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Chaotic Autoionization of Molecular Rydberg States
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We investigate the energy exchange between a Rydberg electron and the molecular core in the regime
where the Born-Oppenheimer approximation is violated. The theory developed allows the possibility for
a strong energy exchange even for high orbital momentum of the electron when quantum defects are
small. We establish the existence of a classical chaos border and of a quantum delocalization border
above which diffusive autoionization of the electron takes place. The relevance of theory for autoioniza-
tion of doubly excited Rydberg atoms is also discussed.
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Recent experimental technique allows us to excite one
electron in a molecular Rydberg state and to study the
autoionization process caused by the interaction between
the electron freedoms and the rotational and vibrational
freedoms of the core [1-3]. From the physical viewpoint
such a system represents an interesting example of a mol-
ecule in which the Born-Oppenheimer approximation is
no more valid for the description of coupling between nu-
clear and electron motion. Indeed in this case the fre-
quency of core motion is comparable with the frequency
of the electron motion in the Rydberg state and new
theoretical methods of investigation are required.

Because of the fast decrease of quantum defects with
the increase of orbital momentum of the Rydberg elec-
tron, it is usually assumed that such interaction is impor-
tant only when the electron passes near the molecular
core. As a consequence only states with orbital momen-
tum /=<3 could be involved in such interaction. The
main idea is that for / = 4 quantum defects are negligible
and therefore there should be no energy exchange be-
tween the electron and the molecular core [1-3]. In this
paper we show the existence of a general mechanism of
energy exchange between the molecular core and Ryd-
berg electron which can take place for arbitrary large
values of orbital momentum. We will show that such an
interaction can lead to chaotic autoionization of the Ryd-
berg electron and can be understood by constructing a
simple area-preserving map which gives the change of
electron energy after one orbital period.

Since we are interested in the case of large orbital
momentum, the minimal distance 7 min = /%/2 between the
electron and the core is always much larger than the size
of the core a [4]. To understand the physical process we
will describe the core as consisting of a positive Coulomb
charge plus a rotating dipole. If the dipole moment of the
core is zero then the interaction will take place due to the
rotating quadrupole moment of the core.

For simplicity we will consider the case in which the
electron orbit and the dipole rotation lie within the same
plane so that the magnetic moment m =/ (the case of a
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more general orientation of these planes qualitatively
gives the same results). In this case the Hamiltonian, in
atomic units, can be written in the form

1,2, »n,L? 1 x cos¢+ysing
H——-z(p,+py)+——21——r+d = , (D

where d,L,I are, respectively, the dipole moment, the or-
bital momentum, and the moment of inertia of the core.
The angle ¢ conjugate to L gives the angle between the x
axis and the dipole direction.

We would like to remark that with the substitution
x =rcosp, y =rsing in Hamiltonian (1) it is easy to see
that L+m=J is an integral of the motion; this corre-
sponds to the conservation of the total momentum J of
the molecule. This conservation law was extensively used
in Refs. [1-3]; however, these authors assume that the
electron momentum / is always less than 4 (due to small
values of quantum defects for / > 3). Instead according
to our considerations (see below) the change of / can be
very large. Because of conservation of J, Hamiltonian
(1) reduces to the system with 2 degrees of freedom:

P mr U-m? _1,.d
H 5 +2r2+ 51 r+r2 cosy , (2)
where y =¢ — ¢ is the phase conjugated to m.

According to Hamiltonian (1) the phase ¢ rotates with
frequency ¢=w=L/I. If the energy of rotation of the
core is larger than the change of electron energy after one
orbital period, then the rotation frequency w is approxi-
mately constant and system (1) can be reduced to the
time-dependent Hamiltonian

x coswt +y sinwt?

,3y : 3
Since we consider situations in which the dipole moment
of the core is much less than the minimal distance rmin
between the electron and the core, then Hamiltonian (3)

can be approximately written as
H=1% (p2+p}) —[(x+dcosot)*+ (y+dsinwr)?] 12,
4)

1 1
H=—(pi+p})——+d
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According to the Kramers-Henneberger transformation
[5] the motion described by Hamiltonian (4) is the same
as for a hydrogen atom in a circularly polarized mono-
chromatic electric field with amplitude e=dw? This
problem was studied in detail [6,7] where it was shown
that the dynamics of the electron is described by the so-
called Kepler map which gives the change of the electron
energy after one orbital period:

N=N+ksin®, ®=d+2r0(—20N)3?, (5)

where N =E/w is the electron energy E = —1/2n? divid-
ed by the frequency of the dipole rotation (# is the princi-
pal quantum number). The bar indicates the new values
of variables after one iteration of the map. The change of
electron energy given by the first equation in (5) is
defined by the rotating phase ® =t of the dipole at the
moment when the electron passes near the perihelion.
The second equation describes the change of the rotating
phase of the dipole after one orbital period. The expres-
sion for
2
ke =2.6dw'3 |1+ 2’— +1.090"31 |, )

n2

which gives the kick strength, was obtained in [6] and is
correct in the regime where wo=wng > 1 and when the
orbital momentum / < (3/w) ' (a different polarization
orientation gives approximately the same k value [6]).
Therefore the map (5) can be used only under the condi-
tion d < a Krmin=1%/2 < 1/0¥. From Eq. (6) it is seen
that the kick strength k depends on /. However, accord-
ing to [6], the change of / is small after one orbital
period. The long time behavior of / can be understood by
moving to the rotating frame in which the Hamiltonian of
a hydrogen atom in the circular polarized field has the
form [7]

pr2 m? 1 2
H="—+— ———om+do’rcosy. )]
2 2r? r

Here y, conjugate to m, is the polar angle between
electron and field direction in the rotating frame. Be-
cause of energy conservation, it is clear that during the
ionization process the change of / is equal to the change
of N (namely, to the number of absorbed photons). From
the quantum viewpoint this relation is quite clear; indeed
in circular polarized field, the momentum of photons is
equal to 1, and therefore the change of the orbital
momentum of the electron is equal to the number of ab-
sorbed photons, that is, Al =ng/2w¢ which, for wo> 1,
leads only to a small change in k. Let us mention that
the condition / < (3/w) '/ does not restrict the change of
the energy since according to it the allowed change of en-
ergy is (3w2) "/, which is bigger than the coupling energy
of the electron if wo= 1.

In order to check the validity of the map (5) we nu-
merically integrated the classical equations of motion for
the original Hamiltonian (3) and we plotted the change
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FIG. 1. Comparison of the numerically computed values
AN=N—N (dots) obtained by solving the system (3) for
dn,2=0.000625, wn’=4, I/n,=0.3, no/n,=1.25 and the
theoretical curve ksin® (full curve), with the value of k taken
from (6). The value n; fixes the classical scale.

AN =N — N over one orbital period as a function of the
dipole phase at perihelion. Figure 1 shows that the nu-
merical results agree quite well with the theoretical curve
k sin®, with the numerical value of k in agreement with
expression (6), where for / we used the initial value, since
its change was relatively small. A typical structure of the
phase space is shown in Fig. 2(a) which is obtained from
numerical integration of Hamiltonian (3). The compar-
ison with the phase plot [Fig. 2(b)] obtained from the
Kepler map (5) demonstrates that the map gives a good
description of the dynamics.

The main interesting conclusion which can be drawn
from our analysis is that the change of the energy after
one orbital period, kw, is practically independent from
the minimal distance rmin=1%/2 between the electron
and the core. This result is certainly unexpected since, as
can be seen from the Hamiltonian (3), the dipole interac-
tion between the electron and the core sharply decreases
with the increase of rmi, approximately as /* (this corre-
sponds to the rapid decrease of quantum defect with in-
creasing /).

As was shown in [6] the map (5) can be reduced to the
celebrated standard map and, accordingly, a transition to
chaotic diffusive excitation occurs when the parameter
K =6mkw*ng becomes larger than 1. Indeed in such a
case the phases ® in (5) become random and the orbit
diffuses in N space with diffusion coefficient D =k?%/2.
This process of chaotic diffusion excitation eventually
leads to ionization. The ionization time measured in the
number of orbital periods is approximately 7p =N#/D
where N; =1/2ndw is the number of photons required for
ionization. The possibility of diffusive excitation of the
electron due to energy exchange with the molecular core
during one orbital period had been also discussed in [8] in
which, however, the orbital momentum is considered to

1819



VOLUME 72, NUMBER 12 PHYSICAL REVIEW LETTERS 21 MARCH 1994

T S ‘ o
02} o
-03 ._.’
04ls ’
m-0.5 <10 *
06
07} ’
-038
-1.0 - 3 4 s 6 7 8 910°
2
(b) 00 I
FIG. 3. The dependence of the energy change 4 on d for the
01 quadrupole case with wnd =S5, //no=0.6.
02
03 }3 motion, it is necessary that the so-called Shuryak stability
04 border [9] k=1 must be exceeded. This essentially
means that the perturbation must be larger than the un-
w-0.5F.. perturbed level spacing; this is a pure quantum border
0.6 and is not related to the nature of the classical motion. If
07 both conditions K> 1, k > 1 are fulfilled, the quantum
excitation takes place. However, as is now well known,
08 quantum interference effects lead to the localization
-0.9 phenomenon, namely, the quantum distribution reaches a
steady state which is exponentially localized in the num-

-1.0
-3 -2 -1 0 1 2 3 ber of photons N around the initial state, with the locali-

. zation length 4= D =k?/2 [6]. This implies that ioniza-
F-IzG 2. (a) The ph;lse plane (En/,¢) for the system (3) with  ion occurs if the localization length 4 is larger than the
:;1; en:?gw&iii’ t?ge;:;;/o? ;231 1;1;3 z;;:v; :;:k;l;:: I:t: number of photons N; necessary to reach continuum.
tained from the Kepler map (5) \.vit‘h the same parameters of The condition 4-1/2"&‘0 leads to the so-called quantum
case (a). delocalization border d2 1/@%ngv/6. Notice that the
Shuryak condition k > 1 implies d 2 1/50°, and can be
much more restrictive than the classical chaos border.
be small and the appearance of classical chaos as a neces-  For example, for no=40, wo=4 we have dX 5, much
sary condition for diffusive excitation is not taken into ac-  above the classical chaos border.
count. In the case where the dipole moment is equal to zero,
In the quantum case the situation is more complicated ~ we may consider the effect of quadrupole moment whose
and two additional borders play a relevant role. First,in  rotation will lead to a similar kind of mapping descrip-
order that excitation can take place in the quantum | tion. To investigate this case we consider the following
model:

H=1% (p2+p2) —0.5[(x —dsinot) 2+ (y —d coswt)?] =2 —0.5[(x +d sinwt) 2+ (y+d coswt) 21 =2, 8)

which corresponds to the case of zero dipole moment and rotating quadrupole @ ~d 2

According to simple estimates, the change in the electron energy after one orbital period AE =2kw is of the order
®2Q, that is, of the order of the quadrupole rotation energy. Indeed from Eq. (8), after expansion in the small parame-
ter d, one can compute the change of energy at the first order of perturbation in d %

2 —esing)] —
d%wq fx de cos[2wo(& esméz)] 1 —d%?, ©)
n —x (1 —ecosé)

where e =1 —12/n§ is the eccentricity. The term — 1 in the numerator, under the integral, takes out the contribution in

AE not connected to the quadrupole rotation. The last relation in (9) is valid for / < (3/2@) 13 (otherwise the change of
the energy, as in the dipole case, is exponentially small).

AE ~
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Numerical investigations show that the value of AE has
weak dependence from orbital momentum / and can vary
in the interval + w2Q. Figure 3 shows the dependence of
the amplitude of the energy change E,+; — E, = Asin2®
for the Rydberg electron after one orbital period as a
function of the quadrupole moment Q~d2 In agree-
ment with the estimate (9) the dependence on Q is linear.
Therefore the energy exchange between the Rydberg
electron and the rotating molecule core with quadrupole
moment, in the regime r2;, > Q, is described by the same
kind of map (5) with sin2® in the first equation and with
k~Qw. The main difference with the dipole case is that
the Shuryak border k> 1 is more restrictive for the
quadrupole since the interaction is weaker.

It is interesting to remark that the same types of prob-
lems arise for satellite motion around a gravitational body
with rotating quadrupole moment. In this case the chaos
border is given by AQ/R?2 1/50w3 where AQ is the ro-
tating part of the quadrupole of the body and R is the ra-
dius of the satellite orbit; wg is the ratio between the
quadrupole rotation frequency, and the satellite frequen-
cy. The above border is obtained from the chaos border
for a hydrogen atom with the substitution é~Qw®?.
These considerations become relevant for deformed gravi-
tating bodies (when AQ~a? where a is the size of the
body) with high rotation frequency (so that the frequency
of this rotation is comparable with the frequency of satel-
lites rotating close to the surface wo= 1).

Another physical system in which the discussed phe-
nomenon can play a relevant role is autoionization of al-
kaline earth atoms (for example, barium or strontium)
with two highly excited electrons [10]. Indeed, in the
case of “planetary states” when the principal quantum
number n of the outer electron is much higher than that
of the inner electron (n;) the quantum defect u leads to a
precession of the Runge-Lenz vector b, of the inner elec-
tron with frequency @ =(4/n?)du,; /3!, [10). This pre-
cession gives the oscillating part of the dipole moment of
the inner electron (with d =nb;) and makes this prob-
lem quite analogous to the problem of molecular Rydberg
states considered above under the conditions that wn?
> 1. To satisfy the condition that the outer electron does
not touch the inner one (nf </2) and the condition for
the orbital momentum / < (3/w)'? it is also necessary to
have onf < 1.

In conclusion, our classical analysis allows us to under-
stand the physics of the energy exchange between the ro-
tating molecular core and Rydberg excitation. We estab-
lish the critical value of interaction above which this ex-

change becomes chaotic, leading to diffusive autoioniza-
tion of Rydberg electrons. Quantum effects can lead to
suppression of this diffusive ionization, creating long liv-
ing quasistationary states in the continuum spectrum of
molecules. The investigation of this phenomenon in labo-
ratory experiments will allow a better understanding of
the phenomena of quantum chaos in molecular systems.

Finally, we remark that the model studied in this paper
provides a simple example of a conservative system with 2
degrees of freedom in which quantum localization leads
to nonergodic eigenstates on the energy surface. In par-
ticular this will imply Poisson statistics for energy levels
in the localized regime.
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