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Classical stabilization of the hydrogen atom in a monochromatic field
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We report the results of analytical and numerical investigations on the ionization of a classical atom in
a strong, linearly polarized, monochromatic field. We show that the ionization probability decreases
with increasing field intensity at field amplitudes much larger than the classical chaos border. This effect

should be observable in real laboratory experiments.
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The behavior of a hydrogen atom under the interaction
of a monochromatic, linearly polarized, electric field con-
stitutes one of the basic problems in both classical and
quantum physics. Even though, at least at first glance,
the problem looks very simple, the appearance of classi-
cal chaotic motion introduces a rich variety of different
regimes, and so far we do not have a satisfactory under-
standing, not even for the classical problem.

The one-dimensional (1D) model in which the electron
moves along a straight line in the direction of the field
has been studied in great detail in the past ten years.
This model correctly describes the excitation of real
atoms initially prepared in very extended states along the
field direction. For such a model it has been found [1]
that the classical ionization mechanism, at least for wy< 1
is connected to the appearance of chaotic motion for
€0> €p. = 250 173 which in turn leads to unlimited
diffusion and ionization. Here e,=en§ and w,=wnJ are
the rescaled intensity and frequency and n is the initial
value of the action variable (in the following we will use
atomic units).

In the quantum case the picture is substantially
modified by the so-called quantum localization
phenomenon, which leads to a suppression of classically
chaotic diffusion due to quantum interference effects.
According to localization theory [2,3], the field threshold
for ionization is higher than the classical one and it in-
creases with w,. This picture is valid if @, R 1 and provid-
ed that several photons are necessary to reach continu-
um.

It has also been shown [3] that, as far as the excitation
in energy is concerned, the 1D model describes the main
essential features of the two-dimensional case and even of
the real 3D atom, due to Coulomb degeneracy, which
leads to a slow change of orbital momentum and conju-
gated phases, making the system effectively described by
the one-dimensional Kepler map [3]. The above predic-
tions have been confirmed by laboratory experiments [4].

Recent investigations [5—8] have shown that for high
frequencies (i.e., photon energy larger than the unper-
turbed binding energy) and high intensities the photoion-
ization rate decreases with increasing field intensity.
Several mechanisms have been put forward to explain
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this unexpected behavior; the basic idea is that, by in-
creasing the laser field intensity, the amplitude of the
electron wave function is reduced near the nucleus, which
in turn leads to a reduction of the ionization rate. It has
also been shown [6,7] that for high magnetic quantum
number m stabilization should be observable. Experi-
mental observations of the suppression of ionization in
strong laser fields have been reported recently [8]. How-
ever, up to now, the stabilization of the hydrogen atom
was considered as a purely quantum effect only.

The purpose of the present Rapid Communication is to
show, via numerical computations, that stabilization is a
feature of the classical motion, to support this conclusion
with analytical arguments and to discuss the dependence
of the stabilization field threshold on the parameters of
the problem. This remarkably implies that stabilization
may occur even at small frequencies, much less than the
frequency for one-photon ionization. We surmise that
the classical stabilization phenomenon observed here is at
the root of the corresponding quantum behavior.

In a previous paper [9] we have studied the classical
ionization mechanism in a linearly polarized field for
states with zero value of the projection of the orbital an-
gular momentum along the field direction (m =0). Due
to the symmetry of the Hamiltonian, m is an integral of
the motion and the orbits lie in a plane. We have shown
that if the orbital momentum / is large enough, the atoms
remain stable until the size of the electron oscillations in
the free field is comparable with the distance from the nu-
cleus. No stabilization is present here; however, the field
threshold value for ionization can be very high (for exam-
ple, for ny=24, wy=50, [/ny=0.75, we have
€, =€,/nh=~6Xx10°%V/cm).

The situation is qualitatively different for mO0.
Indeed, for m =0 the oscillations are always in the plane
of the unperturbed orbit, and, as they become sufficiently
large, collisions may take place with the nucleus and ion-
ization will follow. Instead, if m #0, collisions with the
nucleus can be avoided and the stabilization phenomenon
is not a priori excluded.

The Hamiltonian of our problem is more conveniently
written by means of cylindrical coordinates in a reference
frame oscillating with frequency w;
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where € and o are the field strength and frequency. The
properties of the motion can be understood on the follow-
ing grounds. For large frequencies w,=wn3 >>1 and for
large oscillation amplitude of the nucleus €/w?>>n3 one
can consider the oscillating nucleus as a charged thread
with a linear charge density o slowly dependent on z:
o(z)=[w?/(me)]/[1—(zw?/€)?]'/%. Therefore, for z and
p smaller than €/w? one can approximately describe the
averaged motion by means of the Hamiltonian

_p!

2 2
=22 P m o (n

2
R @

po’
€

The expression for the potential in (2) is valid as long as
p S €/w?, while for larger p values the potential is approx-
imately zero. The conditions under which expression (2)
gives a good description of the motion (1) will be dis-
cussed below.

From Eq. (2) it is easily found that the minimum of the
potential (for z <<€/w?) is at p=V 'me/2(m /w). The fre-
quency of the oscillations in p near p is Q ~w?/(em ) and
the energy required for ionization (the depth of the po-
tential) is approximately
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The minimum distance p,,;, between the nucleus and the
electron can be found from the condition m?/(2p2;, =1
and gives
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which grows with the field strength €. The physical
reason for this growth of p.;, with € is quite clear: the
large amplitude of the field oscillations leads to a decrease
of the attractive Coulomb force, and the repulsive centri-
fugal potential leads to an increase of the minimal dis-
tance between the nucleus and the electron.

The averaged Hamiltonian (2) gives a good description
of the electorn motion if the frequency of the oscillations
in p is much smaller than the frequency of nuclear oscil-
lations () <<w); this condition is fulfilled for a
sufficiently strong field, namely,

€> €un=F 5)

where 3 is some numerical constant. The same estimate
for the stabilization border €,, can be obtained from the
condition that the change in energy AE, due to one pas-
sage of the electron at the distance p,;, from the nucleus,
must be smaller than I. In fact, the change of the
momentum is Ap ~At/pi,~w/(€py,), which gives
AE ~o”/(€°p;,), that is, less than I if Eq. (5) is satisfied.
Therefore, for €> €, the frequency of nucleus oscilla-

racy [ =exp(—const Xw/Q)].

In order to check the above estimates we investigated
the process of ionization of the classical atom by numeri-
cal solution of the exact Hamiltonian system (1). The ini-
tial distribution of classical trajectories was chosen to
model a quantum state with fixed values of principal
quantum number n,, (action), orbital momentum /, and its
projection on the field direction m (magnetic quantum
number). Therefore the classical trajectories had the
same initial value of n,/,m and the phases conjugated to »n
and / were homogeneously distributed in the interval
[0,27]. The field was smoothly switched on and off dur-
ing a number of field periods T, =w,, and the total in-
teraction time (number of field periods) was chosen as
T = 500w, (so that the physical interaction time was al-
ways fixed and equal to 500 unperturbed periods of the
electron). Different values of w, were considered, from
@p=1 up to wy=30. We numerically investigated the
dependence of the ionization probability W, (or stabili-
zation probability W, =1— W, ) on the field strength
€. The ionization probability W,,, was determined as the
relative number of trajectories with positive energy after
the field pulse (the total number of trajectories for each
run was taken equal to 100). The numerical results for
W ap are presented in Fig. 1. The most remarkable fact is
the appearance of a large fraction of nonionized trajec-
tories with increasing field intensity. It has been found
that the increase of T, in a few times leads to practically
complete ionization, even for fields where stabilization
takes place in Fig. 1. Indeed, if T, is larger than w,,
then during the switching the electron will be able to
come close to the nucleus and then will be easily ionized.
We remind the reader that for relatively small fields the
change of the electron’s energy after one passage near the
nucleus is 2.6(e/w?3)(1—m?/1?)"/? [3], and this ex-
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FIG. 1. Dependence of stabilization probability W,
(Wsab=1— Wi,,) on field strength €, for wo=1 (%), 3 (+), 10
(0), and 100 (A) with initial values m /n=0.25, 1/n=0.3.
The interaction time is equal to 500w, field periods. (Sets of nu-
merical points are jointed by segments to guide the eye.) For
the case w,=1 we have computed W, also for small €, down
to the chaos border.
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plains why there is practically complete ionization for
€,=~1-10 [10]. The dependence of the stabilization bor-
der €,, defined as the value of € for which W, =0.2 is
presented in Fig. 2. It is seen that the dependence of the
stabilization border on @ is approximately linear, in
agreement with Eq. (5) with the numerical constant
B=12. Another feature of Fig. 1 is the disappearance of
stabilization for very big field values. This effect can be
understood on the grounds of the expression (4) for p_;..
Indeed, since in the initial distribution p <2n (2), the orbits
cannot be captured by the potential in (2) if p;,>2n3.
This leads to the estimate for the destabilization border
€gestab =~ 16L 03 /(mm*n}), which is in agreement with the
data of Fig. 1. However, let us mention that for € > €441
stability is possible for orbits with bigger initial distance
from the nucleus.

The dependence of the 20% ionization border €g,, on
m is presented in Fig. 3. It is seen that for m >0.03 the
numerical data are in approximate agreement with Eq.
(5), with B=12. However, for smaller m values, €, be-
comes practically independent of m. This can be under-
stood by taking into account that for small m the value of
€4ap Decomes so large that the period of oscillations in p
[sz(e/wz)/v=(6/w2)/(co/ €)] is comparable with
the time of interaction with the field. Direct observation
of the orbits nonionized after the field pulse shows indeed
that they suffer only few collisions with the line p=0.

We have also analyzed the dependence of W, on the
relative value of the parameters n,,/,m. For example, for
€,=5000, w,=10, and a fixed value of the ratio
1/n3=0.3, we have found that the probability W, de-
creases with m; this is in agreement with the results of
[9], in which it is shown that there is no stabilization for
m =0. Moreover, for fixed m /n, the probability W,
decreases with increasing I. However, for a more accu-
rate understanding of the properties of the motion over
the whole range of parameter values ny,l,m, more de-
tailed analytical and numerical investigations are needed.
In Fig. 4 we present two typical orbits in the (p,z) plane.
It is seen that the minimum distance between the electron
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FIG. 2. Dependence of the 20% stabilization border on Wy
for m /ny=0.25, 1/n,=0.3. The straight line corresponds to
the analytical estimate (5) with =12 (least-squares fit).
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FIG. 3. Dependence of the 20% stabilization border on
m /ng for wy=10 and m /1 =5/6. The straight line corresponds
to the analytical estimate (5) with 8=12.
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FIG. 4. Examples of long-living trajectories for €,=10%
wo=30. (@ m/ny=0.125, 1/ny=0.15; numerically
Pmin/n§~0.15 and the ionization time is larger than 15000 mi-
crowave periods; (b) m /ny=0.035, [ /n,=0.04, pyi,/n§~0.04,
and the trajectory was ionized approximately after 50000 mi-
crowave periods.
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and the nucleus is in agreement with the estimate (4).
However, the numerical analysis reveals other interesting
features. Indeed, for the case of Fig. 4(a), p;, is relative-
ly large, and ‘“collisions” with the line p=0 do not
change much the energy E, of the motion in the p direc-
tion, so that this change happens only near |z|=€/w?
where the approximation (2) is no longer valid. Probably,
the motion is such cases can be integrable. For small m
(Pmin) the collisions lead to the change of E, and after
many of them the orbit is ionized [Fig. 4(b)]. Such a type
of motion can correspond to chaotic ionization. Unfor-
tunately it is difficult to construct an analytical theory of
the motion due to the absence of simple analytical expres-
sions for the averaged potential.

Returning back to the stabilization border (5) we need
to mention that it was derived under the assumption that
Prmin < €/@?, which gives € > m2w?. Another condition for
the described picture is the nonapplicability of the
Kepler-map picture, which is €>o*3 [3]. Since we are
interested in fields of the order of e=~pBw/m, all this im-
plies mw!/3 << 1. The case of opposite inequality, which
is possible for very high o, seems to be less interesting.
Indeed, for € <m?w?/2 the atom will remain stable due
to the large distance between the electron and the nucleus
(as it was in [9]). For m20w?/2 <€ <€geqap 2 significant
fraction of the orbits will remain stable, due to condition
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(5), and for €> €4.,p, fast ionization will take place. As a
consequence, for mw'/>>>1 stabilization does not take
place, but atoms remian stable up to very strong fields.
Further numerical investigations are required for this re-
gime.

Finally we would like to mention when the above clas-
sical picture can be applied to real atoms. The sufficient
condition is that the depth of the potential I must be
larger than the energy of the photon. This gives
€>w<<1 and together with (5) gives the stabilization
condition m >>f. This obviously does not rule out the
existence of stabilization, of pure quantum origin, for
m < (or €>w). We think that the classical stabilization
discussed above can be observed in real experiments with
Rydberg atoms. For example, for experiments [4] with
o /(2m)=~20 GHz, ny=70, m =35, the stabilization bor-
der (5) corresponds to e=~2X 10> V/cm, which requires
the use of powerful sources of microwave radiation.

Note added. After submission of this paper results [11]
that numerically confirm the absence of stabilization in
the regime mw!/3>>1 and the existence of stabilization,
even for a=€/w?< n(z,, were obtained. In addition, argu-
ments based on the analogy between stabilization and
channeling of relativistic particles in a crystal support the
conclusion that stabilization takes place also in the quan-
tum case when > I.
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Milano, Milano, Italy.
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