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HYDROGEN IN MONOCHROMATIC FIELD:
STABILIZATION AND CHANNELING VS. CHAOS

D.L.Shepelyansky(®}

Laboratoire de Physique Quantique Université Paul Sabatier
118, route de Narbonne, 31062 Toulouse Cedex, France.

ABSTRACT

The results of analytical and numerical investigations of classical atom in
strong monochromatic linearly polarized electric field are presented. It is shown
that the atom exhibiting fast chaotic ionization in small field becomes stable in
the strong field limit. Analytical estimates for the dependence of the stabilization
border on field frequency and projection of orbital momentum on field direction
are obtained and compared with the results of numerical simulations. The anal-
ogy between stabilization and channeling of electrons in a crystal is established.
Conditions for the observation of stabilization of Rydberg atoms in laboratory
experiments are discussed.

INTRODUCTION

Since the pioneer experiment of Bayfield and Koch in 1974 ! the problem of
ionization of highly excited states of hydrogen atom in a monochromatic electric
field attracts a great deal of attention (see * and Refs. there in). It happened
that this system with quite simple equations of motion lies on the intersection
of few modern lines of development in physics being the following: classical and
quantum chaos, Anderson localization, multiphoton ionization, Rydberg atoms.
Only the knowledge of the physics of these fields allowed to understand the origin
of the fast ionization observed in the experiments. During the long time there was
the impression  that due to high values of principal quantum number (ng ~ T0)
the ionization process can be understood on the hasis of classical equations of mo-
tion which give rise to classical chaos and fast diffusive excitation. However, the
first theoretical investigations of quantum problem ¥ showed that under certain
conditions quantum effects can lead to localization of classical chaos and sharp
suppression of ionization. Further researches allowed to find the quantum delo-
calization border above which ionization goes in a classical way and below which
ionization probability is negligible in comparison with classical value ®. The origin
of this phenomenon can be understood on the grounds of the Kepler map descrip-
tion and analogy with the Anderson localization in solid state ®. After that there
was the impression that the physics of that system is mainly clear. However,
recent results for stabilization of atom in strong field 7 showed that still there are
many open questions. While in 7 the authors tried to analyse directly the quan-
tum problem from my viewpoint the quantum analysis can be more successful at
the second step after the understanding of the physics of classical atom in strong
field. Seme first results in that direction were announced in ®®. The analysis of
classical stabilization, its applicability to the quantum case and its analogy with
channeling of particles in a erystal will be the main subject of this talk.
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495 Stabilization and Channeling vs, Chaos

KEPLER MAP

The great improvement of the understanding of the process of ionization of
excited states in hydrogen atom by a monochromatic linearly polarized field had
been achieved on the grounds of one-dimensional atom model >*6, This model
gives a good description of excitation not enly for the states extended along the
field direction * but also for the 3-dimensional states as it was shown in ©. In
the classical case the dynamics depends only on rescaled field strength ep = eng®
and frequency wy = wng? (here and below we use atomic units, ng is the principal
guantum number of initially excited level). The typical experimental conditions 1+
correspond to ng = 70, €5 == 0.05, wy = 1 so that up to 40-70 photons Ny = np/2up
are required to ionize one atorn.

Nurmerical and analytical investigations of one-dimensional model showed that
in the case of high microwave frequency (wn® > 1) the dynamics of the system,
which originally is ruled by the continuous Hamiltonian equations, can be de-
scribed by the Kepler map ©:

N=N+ksing, ¢=¢+2mo(—-20N) (1)

Here k = 2.58¢/w®?, N = E/w has the meaning of the number of absorbed or
emitted photons (E is the energy of the electron), ¢ is the phase of microwave
field at the moment when the electron passes near the nucleus. The bar denotes
the new values of the variables after one orbital period.

The physical reason due to which the motion can be quite accurately ® de-
scribed by the simple area-preserving map is the following: when the electron is
far from the nucleus microwave field leads only to a small fast cseillations which
doesn't modify the average energy and the Coulomb trajectory of the electron.
The change of energy happens only at perihelion where the Coulomb singularity
leads to a sharp increase of the electron velocity. lonization takes place when the
energy of the electron becomes positive after a pass near the nucleus N > 0. Then
the electron goes to infinity and never returns back. Therefore for the map (1)
ionization is equivalent to absorption of trajectories with N > 0.

The Kepler map (1) can be locally reduced to the Chirikov standard map
10 For that one needs to linearize the second equation in (1) near the resonant
(integer) values of wn® that gives:

N=N+ksing, ¢=¢+TN (2)

with T = 67w?n®. After quantization the variables (N, ¢) become operators
with commutation rule [N, ¢] = —1, the fractional part of N is constant and the
system is locally equivalent to the quantized Chirikov standard map (quantum
kicked rotator) !*. Since in (2) global chaos takes place for K = kT > 1 we
come to the conclusion that diffusive excitation in (2) takes place if X = kT =
4965up"/? > 1. The diffusion rate is equal to D = k*/2 and according to ''* the
localization length for the steady-state distribution, measured in the number of
photons, is equal to [y = D = 3.33¢* fw'®3, The difference from the localization
length for a quasienergy eigenfunction where [ = I}/2 is connected with the strong
fluctuations at the tail (see '), If the localization length is less than the number
of photons required for ionization N then the lonization rate will be exponentially
small: W ~ exp(=2N;/ls). In the opposite case ly = D > N the delocalization
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takes place and the process of ionization is close to the classical-one. In the 3-
dimensional atom the Coulomb degeneracy leads to a slow motion along energy
surface that allows to describe the excitation in energy also by the Kepler map with
a small change of constant k ¢, Numerical simulations with the quantum Kepler
map !? reproduce the 10%-threshold for ionization obtained in the laberatory
13 Quantum suppression of classical chaotic ionization was also observed in the
laboratory experiments with hydrogen '* and rubidium '* atoms.

STABILIZATION

Being very successful in the description of energy excitation the Kepler map,
however, cannot be applied for the case of very strong field. Indeed, in its deriva-
tion it was assumed that the change of energy after one kick kw is much larger
than the energy of free oscillations */2w*. This gives the condition of applicability
of the Kepler map picture ®:

€ << €4T) re Hwt/? [3}

Let us note that this condition is independent on the initial state since ng doesn’t
enter directly in the expression for eqry.

In the cne-dimensional case for € >> ey a collision with the nucleus, being
unavoidable, goes in a fast way like with an elastic wall leading to a prompt
iomization . In the two-dimensional case for zero magnetic quantum number m
such collision also always takes place if the amplitude of free oscillations €/2w?
is larger than the unperturbed distance between the electron and the nucleus in
perihelion #/2 (1 is the orbital momentum). This gives the condition of prompt
ionization for [ > (3fw)'® &

e > w4 (4)

where it was assumed that [ is few times less than n. For | < (3/w)"/® ionization
is ruled by the Kepler map and for € > wp*®/2.6 prompt ionization takes place
after one orbital period (see (1)). Therefore, there is no stabilization of classical
atom in the strong field for m = 0.

A qualitatively different situation arises for the case of non-zero projection of
orbital momentum m on the field direction. For linear polarization the projection
m is the exact integral of motion and it creates for Lthe electron a possibility to
avoid close collision with the nucleus. To analyse the motion in the strong field it
is convenient to use an oscillating frame and cylindrical coordinates in which the
Hamiltonian has the form:

2 2 b
g=f P B _ x (5)

2 2 2t (PP (z— v | sinl:wr]l}i}'.-"?

If the frequency of the nuclear oscillations is large enough (the condition will
be given later) then in first approximation the nucleus can be considered as a
charged thread with a linear charge density o slowly dependent on z: o(z) =
w?/(me(l = (zw?/e)*)'/?). Then, for small z and p the Hamiltonian of averaged

motion takes the form ¥

gt pt . m st .
s T + T + 2_;.‘!; -+ EU{Z] ln{T} I:f}]
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The constant under the logarithm takes into account that for p >> ¢/w? the
coupling energy becomes much less than w?/e. From (6) one easily finds the

position of the potential minimum g = /7e/2m/w and the frequency of small

oscillations ) = 2/2w?/(rem) (for z << €/w?). The depth of the potential or
the energy required for ionization of atom is approximately I &= 2w*L/7e with
L = In(2¢/(emw?m?®)) /2. The minimal distance between the nucleus and electron

is determined by the condition I = m?/2(pmin)* giving:

m re
me == 2‘# L {T}I
The physical reason for the growth of the minimal distance with the field strength
is the following: with the increase of the field the amplitude of the field oscillations
grows leading to the decrease of attractive Coulomb force while the centrifugal
potential remains the same.

The averaged description of the motion (6) is correct if the frequency of field
oscillations w is much larger than the frequency 1 of oscillations in p. In that
case the averaged Hamiltonian (6) is the constant of the motion with adiabatic
accuracy and ionization of atom doesn't take place. This gives the stabilization
border ®: &

£ Caap = O— (8)
T

where o is some numerical constant. The same estimate can be obtained from
the condition that the change of energy AE during the collision between the
electron and the nucleus is smaller than I. Indeed, the change of the momentum
is Ap = At/ pmin® & w/(€pmin) and the change of the energy AE = w? /(e pmin?) is
less than I if (8) is satisfied. Another condition intrinsically used in derivation of -
(6) and (8) is ppin < €/w? which gives ¢ > m*w?. Also, there are two qualitatively
different situations depending on the ratio between m and (3/w)'/?. In the case
m << (3/w)"/? (stabilized atom regime) we have m*w? << 5w << aw/m =
€stap. For small field amplitude (3) the excitation is described by the Kepler map
and the complete ionization after one orbital period of the electron takes place
for eg > wp??/2.6 ®. Between this border and above chaos border e = 1/49w/?
ionization goes in diffusive way which is also relatively fast. However, for the
more strong field (8), when the Kepler map picture is not valid (see (3)), atom
becomes stable. The case of opposite inequality is less impressive. Indeed, for
m >> (3/w)Y? (stable atom regime) we have aw/m << 5w'? << m%w? and
atom remains stable (nonionized) up to ¢ ~ m*w? as it was in (4) ({ ~m). Above
this value a significant portion (order of half) of atoms will remain stable since
condition (8) is satisfied. Finally, ionization takes p]ace only when the value of
Pmin |7) becomes larger than the size of the atom 2ng? and the electron cannot
be captured in the stable region during the switching of the field. This gwes the

destabilization border
16 Lew? nu\?\ ¥ 9
mTm? }

This border is also valid for the case m << (3/w)'/?. Of course, in that case the
stabilization can be observed only for the time of field switching T, less or order
of one orbital period of the electron. Otherwise a collision with nucleus will take
place at field strength € < €., and atom will be ionized.

Cdeatah ==
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The results of numerical simulation of ionization process of system (5) are
presented on the Fig.1l. The stabilization probability Wy = 1. — Wiea is given
for different field strengths ¢ and frequencies (we=0.3 (o), 1. (#), 3. (+), 10.
(<), 30. (A), 100. (#), 300. (A), 1000 (e)). The ionization probability Wi,
was defined as the relative part of the trajectories with positive energies after field
pulse. The initial distribution of 100 trajectories (25 for wg = 1000.) corresponded
to a quantum state with fixed spherical quantum numbers (fixed actions and
equipartition in conjugated phases). The initial value of orbital momentum was
equal to I/ny=0.3 and its projection was equal to m/ny=0.25. The time of field
switching (on/off) measured in the number of field periods was chosen to be equal
to Tew = wo (one unperturbed orbital period of the electron). The pulse duration
of the field was T, = 500wy (500 orbital periods). The data clearly demonstrate
the stabilization of atom for field strength larger than some critical value. It is
convenient to define the stabilization border as the field strength e,00(20%) for
which Wy = 0.2, The dependence of €,.0(20%) on wyp, extracted from the
data of Fig.l, is presented on Fig.2. The numerical data (black points) are well
described by the theoretical expression (8) with a = 12 (straight line) in the wide
frequency range. This dependence continues up to wy = 1000 where we enter in
the stable atom regime with m > (3/w)"® and where stabilization disappears in
agreement with above theoretical arguments (see Fig. 1). However, the stability
of atom in that case is of the other nature than it was in ® since the condition (4)
is strongly violated. So, for such strong fields stability of atom is based on the
same physical grounds (8) as in the stabilized atom regime for m << (3/w)'/3,
The numerical check of the dependence of stabilization border €,,10(20%) on m is
presented on Fig.3 (I/m = 1.2) and also demonstrates good agreement with the
theory (8) (numerical data are presented by points, straight line gives the theory
[:8] with & = 12). However, some increase of €45 in comparison with (8) is visible
for small m. So, it will be good to have a more detail investigation of this region
(see also ).

Another characteristic feature of Fig.1 is the disappearance of stabilization
for very high fields. The destabilization border €4.1000(20%) defined from Fig.1
by the condition Wy = 0.2 (black points) is in satisfactory agreement with the
analytical estimate (9) (full line) as it is seeing on Fig.4. Due to this destabilization
atom can be captured in the stabilization regime only for the fields in the interval
awy[(mfng) < € < 16Lwp?/(x(m[ng)?). Therefore, the minimum stabilization
border for e is near 10. Let us note that it is possible to have stabilization even for
wp << 1 (see Fig.1) if the momentum is small enough (m/ny << wy). However,
in that case the size of atom will be quite big (& /wo?) leading to a small coupling
energy 1.

Another interesting regime of motion appears in the limit of high frequencies
and small m (wy =100, 300 on Fig.1). In this case the amplitude of nuclear oscil-
lations €/w? is much less than the size of unperturbed atom 2ng? and ionization
energy is practically the same as for unperturbed case. Numerical simulations
shows that the size of the atom remains comparable with the unperturbed one
during many orbital periods of the electron. Examples of two trajectories for
such case are presented on Fig. 5 (wp = 100, & = 8000) and Fig. 6 (w = 300,
€p = 20000) with initial [/ng = 0.3 and m/ny = 0.25. In both cases 10° field peri-
ods are shown. In these cases the significant change of the size of the orbits clearly
shows that the average energy is not conserved. Probably the motion is chaotic
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and after many many periods the orbits will be ionized. However, it is necessary
to develop a new theory for description of this process since the field is much
stronger than (3) and the Kepler map picture cannot be applied. In spite the fact
that efw? << ng® the condition pmin << ¢/w? is satisfied and the stabilization
border is still given by (8) that is confirmed by the data of Fig. 2. An example
of regular motion in the stable atom regime (m >> (3/w)"/?) is presented on Fig.
7 for wp = 1000, ¢, = 510%, m/ng = 0.25, {/ne = 0.3, 50000 field periods with
switching are shown.

CHANNELING ANALOGY

Here I would like ta discuss the analogy between the phenomenon of stabiliza-
tion of atom in strong field and the channeling of particles in a crystal (see for
example '® and Refs. there in). Let's consider the electron moving in the crystal
with the velocity v = ¢ = 137 (we will consider nonrelativistic case). Then in the
frame of the moving electron its interaction with the protons in the crystal lattice
will have approximately the form (5) if to take into account the interaction only
with a nearest proton. On the grounds on that analogy we find that the effective
distance between atoms in the crystal a and the velocity of the electron are equal

to:
£ £

o= T L pe (10)
The frequency of perturbation is w = v/a so that ¢ = v*/a. Since in the erystal
the distance between the atoms is approximately the same in all directions the
analogy is valid for ¢/w? > ng?. The necessary condition of channeling is that the
critical injection angle # must be much less than one that implies: 0 = v, fv =
1/(vy/a) = (w*3/e)** << 1. This is the condition of unapplicability of the
Kepler map (3). From the stabilization condition (8) it follows that channeling
takes place for electrons with momentum m > 10f/v. This is always satisfied
for fast electrons with v =2 137. The existence of channeling for very energetic
electrons (that corresponds to strong field for stabilization problem) gives one
more evidence for existence of stabilization of atom in strong field. Since high
frequency radiation can be obtain from the channeling of relativistic electrons
it will be interesting to analyse the behavior of atom in so strong field that the
motion of electron is relativistic. On the basis of the above analogy it is possible
to expect strong radiation in the case of relativistic stabilization.

CONCLUDING REMARKS

In conclusion [ would like to discuss the possibilities of observation -of stabi-
lization in laboratory experiments. In the first order this puts the question about
the applicability of the above classical stabilization picture to the real quantum
atom. The necessary condition discussed in ? is that the number of photons re-
quired for ionization in (6) is much larger than one (/ >> w). However, on
the grounds of the channeling analogy this condition seems to be too restrictive.
Indeed, channeling takes place even when the motion in the direction perpendic-
ular to propagation is purely quantum and when the frequency w = v/a is much
greater than the coupling energy. The reason for that bases on the adiabaticity of
the averaged motion which gives exponentially small Fourier components for high
frequencies (or small matrix elements for transitions into continuum). Therefore,
the stabilization will also take place in the quantum case if the conditions (8)-(9)
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are satisfied. However, the motion can be of a purely quantum nature if the low
levels in the averaged potential (2) are excited. According to (8),(9) for ng >> 1
and m ~ 1 it is possible to have the energy of electron oscillations (¢/w)?/2 >> 1
even for ¢ << 1 and w << 1. In this case the energy of the ground state is
approximately the same as in the unperturbed case and therefore such stable (or
long living) atom can radiate photons with the energy much greater than 13 ev
during the radiative transition to the ground state. In the quantum case with
m = 0 it is natural to expect that the stabilization border will be of the same
order as for m = 1 giving €y, ~ 10w. For ng = 30 and the frequency of CO; laser
(w ~ 1300, wy == 100) the stabilization border e, will change in the interval
210° to 107 V/cm for the change of mn from 1 (or 0) to 15.

Of course, future investigations are required for a better understanding of the
stabilization both in the classical and quantum cases.

I would like to thank Professor H.Walther for the stimulating interest to my
chaotic researches of Rydberg atoms.

REFERENCES

(z) On leave from Budker Institute of Nuclear Physics, Novosibirsk, Russia.
1. J.E.Bayfield and P.M.Koch, Phys. Rev. Lett. 33, 258 (1974).
2, R.V.Jensen, 5.M.Susskind and M.M.Sanders, Phys. Rep. 201, 1 (1991).
3. K.A H. van Leeuwen, G.V.Oppen, 5.Renwick, J.B.Bowlin,P.M.Koch,
R.V.Jensen, O.Rath, D Richards, J.G.Leopold, Phys. Rev. Lett.
55, 2231 (1985).
. D.L.Shepelyansky, Preprint INP 83-61 (Novosibirsk, 1983); Proc. Int. Conf.
on Quantum Chaos (Como 1983), Ed. G.Casati (Plenum, N.Y., 1985) p.187.
5. G.Casati, B.V.Chirikov, I.Guarneri,D.L.Shepelyansky, Phys. Rep. 154, 77
(1987).
6. G. Casati, I. Guarneri and D.L. Shepelyansky, IEEE J. Quant. Elec. 24, 1420
(1988).
. M.Pont, N.R.Walet, M.Gavrila, C.W.McCurdy, Phys. Rev. Lett. 61, 939
( 1988%: M.Dorr, R.M.Potvliedge, R.Shakeshaft, Phys. Rev. Lett. 64, 2003
(1990); Q.5u, J.H.Eberly, J.Javanainen, Phys. Rev. Lett. 64, 862 (1990);
K.C.Kulander, K.J.Schafer, J.L.Krause, Phys. Rev. Lett. 66, 2601 (1991);
R.J.Vos, M.Gavrila, Phys. Rev. Lett. 68, 170 (1992).

8. F.Benvenuto, G.Casati, D.L.Shepelyansky, Phys. Rev. A, 45, RT670 (1992).
9. F.Benvenuto, G.Casati, D.L.Shepelyansky, preprint DYSCO-006, International
Institute for Interdisciplinary Study of Dynamical Systems, Como, (1992).

10. B.V.Chirikov, Phys. Rep. 52, 263 (1979).

11. B.V.Chirikov, F.M.Izrailev and D.L.Shepelyansky, Sov. Scient. Rev. 2C, 209
(1981); Physica 38D, 77 (1988).

12. G.Casati, L.Guarneri and D.L.Shepelyansky, Physica 163A, 205 (1990).

13. E.J. Galvez, B.E. Sauer, L. Moorman, P.M. Koch, . Richards, Phys. Rev.
Lett. 81, 2011 (1988).

14. J.E.Bayfield, G.Casati, I.Guarneri, D.W.Sokol, Phys. Rev. Lett. 63, 364
(1989).

15. M.Arndt, A Buchleitner, R.N. Mantegna, H Walther, Phys. Rev. Lett. 67,
2435 (1991).

16. V.N.Baier, V.M.Katkov, V.M.Strakhovenko, Sov. Phys. JETP 65 686 (1987).

59

-)



