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The phenomenon of stabilization of highly excited states of a hydrogen atom in a strong mono-
chromatic field is discussed. An approximate description of the dynamics from the introduction of the
Kramers map allows one to understand the main properties of this phenomenon through analogy with
the Kepler map. The analogy between the stabilization and the channneling of particles in a crystal is

also discussed.

PACS number(s): 32.80.Rm, 31.50.+w, 42.50.Hz

I. INTRODUCTION

During the last few years the phenomenon of stabiliza-
tion of an atom in a strong laser field has attracted a
great deal of attention [1]. While the stabilization of an
atom has been clearly demonstrated in the numerical ex-
periments, a clear analytical criterion of stabilization is
still lacking. Usually, it is assumed that the stabilization
condition is satisfied if the energy of the laser photon is
larger than the electron coupling energy and the ampli-
tude of electron oscillations in the field is large with com-
parison to the Bohr radius [2]. However, recent investi-
gation of the corresponding classical problem demon-
strated that stabilization remains also in the classical
atom [3,4], where the above conditions are violated. The
physical explanation of this phenomenon and the condi-
tion of stabilization were given in [3,4], but the detailed
explanation of the effect still remains an open problem.
For a better understanding of this stabilization, I intro-
duce here a one-dimensional atom model which I will call
the Kramers model (keeping in mind that it arose from
the Kramers-Henneberger transformation). Numerical
analysis of this model has allowed us to construct an ap-
proximate Kramers map, which describes the process of
energy excitation and gives conditions of classical ioniza-
tion. In some sense, the obtained Kramers map is quite
close to the Kepler map [5], which describes the motion
in the limit of relatively small fields. Indeed, even in
strong files the change the electron energy occurs only
when the electron passes near the nucleus, while far from
it the electron follows the Kepler orbit. As will be
shown, the amplitude of this energy change above the
stabilization border decreases with increasing field
strength. In this sense, stabilization means that for strong
fields the ionization time, measured in units of electron
orbital periods, increases with the field. For sufficiently
strong fields the classical atom can become absolutely
stable (never ionized), as it was for the case of weak fields
when the Kolmogorov-Arnold-Moser (KAM) theory can
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be applied. Let us mention that our definition of stabili-
zation as the growth of ionization time measured in the
number of electron orbital periods is quite different from,
and more rigorous than, the usual used definition of the
lifetime increase with the field. Indeed, for strong fields
the orbital period of the electron can be an increasing
function of the field. This can lead to the situation where
the electron will be ionized after one orbital period, but
due to the increase of the period with the field, this will
give a formal increase of lifetime. From my viewpoint
such an effect cannot be called ‘“‘stabilization,” since after
one turn around the center the electron is still ionized. In
contrast, by stabilization we will mean a situation in
which the electron being rapidly ionized in a relatively
weak field remains unionized in stronger fields for many
orbital periods.

The paper is constructed as follows. In Sec. II, a brief
description of the Kepler map is given, since the analogy
with this map can be useful in the stabilization regime. In
Sec. III, a qualitative explanation of stabilization is
presented. The numerical analysis of the introduced
one-dimensional Kramers model and the derivation of
the Kramers map are carried out in Sec. IV. In Sec. V, I
discuss the analogy between the stabilization and the
channeling of electrons in the crystal. In the conclusion,
the possibilities of experimental observation of stabiliza-
tion of Rydberg atoms are discussed.

II. KEPLER MAP

After the pioneering experiments of Bayfield and Koch
in 1974 [6], the problem of microwave ionization of high-
ly excited states of the hydrogen atom has been investi-
gated by many groups (see [7] and references therein).
The fast ionization observed in the experiments was real-
ly surprising since about 100 photons were required to
ionize the atom. The typical experimental conditions
were n,~70, e,=€ng~0.05, wy=wnj=~1, where n, is
the principal quantum number of an initially excited state
and € and w are the strength and the frequency of mi-
crowave fields (here and below, we use atomic units). The
classical dynamics depends only on the rescaled values €,
and w,.

For the understanding of the process of ionization in
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linearly polarized fields it is convenient to use the one-
dimensional atom model [5,7-10]. The investigations of
the one-dimensional model showed that for high mi-
crowave frequency (wn > 1) the dynamics of the system,
which originally is ruled by the continuous Hamiltonian
equations, can be described by the Kepler map [5],

N=N+ksing , ¢=¢+2rw(—20N)3"2. (1)

Here k =2.58¢/w°’®, N=E /o has the meaning of the
number of absorbed or emitted photons (E is the energy
of the electron), and ¢ is the phase of microwave fields at
the moment when the electron passes near the nucleus.
The bar denotes the new values of the variables after one
orbital period.

The physical reasons, due to which the motion can be
quite accurately [5] described by the simple area-
preserving map, is the following: when the electron is far
from the nucleus the microwave field leads only to a
small fast oscillation, which do not modify the average
energy and the Coulomb trajectory of the electron. The
change of energy happens only at perihelion, where the
Coulomb singularity leads to a sharp increase of the elec-
tron velocity. Ionization takes place when the energy of
the electron becomes positive, N > 0, after a pass near the
nucleus. After that, the electron goes away from the
center following an unperturbed hyperbolic orbit. There-
fore, it never returns to the nucleus and the next kick
never happens. Because of this, there is no back transi-
tion from positive energies to negative. In this sense, ion-
ization is equivalent to absorption of trajectories for
which N becomes positive.

To find the chaos border in the Kepler map we can
linearize the second equation in (1) near the resonant (in-
teger) values of wn?, obtaining the Chirikov standard
map [11],

N=N+ksing , ¢=¢+TN , )

with T=6mw’n’. Global chaos appears for K =kT > 1,
which determines the critical-field strength above which
the classical atom is ionized. In this regime excitation is
diffusive, with the diffusion rate D =(AN)*/Ar=k?2/2,
where 7 measures the number of orbital periods of the
electron.

The first numerical and analytical investigations of the
quantum one-dimensional atom model [10] showed that
quantum effects lead to the suppression of classical
diffusion. Indeed, in the quantum case the variables
(N,¢$) become operators with the commutation rule
[N,¢]=—1i, and the system is locally described by the
quantum kicked rotator [12]. The photon number is
analogous to the level number in the kicked rotator and
the excitation probability decreases exponentially with
the number of absorbed photons, so that the ionization
rate is proportional to W;~exp(—2N,;/l;). Here,
N;=ny /2w, is the number of photons required for ion-
ization and l¢=D=3.3362/w1°/ 3 is the localization
length. For I, <<N;, quantum ionization is exponentially
small in comparison with the classical value. However,
for 1,> N, the diffusion is delocalized and the process of
ionization is close to the classical one. Here I give the

description of only the main features of quantum locali-
zation; more details an be found in [5,13].

In the three-dimensional atom, the Coulomb degenera-
cy leads to a slow motion along the energy surface that
also allows one to describe the excitation in energy by the
Kepler map with a small change of constant k. The
motion along the energy surface has some additional in-
tegral of motion that explains the existence of location in
the three-dimensional atom [5,14]. Recently, the ex-
istence of localization in the three-dimensional (3D) case
was reconfirmed in [15].

Quantum localization of classical chaotic ionization
has been observed in the microwave experiments with hy-
drogen [16,17] and rubidium [18] atoms. Numerical
simulations with the quantum Kepler map [19] reproduce
the 10% ionization threshold obtained in the laboratory
[16]. The theoretical prediction for the quantum delocal-
ization border was also observed in skillful numerical
simulations [15].

While very successful in the description of energy exci-
tation, the Kepler map cannot, however, be applied for
the case of very strong fields. Indeed, in its derivation it
was assumed that the change of energy after one kick ko
is much larger than the energy of free oscillations €?/2w?.
This gives the condition of applicability of the Kepler
map picture in the one-dimensional case [5],

Let us note that this condition is independent of the ini-
tial state, since n, does not enter directly in the expres-
sion for €,1;. Therefore, the Kepler map gives the
correct description of motion even when the field is
strong enough, and already one kick ionizes the electron
[5]. In the case of strong field €> €, [above threshold
ionization (ATI) in terms of [5]], the process of ioniza-
tion can be understood in terms of another simple model
[5].

In the one-dimensional case for €>>€,qp, a collision
with the nucleus, being unavoidable, goes in a fast way,
similar to an elastic wall leading to a prompt ionization
[5]. In the two-dimensional case for zero magnetic quan-
tum number m, suck a collision also always takes place if
the amplitude of free oscillations 2¢/w? is larger than the
unperturbed distance between the electron and the nu-
cleus in the perihelion /2/2 (I is the orbital momentum).
This gives the condition of prompt ionization for
I>(3/0)'? [20]:

e>w?l?/4 4

where the approximate expression /2/2 for the prihileion
distance n’[1—(1—I1%/n%)'"?] has been used. For
1 <(3/w)'3, ionization is ruled by the Kepler map and
for €,> w3/ /2.6, prompt ionization takes place after one
orbital period [see (1)]. Therefore, there is no stabiliza-
tion of a classical atom in the strong field for m =0. For
high orbital momentum, however, the atom remains
stable up to very high-field values. The physical reason
for this is quite simple. Indeed, for [ > (3/w)!’3, the elec-
tron passes sufficiently far from the nucleus so that the
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Coulomb singularity is smoothed, giving an exponentially
small change of energy after one orbital period [5,9].

III. STABILIZATION BORDER

While for the magnetic number m =0 ionization al-
ways takes place in a sufficiently strong field, the case of
nonzero m is much more interesting. Indeed, for the
linear polarization of the field, the projection m is an ex-
act integral of motion and the centrifugal repulsive po-
tential created by it provides the possibility of avoiding a
collision with the nucleus. To analyze the motion in the
strong field, it is convenient to use the oscillating
Kramers-Henneberger frame [1] and cylindrical coordi-
nates in which the Hamiltonian has the form

2 ] 172 -
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H= P +Poy m? L

2 2 2p2
If the frequency of the nuclear oscillations is large
enough (the condition will be given later), then to a first
approximation the nucleus can be considered as a
charged thread with a linear charge density o slowly
dependent on z: 0(z)=w?/{me[1—(z0?/€)*]'?]. Then,
for a small z and p, the Hamiltonian of averaged motion
takes the form [3,4]

€ .
z— —sin(wt)

2
+
p o

2 2
P:  Pp  m? po’
v 2 2 o(z)ln p (6)

The constant under the logarithm takes into account that
for p>>€e/w* the coupling energy becomes much less
than w?/e. From (6) one easily finds the position of the
potential minimum p=mV 7e/2/w and the frequency of
small oscillations Q=2V2w?/(mem) (for z <<€/w?). The
depth of the potential or the energy required for ioniza-
tion of the atom is approximately I~2w’L /e, with
L =In[(2¢/(emw?m?)]/2. The minimal distance between
the nucleus and electron is determined by the condition
I=m?/2(py)% giving
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L

Since oscillations of the electron take place in the z direc-
tion, Eq. (7) gives the minimal distance not only for aver-
aged motion but also for motion with oscillations. The
physical reason for the growth of the minimal distance
with the field strength is the following: with the increase
of the field the amplitude of the field oscillations grows,
leading to the decrease of attractive Coulomb force, while
the centrifugal potential remains the same.

The average description of the motion (6) is correct if
the frequency of field oscillations  is much larger than
the frequency Q of oscillations in p. In that case, the
averaged Hamiltonian (6) is a constant of the motion with
adiabatic accuracy, which is usually (see, for example,
[11]) of the order of exp(—const X /Q), and ionization
of the atom does not take place. This gives the stabiliza-

(7)

tion border [3,4]
®
€>€stab=B; ’ ®)

where B is some numerical constant. The same estimate
can be obtained from the condition that the change of en-
ergy AE during the collision between the electron and the
nucleus is smaller than I. Indeed, the time of collision is
approximately At=p_ . ©/€, the change of the momen-
tum is Ap ~At/pZ,,~w/(€pyin), and the change of the
energy AE ~w?/(€’pl;,) is less than I if (8) is satisfied. It
is interesting to note that the stabilization border (8) can
be written as v, =€/w >v,,, where v, is the typical ve-
locity of the nucleus (in the Kramers-Henneberger frame)
and v, =2/m is the maximal velocity of the electron in
the atom without the external field. The important
feature of the stabilization border (8) is its independence
of the value of the initially excited state n,. This means
that stabilization can take place for a=€/w?<<n3 as
well as for a=€/w?>>n3.

Another condition intrinsically used in the derivation
of (6) and (8) is pp;, < €/w?, which gives €>m2w?. In ad-
dition, there are two qualitatively different situations de-
pending on the ratio between m and (3/w)'/3. For the
cases m <<(3/w)'”3 (stabilized atom regime) we have
m2w? <<50* <<Bw /m =€g,,. For small field amplitude
(3) the excitation is described by the Kepler map and a
complete ionization after one orbital period of the elec-
tron takes place for ;> w3/%/2.6 [5]. Between this bor-
der and the above chaos border €,,=1/490}"?, ionization
goes diffusively, which is also relatively fast. However,
for the stronger field (8), when the Kepler map picture is
not valid [see (3)], the atom becomes stable. The case of
the opposite inequality is not so interesting. Indeed, for
m>>(3/w)!/? (stable atom regime) we have
Bw/m <<50*3 <<m?»? and the atom remains stable
(nonionized) up to e~m2w? as it was in 4) (I~m).
Above this value a significant portion (of order half) of
atoms will remain stable since condition (8) is satisfied.
Finally, ionization takes place only when the value of p_,;,
(7) becomes larger than the size of the atom 2n2 and the
electron cannot be captured in the stable region during
the switching of the field. This gives the destabilization
border

16Lw’n§
€destab™~ " __ 5 - )
m™m

This border is also valid for the case m <<(3/w)'’?. Of
course, in this case the stabilization can be observed only
if the time of field switching T, is less than or order of
one orbital period of the electron. Otherwise, a collision
with the nucleus wili take place at field strength € <eg,,
and the atom will be ionized.

The results of numerical simulation of the ionization
process of system (5) are presented in Fig. 1. The stabili-
zation probability Wy, =1—W,,, is given for different
field strengths €, and frequencies w,. The ionization
probability W, was defined as the relative part of the
trajectories with positive energies after the field pulse.
The initial distribution of 100 trajectories (25 for
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FIG. 1. Stabilization probability W, =1— W, is given for
different fields strengths €, and frequencies [0, =0.3 (0), 1 («),
3(+),10(0),30 (A), 100 (4), 300 (A), 1000 (®@)].

@y=1000) corresponded to a quantum state with fixed
spherical quantum numbers (fixed actions and equiparti-
tion in conjugated phases). The initial value of orbital
momentum was equal to //n;=0.3 and its projection
was equal to m /ny=0.25 (at fixed m the change of / in 2
to 3 times did not lead to significant change of the ioniza-
tion probability). The time of field switching (on-off)
measured in the number of field periods was chosen to be
equal to T, =w, (one unperturbed orbital period of the
electron). The pulse duration of the field was
T;n = 500w, (500 orbital periods). Here I would like to
note that the form of the switching must be chosen in
such a way that after the switching the field will not
transfer large momentum to the electron (otherwise the
electron will not be captured in the potential minimum
and will leave the system). For T, =w,>>1, the time of
switching contains may field periods and this condition is
easily satisfied. Another way to satisfy this condition is
to make switching in the Kramers-Henneberger frame.
In this case, the field in the laboratory frame is given by
the second derivative of the field in the Kramers-
Henneberger frame and no momentum is transferred to
the electron. The data clearly demonstrate the stabiliza-
tion of the atom for the field strength larger than some
critical value. It is convenient to define the stabilization
border as the field strength €,,0(20%) for which
W =0.2. The dependence of €,,4(20%) on w,, ex-
tracted from the data of Fig. 1, can be well fitted by the
theoretical expression (8) with $=12 in the wide frequen-
cy range (see Fig. 2 of [3]). This dependence continues up
to wy,= 1000, where we enter into the stable atom regime
with m >(3/w)'”? and where stabilization disappears in
agreement with the above theoretical arguments (see Fig.
1). However, the stability of an atom in this case is of
another nature than it was in [20], since the condition (4)
is strongly violated. So for such strong fields the stability
of an atom is based on the same physical grounds (8) as in
the stabilized atom regime for m <<(3/w)!/>. The nu-
merical check of the dependence of the stabilization bor-
der €4,,0(20%) on m as well as the destabilization border
(9) on @, demonstrates good agreement with the theory
[(8) and (9), [3]].

IV. KRAMERS MAP

It is important to stress that according to (8) stabiliza-
tion can take place even when the size of the electron os-
cillations @ =€ /w? is much less than the unperturbed size
of the atom n3. An example of the motion in this case is
presented in Fig. 2. In such a case, the electron follows
the usual Kepler elliptic orbit and its energy (the size of
the orbit) can be changed only during its fast passage
near the nucleus. In this sense, we can expect that the
motion can be effectively described by some map analo-
gous to the Kepler map.

To construct such a map, let us introduce a simplified
one-dimensional Kramers model given by the Hamiltoni-
an,

2 2
a=lem ! . (10)
2 2p2

2
p*+ %[siny +sin(ot)]?
w

This model is obtained from the Hamiltonian (5) by
neglecting the changes of =z and considering
z=—¢€/w’iny as a constant. In other words, the elec-
tron always collides with the line p=0 at the same z
value. The physical reasons for this is the following. The
collision of the electron with the nucleus is analogous to a
collision of a fast heavy particle with the light electron.
In such a collision the change of energy (velocity) takes
place mainly in the perpendicular p direction, while the
velocity in the z direction remains practically the same.
According to this physical picture the model (10) mainly
presents the changes in the p direction. In this sense, it is
quite different from the well-known one-dimensional
atom model of Eberly [1], which implicitly takes into ac-
count the change of energy (velocity) only in the z direc-
tion. Also, in [21], the authors considered the velocity
change only in z that has led them to a higher stabiliza-
tion border than (8), while the estimate for p;, has been
found correctly [see (7)].

According to the analogy with the Kepler map, we can
expect that the change of the electron energy in the mod-
el (10) will take place only when the electron passes near
the nucleus and that it will depend only on the phase of
the field ¢ =wt at that moment. Also, if the size of the

250
z/ng? 208 |
1.60 1

115 ¢

0.70 +

0.25

-0.20

-0.65}

=110+

-1.55

p/na’

FIG. 2. Example of trajectory for w,=300, €,=20000 with
initial / /ny=0.3, and m /n,=0.25; 10° field periods are shown.
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orbit is much larger than the size of the nucleus oscilla-
tions (a=€/w?<<n?), then the change of the phase is
given by the Kepler law and is the same as in (1). Based
on these arguments, we can assume that the dynamics of
energy excitation is governed by the Kramers map of the
following form:

E=E+Jn(¢), ¢=¢+2m0(—2E) 32, (11)

with E =wN, where as in (1) N is the photon number, the
maximum change of the energy is given by a constant J,
and the unknown function of the kick 4 (@) varies in the
interval [ —1,1]).

To check the validity of this map, I integrated the con-
tinuous equations of motion of the model (10) and plotted
the change of energy as a function of the field phase at
the moment when the value of p took one of its minimal
values (p,=0). Such an approach allows one to find the
kick function h(¢), examples of which are presented in
Figs. 3 and 4. The numerical results clearly demonstrate
that the function & exists. However, it has a quite unusu-
al property. Indeed, some values of ¢ never appear (even
if the number of periods was increased by 20 times).
These values of ¢ are approximately equal to
7+7v,2m—y and correspond to those values of the field
at which the nucleus passes via the point of collision
z=—e€/w’iny. A closer consideration of motion near
these special ¢ values shows that the electron remains
during some small time interval (within corresponding
phase interval A¢) near the nucleus making one (Fig. 3)
or two (Fig. 4) oscillations in p of very small amplitude,
so that the value of p remains practically (but not exactly)
the same. This gives correspondingly two (or three)
values of the phase ¢ with the same change of AE since
the value of E was determined in the aphelion. This, of
course, puts the question about the derivation of the Kra-
mers map in some other synonymous form. The main
properties of the motion, however, can be derived already
from the approximate representation (11), where we will
define the function 4 in the empty intervals by connecting
the last points at the ends of the interval by a straight
line.

Defined in such a way, the Kramers map has proper-

h(¢) 1O, -

08} -, P4
0.6} AN /
0.4} \ K
0.2} 5 ,
0.0}

-0.2} \

-0.4 | \

-06} \ 7

—08} '\\ s
-1.0 — \—"/

0.0 041

¢/2r

FIG. 3. Example of numerically obtained kick function A (¢)
in Kramers map (11) for e=3X10*, ©=125, m =0.2, v =0.6,
E=—0.125 (so that effective ny=2), J=1.1X10"* Nearly
200 orbital periods (points) are shown.
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FIG. 4. The same as Fig. 3 with e=4X10* y=1.2, and
J=5.8X10""

ties quite similar to the Kepler map. Indeed, the function
h is close to cos¢, and the approximate chaos border in
(11) can be defined by the linearization of the second
equation, giving

K=6roJn’>1, (12)

where we used substitution E =—1/2n2. According to
this criterion and in agreement with the numerical data
the motion is chaotic for the cases of Figs. 3 and 4. If we
introduce kK =J /w, which will provide the number of ab-
sorbed photons after an orbital period, we will get the
same formulas for the diffusion rate D =k?/2, the locali-
zation length (/=D), and the ionization time
Tion=N2/D, as in the Kepler map. In this sense the most
important problem is the definition of the dependence of
J on the parameters of the system.

According to the results of the previous section, the
amplitude of the kick J must decrease exponentially with
the increase of the stabilization (adiabatic) parameter
S=em/wo~w/Q [see (7),(8)]. This expectation is in
agreement with the results presented in Fig. 5. Indeed,
the exponential decrease of J with the field strength, and
therefore stabilization, are evident. Let us first discuss the
properties of J for nonzero values of ¥. Even though the
value of energy for the cases of Fig. 5 was quite small,

mJ °°r
-1.5

-3.0

-45r \
60}
-75¢
g0l
-105}

-12.0

=135

-15.0
1

0 16 22 28 34 40 46 52 58 64 570

FIG. 5. Dependence of the kick amplitude J in (11) on stabil-
ization parameter S =em /0w for ©=125, m =0.2, y=0 (0);
©=1000, m =0.1, y=0 (+); ©=125, m =0.2, y=0.3 (open
squares); ®=125, m =0.2, y=0.6 (points); o=125, m =0.2,
y=1.2 (full squares). For all cases, E=—0.125. Lines are
drawn to guide the eye.
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nevertheless there is some dependence of J on energy. An
example of such dependence is presented in Fig. 6. We
see that InJ depends on energy E approximately in a
linear way and goes to a constant value for E =0. This
means that in the limit n3 >>€/0? the value of J is in-
dependent of ny. This result is consistent with the above
arguments that the change of the energy takes place only
in the close vicinity of the nucleus. However, in contrast
to the Kepler map, it is necessary to have a quite strong
inequality —aE <<1 to neglect the dependence of J on E.
We will try to explain this fact later. In the regime of
small energies the main change of the phase of the field
between collisions [the second equation in (11)] is obvi-
ously given by the Kepler law.

To determine the dependence of J(E =0) on the pa-
rameters, it is convenient to fix the stability parameter S
that allows one to eliminate the strong exponential
dependence and to find the factor before the exponent.
The numerical results are presented in Fig. 7. The values
of J(E =0) were obtained form nonzero energies by
linear extrapolation to E =0 (see Fig. 6). The numerical
data clearly show that for fixed S the value of J(E =0) is
independent of the frequency and is inversely proportion-
al to m2. In principle, the factor 1/m? gives simply the
correct dimensionality; however, the lack of dependence
on the other dimensionless parameter v=mo'/3 is not so
obvious.

Combining all the obtained numerical results, we can
present the dependence of the kick amplitude J on the pa-
rameters for | E|€/w? << 1 in the following form:

g 1 smy

exp[ —(g,—g;€E /o?)em /o] , (13)

where g, , 3 are some functions weakly dependent on y.
For y=0.6, we have it from Figs. 5-7 that
g,=~0.13, g,=0.19, g;=0.08. The numerical data for
other values of ¥ show that the fitting parameters vary
not more than two times for practically the whole inter-
val of y. For example, g,=0.1 and 0.2, g,=0.13 and
0.21, g;=0.045 and 0.1, for ¥y =1.2 and 0.3, respectively.

To understand the numerically obtained formula (13)
for J, it is possible to make the following estimate. Tak-
ing the partial time derivative from the Hamiltonian (10)
we obtain the expression for the change of energy after
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1E]

FIG. 6. Example of dependence of J on energy |E| for
€=2.2 10, =125, m =0.2, y =0.6 (points).

pA ) =pd+v2t?,

InJ

T T T

-10 " L " L

FIG. 7. Dependence of J on m for fixed stabilization parame-
ter S =35.2 and E =0; nine cases are shown for w in the inter-
val [10,1000] and m in the integral [0.05,0.6]. The straight line
shows the dependence J ~1/m?2.

one orbital period,

cos(n+¢)[siny +sin(n+¢)ldy
ot f p34(7) ’ (14)

where 7=wt, and in the denominator we neglected the
term with €’/0* in comparison with p®>. We can assume
that near the nucleus the time dependence of p is the
same as for a free electron with momentum m that gives
where p, is the minimal distance from
the center and v is the velocity of the electron far from
the center. For this free motion, with the fixed momen-
tum m, we have the relation p0=m2/v 2. For the veloci-
ty, it is possible to use the following expression:
v2=@?/Ce+2E, where the first term takes into account
the fact that the energy must be measured in respect to
the minimum of the effective potential [see (6)] and C is
some unknown constant. It is easy to see that C deter-
mines the minimal distance p3=Cem?/w* for E =0. In
principle, the value of C depends on y.

After the substitution of all these expressions in (14) we
obtain the following estimate:

2

I~ a7y Siny expl —CS /(14+2CeE /0],
m-m @

h(¢)=cos(¢)

Of course, the presented derivation is not exact. Howev-
er, it reproduces quite well the exponential dependence
(13) (while the factor before the exponent is not in agree-
ment with the dependence obtained from the numerical
simulation). Indeed, numerically, #(¢) has maxima near
0 and 7. Comparison of (15) with (13) gives g,=C and
g3=2C?. The value of C can be defined directly from the
numerical simulation of the one-dimensional Kramers
model for different y. The comparison of the g, with C'is
presented in Fig. 8, showing good agreement with the
prediction. The ratios of the numerical value of g; (see
above) to the theoretical value 2g3 are equal to 1.13, 1.1,
1.33, respectively, for ¥ =0.3,0.6,1.2, and are also in

(15)
S=em/o .
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FIG. 8. Dependence of C=pye/S? on y (full line). Points
give values of g, to demonstrate theoretical relation C =g,.

good agreement with the theoretical estimate. In future
estimates, we will use the expression (13) with the
theoretical substitution for g, and g;. Let us also men-
tion that for y =0 we find from (14) that g, =2C (from
Fig. 5, the ratio to the theoretical value is approximately
1.1) and h(¢)=sin(2¢), which is quite close to the nu-
merical data. Further theoretical analysis is required to
obtain the factor before the exponent in (13).

Let us now once more discuss the conditions under
which the Kramers map has been derived. First, in the
real two-dimensional (2D) model (5), we fixed the point of
collision of the electron with the line p=O0 at
z=—€/w’iny that provided the one-dimensional (1D)
model (10). Such an approximation allowed us to under-
stand the dynamics of the system and to obtain the sim-
ple Kramers map description. Of course, in the 2D mod-
el (5), the z point of collision changes from one collision
to another. This gives the change amplitude of the kick
J, which depends on y through C(y). However, as fol-
lows from Fig. 8, the function C(y) varies no more than
twice for the whole interval of variation of . Therefore,
the Kramers map still gives a correct qualitative descrip-
tion of the dynamics in p even in the 2D case (5). To
have a more precise description, one needs to take into
account the fact that ¥ changes from one orbital period
to another, giving some variation of the kick amplitude J.
Indeed, in a first approximation, we can assume that y
changes with some fixed frequency ¥ =w,t. In such a
case, the dynamics given by the Kramers map is still inte-
grable and the maximal value of p is finite (no ionization)
for sufficiently large values of the stabilization parameter
S, since the kick amplitude J decreases with S exponen-
tially fast. For the dynamics of the model (5) it will mean
that the dynamics given by the Hamiltonian (5) averaged
over fast field oscillations is integrable and variations of
the averaged coupling energy is small (order of J). There
is another possibility that the motion described by the
averaged Hamiltonian is chaotic. This will give some
random variation of ¥y from collision to collision, which
will produce a diffusive growth in energy and finally ion-
ization. Nevertheless, the diffusion rate in energy is of
the order of J2 and is exponentially small for large values
of the stabilization parameter S. Therefore, the ioniza-
tion time will be exponentially large and can be estimated
as tion ~ngEl,, /J? with E., ~1/2n} for ny>>e€/0.

This time sharply grows with field strength and stabiliza-
tion is still present. The understanding of the properties
of the Kramers map allows us, as we have seen, to under-
stand the process of excitation in the original models (5)
and (10). Further investigations are required to deter-
mine the type of motion for the averaged Hamiltonian
and the dependence of ¥ on time.

Second, in (11) we assumed that J is independent of en-
ergy. To take into account this dependence, we need to
put in the first equation J=J(E), and in the second
equation we need to add the phase shift
A¢=dJ /dE f(¢), with h(¢)=—df($)/d¢. In this way
the map will remain canonical. As follows from (15), the
map picture cannot be applied to the case with
€/w?>>n3. Indeed, in this case the electron moves near
the bottom of the averaged potential and it is difficult to
separate the free motion and the kick. However, the sta-
bilization condition in this case is still given by (8). The
reason for this is the independence of the stabilization pa-
rameter S on n,. This is also in agreement with numeri-
cal data of Fig. 1 (see also [3,4]), where stabilization un-
der the condition (8) takes place both for €/w?>>n3 and
€/0*<n3. However, in the regime n3>>e/w?, the
dependence of J on energy is weak and the Kramers map
description works well. The typical structure of the or-
bits in this case is of the same type as presented in Fig. 2.

While there are still some unclear questions regarding
the construction of the Kramers map, the approximate
consideration made above and the analogy with the
Kepler map allows us to understand the main properties
of motion. If the number of photons required for the ion-
ization is large, then, as it was for the quantum Kepler
map, it is possible to have diffusive excitation and quan-
tum localization of chaos (let us clarify here that we
speak about the localization in the number of photons).
This leads to suppression of ionization and, due to this
fact, the electron stays in the discrete part of the spec-
trum, not going very far from the nucleus. In such a
case, the localization length in the number of photons is
I¢z(J /®)?/2. However, due to high values of the fre-
quency, it is also quite easy to have a situation where one
photon can already lead to ionization. In this case for
k =J/w <1, the one-photon ionization rate (per unit of
time) is given by perturbation theory and as for the
Kepler map (see [5]) it is equal to

J2

'= PN (16)
For J > w with probability of approximately one half, the
atom is ionized after one orbital period [in (11), as in the
Kepler map, the orbit is ionized if, after a kick, E >0].
From (16) it is clear that we may have long living states if
the field is sufficiently strong. From the quantum
viewpoint one of the most interesting cases is the case of
small m. In this case, we need to make the substitution
m—m +1 since, as is well known, the correct quasi-
classical quantization leads to the appearance of the
effective centrifugal potential even for zero orbital
momentum. This gives-the stabilization border €> 10w
for m =0.

Due to the similarity between the Kepler and Kramers



582 D. L. SHEPELYANSKY 50

maps, it would be interesting to have a general formula
which gives an expression for the kick amplitude for all
values of the field strength. However, it is not clear if it
is possible to do this. Indeed, the Kepler map can be ap-
plied only for fields that are not very strong [see (3)],
while the Kramers map works in the other limiting case
€>>10w/m >>50** [since we are considering the case
m <<(3/m)'].

V. CHANNELING ANALOGY

Here I would like to discuss the analogy between the
phenomenon of stabilization of an atom in strong fields
and the channeling of particles in a crystal (see, for exam-
ple, [22] and references therein). Let us consider the elec-
tron moving in a crystal with the velocity v <c =137 (we
will consider the nonrelativistic case). Then, in the frame
of the moving electron, its interaction with the protons in
the crystal lattice will have approximately the form (5) if
only to take into account the interaction with a nearest
proton. On the grounds of that analogy, we find that the
effective distance between atoms in the crystal a and the
velocity of the electron are equal to

£
e

a= , V= £ (17
©

The frequency of perturbation is @ =v /a so that e=v?/a.
Since in the crystal the distance between the atoms is ap-
proximately the same in all directions, the analogy is val-
id for €/w*>n3. The necessary condition of channeling
is that the critical injection angle 6 must be much
less than 1, which implies O=v,/v~=1/(vVa)
~(w**/€)*/* << 1. This is the condition of inapplicabili-
ty of the Kepler map (3). From the stabilization condi-
tion (8), it follows that channeling takes place for elec-
trons with momentum m > 10/v. This is always satisfied
for fast electrons with v ~137. The existence of channel-
ing for very energetic electrons (which corresponds to
strong fields for the stabilization problem) gives one more
piece of evidence for the existence of stabilization of the
atom in strong fields in the regime where one-photon fre-
quency is larger than the ionization energy.

V1. CONCLUSION

Based on the Kramers map (11), and using an analogy
with the Kepler map, we obtained the estimate for the
one-photon ionization rate (16). This ionization rate

sharply decreases with the stabilization parameter
S =em /w. Such stabilization for excited states has some
interesting advantages compared to the stabilization of
atoms in the ground state. Indeed, in this case stabiliza-
tion can take place with € << 1 and w << 1. This leads to a
large energy difference SE between the excited states and
the ground state. Consequently, the energy in an excited
state is approximately (€/w)?/2>>1, while the energy of
the ground state remains as in the unperturbed atom (it is
not the case for €,w>>1, when the ground state is also
stabilized, since there the electron has the same energy of
free oscillations). Owing to this, in the case of Rydberg
stabilization it is possible to have radiative transitions to
the ground state with the radiation of x-ray photons. For
the frequency of a CO, laser w~=1/300 (0.1 eV) and
m =0 (or 1), the stabilization will take place for e~ 3
(1.6X10% V/cm). The size of the atom will be larger
than the size of the field oscillations a=¢/w” for n > 40.
According to (13) and (16) for the field e=5X10® V/cm
and n =60, the lifetime of the atom will be about 5X 10°
orbital periods or 107® s (we take for the estimate the
case with ¥y=0.6). Of course, to obtain such states the
time of field switching must be less than the time of orbit-
al periodic, as we discussed above. Since recently it was
predicted that the Rydberg atoms can form long living
states (bands) in the solid state [23] (giving very high den-
sity of excited atoms), it will be interesting to consider the
possibility of stabilization not only for a separate atom
but also for such Rydberg solid states.

Recently, after this work had been finished, the papers
in Ref. [21] were published. The numerical data present-
ed there indicate the existence of long living states in
strong fields. However, the important difference of the
approach developed there is that the main priority was
given to the motion in the z direction, while the dynamics
in p had been in fact eliminated from consideration. On
the basis of the arguments developed above, I think that
such elimination is not correct and that it is responsible
for another incorrect analytic stabilization border ob-
tained in [21]. Moreover, the z-stabilization border in
[21] for small m is higher than (8). This means complete
ionization above the border (8), which is in contradiction
with the more detailed results presented here and in [3,4].
Another difference is connected to the fact that the
switching process of the field was not taken into account
and, due to this, the destabilization border (9) was missed.
A more detailed discussion of differences between [21]
and the approach developed here and in [3,4] will be
given elsewhere [24].

[1] M. Pont, N. R. Walet, M. Gavrila, and C. W. McCurdy,
Phys. Rev. Lett. 61, 939 (1988); M. Dorr, R. M. Potvi-
liedge, and R. Shakeshaft, ibid. 64, 2003 (1990); Q. Su, J.
H. Eberly, and J. Javanainen, ibid. 64, 862 (1990); K. C.
Kulander, K. J. Schafer, and J. L. Krause, ibid. 66, 2601
(1991).

[2]1 R.J. Vos and M. Gavril, Phys. Rev. Lett. 68, 170 (1992).

[3] D. L. Shepelyansky, in Atomic Physics 13, edited by T. W.
Hansch, H. Walther, and B. Neizert, AIP Conf. Proc. No.

275 (AIP, New York, 1993), pp. 425-434.

[4] F. Benvenuto, G. Casati, and D. L. Shepelyansky, Phys.
Rev. A 47, R786 (1993).

[5] G. Casati, I. Guarneri, and D. L. Shepelyansky, IEEE J.
Quantum Electron. 24, 1420 (1988).

[6]J. E. Bayfield and P. M. Koch, Phys. Rev. Lett. 33, 258
(1974).

[7]R. V. Jensen, S. M. Susskind, and M. M. Sanders, Phys.
Rep. 201, 1 (1991).



350 KRAMERS-MAP APPROACH FOR STABILIZATION OF A ... 583

[8] R. V. Jensen, Phys. Rev. Lett. 49, 1365 (1982).

[9] N. B. Delone, V. P. Krainov, and D. L. Shepelyansky,
Usp. Fiz. Nauk 140, 355 (1983) [Sov. Phys. Usp. 26, 551
(1983)].

[10] D. L. Shepelyansky (unpublished); in Proceedings of the
International Conference on Quantum Chaos, Como, 1983,
edited by G. Casati (Plenum, New York, 1985), p. 187.

[11] B. V. Chirikov, Phys. Rep. 52, 263 (1979).

[12] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky,
Sov. Sci. Rev. 2C, 209 (1981); Physica D 33, 77 (1988).

[13] D. L. Shepelyansky, in Quantum Chaos, Proceedings of
the International School of Physics “Enrico Fermi,”
Course CXIX, edited by G. Casati, I. Guarneri, and U.
Smilansky (North-Holland, Amsterdam, 1993), pp.
221-239.

[14] G. Casati, B. V. Chirikov, I. Guarneri, and D. L.
Shepelyansky, Phys. Rev. Lett. 59,2927 (1987).

[15] A. Buchleitner and D. Delande, Phys. Rev. Lett. 70, 33
(1993).

[16] E. J. Galvez, B. E. Sauer, L. Moorman, P. M. Koch, and

D. Richards, Phys. Rev. Lett. 61,2011 (1988).

[17]7. E. Bayfield, G. Casati, I. Guarneri, and D. W. Sokol,
Phys. Rev. Lett. 63, 364 (1989).

[18] M. Arndt, A. Buchleitner, R. N. Mantegna, and H.
Walther, Phys. Rev. Lett. 67, 2435 (1991).

[19] G. Casati, I. Guarneri, and D. L. Shepelyansky, Physica A
163, 205 (1990).

[20] F. Benvenuto, G. Casati, and D. L. Shepelyansky, Phys.
Rev. A 45, R7670 (1992).

[21]R. V. Jensen and B. Sundaram, Phys. Rev. A 47, R778,
1475 (1993); Laser Phys. 3, 291 (1993).

[22] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Zh.
Eksp. Teor. Fiz. 92, 1228 (1987) [Sov. Phys. JETP 65, 686
(1987)].

[23] E. A. Manikin, M. 1. Ozhovan, P. P. Poluektov, Zh. Eksp.
Teor. Fiz. 102, 804 (1992) [Sov. Phys. JETP 75, 440
(1992)]; 105, 50 (1994) [78, 27 (1994)].

[24] F. Benvenuto, G. Casati, and D. L. Shepelyansky, Z. Phys.
B (to be published).



