and the external
frequencies: In particular dynamical localization appears
for almost all irrational values of this ratio, while for ra-
tional values the energy grows quadratically [2]. The
pure point character of the spectrum for irrational values
induces the absence of scaling in the hierarchy of finer
and finer band structures obtained by approaching the
frequency ratio through a sequence of rational approxi-
mants [7,8], as bandwidths shrink exponentially with
respect to the number of bands and this excludes the pos-
sibility of self-similarity.

On the other hand, it is known that fractal features of
the spectrum can appear in systems with quasiperiodic
potentials, as, for example, in the Harper model [9]. Re-
cently some numerical investigations [10] have suggested
the existence of a quantum system, the so-called kicked
Harper model (KHM), displaying a rich variety of tem-
poral behavior, from dynamical localization to quadratic
growth of energy or to diffusion. An important property
of this model is that the corresponding classical system is
chaotic, while the usual Harper model is integrable in the
classical limit. Interesting features of these models have
been analyzed [11,12], in particular as regards the level
spacing distribution and the decay of autocorrelation

functions. The investigation of such models is closely
connected to the motion of electrons in 2D lattices in the
presence of a magnetic field [13] and can lead to a better
understanding of the physics of such systems.

In this Letter we present results concerning time evolu-
tion and scaling properties of the spectrum. Dynamically
we find that the KHM system (in contrast to the Harper
model [11]) exhibits anomalous diffusion, with an ex-
ponent depending upon the parameters of the map. The
scaling properties of the spectrum are studied within the
thermodynamic formalism for multifractals [14-18].
The most important observation concerns the occurrence
of a phase transition, similar to the one observed in the
Hénon attractor [19]. To our knowledge this is the first
instance in which this kind of transition has been ob-
served in a quantum-mechanical framework.

The system we consider is obtained by quantizing the
area-preserving Harper map (see [10] for some discussion
on its behavior upon variation of the parameters):

Pnt1=pntKsin(x,), xp+1=xp —Lsin(py+1).

Following the usual procedure for quantum kicked sys-
tems we are led to the following one-period evolution
operator:

U=expl—i(L/h)cos(hi)lexpl—i(K/h)cos(x)], (1)

where 7= —id/dx, and no quasimomentum appears as
we consider x on a circle (and thus the global model act-
ing on a cylinder); A plays the role of an effective Planck
constant, which includes the frequency ratio of the unper-
turbed system and the external driving. The quasiener-
gies and the corresponding eigenfunctions are determined
by

U Ve=€
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There are rigorous mathematical results ([20], and refer-
ences therein) that allow one to conclude that in the sym-
metric case (K =L self-dual case [21]), the quasienergy
eigenstates are delocalized [22].
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We now focus our attention on strongly irrational
values of A/2z In particular we consider A =2z/(m
+pgm) with pgm=(~/5+1)/2, approaching this value
through a sequence of rational approximants {p,/qn}
determined by successive truncations of the continued-
fraction expansion of A/2x. Each of these approximants
introduces periodicity in p, leading to a band spectrum
with Bloch eigenfunctions. On the unperturbed basis we
thus have eigenfunctions of the form @544 =e —i“’¢s,
s=1,...,qn, 1 €Z, a€l0,1), and (2) reduces to the
matrix equation [23]

U(a));s 0(a)y=¢(a);e ~7@@

By varying a, and diagonalizing U(a), we thus get g,
bands, whose widths are denoted by {wie}. Note that or-
der by order the number of the bands increases exponen-
tially, with a geometric factor given by pgm, as each
{pa},1gs} sequence obeys Fibonacci recursion relations.
The fractal features of the limiting set are thus analyzed,
in the framework of the thermodynamic formalism
[14-18], by introducing the free energy g(z),

o 2
g# " =Y w5, g(r)=1lim g,(z). 3)
i n—o

This is the correct thermodynamic function if we assign
equal probability to each band. This is physically moti-
vated by considering that each band contains the same
number of states [9], but other choices are in principle
possible [24,25] (like use of the spectral measure as in
[12]; we will discuss the different possible thermodynam-
ics in a separate publication [26]). The set of scaling ex-
ponents u [24], giving the geometric rate of shrinking for
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FIG. 1. In|D, —Dy| vs approximant order n (labeling pn/ga
rationals) for K =L =5, h =27/(18+ pgm). Geometric charac-
ter of convergence is manifest.

bandwidths, are determined by pi()= —logwim/10gqn;
their relative relevance is exhibited via the scaling spec-
trum s(u), which is introduced by reordering the parti-
tion sum appearing in (3) by increasing bandwidths,

(n) o
Wi = j; duge ™™™, s(u)=lim s,(u). (@)
i min n— oo

These functions [24,25] are related by the usual thermo-
dynamical Legendre transform
gr)=Sw +zu,
_dg(7) = ds(u)
dr ’ dpy ’

where S(u) [obtained by a stationary phase evaluation of
the integral in (4)] is the convex envelope of the scaling
spectrum s(u). We remark that distinguishing between
s(u) and its convex envelope S(u) is not a mathematical
subtlety: It is a possible way of diagnosing the oc-
currence of phase transitions [24,25]. In the same
fashion we have to pay attention to the way the limit pro-
cedure on (3) and (4) is attained, since relevant, and
sometimes subtle, finite-order effects [24,27] may appear.
We notice that the Hausdorff dimension plays a particu-
larly relevant role in this context, as it does not depend on
the probability measure upon the set, being uniquely
determined by metric properties of the asymptotic set.

Our investigations focus on the symmetric case, K =L
[28]. The thermodynamic analysis of the spectrum along
this critical line shows how well scaling behavior coexists
with abnormal scaling: In contrast with the critical case
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FIG. 2. Mean scaling index g'(tr) for K=L =5, h=2xn/
(18+pgm) for different rational approximants (solid line:
Pnlqn=8/157; dashed line: pa/g,=13/255; dotted line:
Pnlgn=21/412).
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FIG. 3. Scaling spectrum (dashed line) and its convex en-
velope (solid line) for K =L =5, h =2x(21/412): The differ-
ence between the two curves signals a Hénon-like phase transi-
tion.

of the Harper model [9] maximal scaling indices gmax in-
crease by taking successive rational approximations (this
corresponds to bandwidths shrinking faster than geome-
trically). In analogy with solid-state models [9] and
kicked rotator analysis [7] this may be interpreted as a
remnant of the discrete spectrum. Along with these ir-
regular features signatures of regular scaling coexist:
Computation of the Hausdorff and information dimen-
sions shows an overall geometric convergence (see Fig.
1). Mean scaling plots (see Fig. 2) display a rather sharp
distinction between the two phases, respectively dominat-
ed by pmin and umax. However, there is no quantitative
indication of a conventional phase transition (like scaling
of the maximum of the second derivative of the free ener-
gy [29]), but the situation resembles what happens for
the Hénon attractor [19]: There, nonconvergence of pmax
is also present (being induced by the existence of almost
stable periodic orbits). Another confirmation of irregular
behavior for high values of the scaling index comes from
the analysis of the scaling spectrum s(u) (built up by just
making a statistics of bandwidths w;(,)) as compared with

TABLE 1. Hausdorff-dimension estimates (by geometric ex-
trapolation of finite order data) for a set of parameter choices,
together with the diffusion exponent divided by 2.

Parameters Dy a/2
K=L=5, h =27/(18+ pgm) 0.68 +0.01 0.71 £0.02
K=L=5, h =2x/(6+pcm) 0.56 +0.02 0.57 +£0.05
K=4 L=2 h=2r/(6+pcm) 0.95+0.01 1.00 +0.01

3828

T

T

_—

Logit
FIG. 4. Asymptotic dependence of log{An#) on logt for
K=L=5, h=21/(18+ pgm) (solid line): The dashed line has a
slope 2Dy =1.36, while the dotted line has slope 1 (case of nor-
mal diffusion).

its convex envelope (obtained via a Legendre transform)
(see Fig. 3). The lack of convergence for 7 > 7. (which
is close to zero) leads to the conclusion that only scaling
indices pertaining to this 7 < z. stable phase should have
any meaning: This is the case for the Hausdorff dimen-
sion which is determined by g(—Dg) =0.

So far we have considered scaling features of the spec-
trum: We would like to connect these features to dynam-
ical behavior. A claim has been made that (An?) ~1® and
a=2Dy [30,31], where universal features of small-scale
level separation should yield Dy =0.5 [11,30] in the sym-
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FIG. 5. Hausdorff-dimension estimates [(O) A =2x/

(6+pcm), @ h=21/(18+pcm), (&) A =2x/(1+pcm), (&)
h=2n/(3+pem)] vs K/h for a few critical states; X denotes
the limit point corresponding to the integrable Harper model.
For a few points error bars are also reported.
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metric case. A heuristic argument to explain the relation
a=2Dy is as follows [32]: Suppose we consider a time
evolution of an initial wave packet up to time 7. This
amounts to exploring the quasienergy spectrum with a
resolution bound by the uncertainty principle so~7 !
and this means that the quasienergy spectrum is resolved
in No(6w)~38w " components, that is N,(T)~TP*.
The corresponding spreading on an unperturbed basis is
given by (Anf)2~T2 so a=2Dy. We analyzed sym-
metric and asymmetric parameter pairs and found that
the relation @ =2Djy is approximately satisfied (see Table
I). The most remarkable feature is that the Hausdorff
dimension depends on the parameters of the model even
for the symmetric case; dynamically this means that the
diffusion is anomalous [see Fig. 4]. Anomalous diffusion
has also been observed for the Fibonacci model [33] and
for random walks on fractal structures [34]; however, it
was believed [11,12] that Dy in KHM should be the
same as for Harper’s model. In Fig. 5 we present numer-
ical data showing the dependence of Dy on the kick am-
plitude K/A in the classically chaotic case; these results
demonstrate an increase of Dy with K/h. For moderate
values of K/h the Hausdorff dimension Dy is close to the
Harper limit Dy = +: This explains why previous numer-
ical studies reported normal diffusion [10-12,31].

In conclusion we have analyzed spectrum scaling and
dynamical evolution of the kicked Harper model. The
multifractal analysis of its spectrum in the symmetric
case reveals the coexistence of robust geometric scaling
and irregular scaling, originating in a phase transition
very similar to the one observed for the Hénon attractor.
In contrast to the integrable Harper model we observe
anomalous diffusion ruling dynamical behavior. The ex-
ponent depends on the parameters and is approximately
equal to 2Dy. As the Hausdorff dimension has been re-
lated to universal properties of spectra [30], our results
should call for high-precision tests on level statistics,
which should depend upon the choice of parameters.
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