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We investigate the classical properties of electrons moving in a superposition of a uniform and period-
ically oscillating magnetic field. The most interesting dynamics occurs in the case where the uniform
and periodic fields are of comparable order of magnitude and the periodic component originates from a
planar arrangement of spins. For small energies almost the complete phase space is regular. With in-
creasing energy the fraction of irregular orbits increases and eventually the phase space becomes com-
pletely chaotic. For higher energies we observe the appearance of a ballistic mode which allows the elec-
trons to travel with high velocity through the magnetized spin lattice. This regular ballistic mode might
be of relevance for transport processes in solid-state physics.

Recently the t-J model which describes the behavior of
charged excitations on a spin lattice with nearest-
neighbor interaction has attracted much attention' ~3 be-
cause of its possible relevance in superconductivity. The
arrangement of spins is expected to create a spatially
varying magnetic field and the charged excitations, i.e.,
electrons or holes, are moving within this field. There-
fore the natural question arises: what does the two-
dimensional (2D) dynamics of an electron in, for example,
a period magnetic field look like? This is precisely the
subject of investigation of the present paper. Apart from
its relevance in solid-state physics this question is also of
importance for plasma and accelerator physics where the
stability of the motion of charged particles in spatially os-
cillating external magnetic fields is an inherent problem.
Finally, the above question is also of interest on its own.

The nonrelativistic motion of a charged particle in a
homogeneous magnetic field is known since the work of
Landau.* Classically the particle performs a circular
motion whose radius is inverse proportional to the field
strength. Therefore the classical trajectories of, for ex-
ample, an electron in a uniform magnetic field are
confined, i.e., experience only a bounded region of coordi-
nate space. The following interesting questions arise
now: How does an additional periodic magnetic field
change the dynamics and, in particular, the confinement
properties of the motion? Will confinement be preserved
or does the additional presence of a spatially oscillating
magnetic field allow for an unbound motion in coordinate
space? Does both chaotic and regular dynamics occur
and what portions of the phase space do they occupy de-
pending on the values of the parameters, i.e., energy and
field strengths? In a very recent investigation® on the
motion of fast particles in strongly fluctuating magnetic
fields it was shown that an approach via classical dynam-
ics yields, to some extent, a reasonable description of the
dynamics of the system. In Ref. 5 the authors considered
fermions which move with large velocity, i.e., close to the
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Fermi surface, in a spatially randomly fluctuating mag-
netic field with constant correlation function. In this pa-
per we investigate the classical dynamics of 2D electrons
in periodic magnetic fields which might give relevant in-
formation for the understanding of the physics of 2D
electrons.

Let us now discuss the explicit form of our two-
dimensional model. According to the above argumenta-
tion the magnetic field B is assumed to take on the fol-
lowing appearance:

B=B,+B,cosx +B,cosy , 1)

which contains a uniform component B, and a spatially
varying part (B cosx +B,cosy). The magnetic field in
Eq. (1), which is assumed to point along the z direction,
possesses an infinite number of minima, maxima, and sad-
dle points. The Hamiltonian for a charged particle with
mass m and charge e in the magnetic field (1) reads

2

+£A
c

(2a)

For the vector potential A in the symmetric gauge we
have

A=[(3)-Boy +B,siny,(—1)-Box —B;sinx] . (2b)

The resulting Hamiltonian equations of motion have the
form

e | 0 %4 +2A (3a)
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where r and p are the position vector of the particle and
its canonical conjugated momentum. The model given by
Egs. (2) contains three parameters: the amplitudes of the
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uniform (B,) and periodically oscillating (B;,B,)
magnetic-field strengths. In the following we use the
units m =e=c=1.

For small amplitudes of the oscillating field strength
(B,,B,), i.e., for B,>>B,,B,, the motion of the particle
can be described and understood in the framework of
classical perturbation theory. For a particle in a uniform
magnetic field the so-called guiding center, which is the
center of its classical Larmor circle, is a conserved quan-
tity and therefore fixed in space. In an inhomogeneous
field the gradient of the field strength is responsible for a
drift of this guiding center. The resulting drift velocity is
given by the following expression:5’

___(FXB)
Vo= T g2 o 4)
where F= —p-VB is the force averaged over a gyro orbit.

p=(1/2B)-t, is the magnetic moment and r is the posi-
tion vector of the guiding center (r, means the com-
ponent perpendicular to the magnetic-field vector). In
the drift approximation y is an adiabatic invariant and is
assumed to be well conserved.

Let us consider the case By >>B,,B, of our model Eqgs.
(2). Then the above mentioned drift approximation holds
for an arbitrary energy E. The Larmor circles given by
the uniform field B, perform a drift with the velocity v
which is perpendicular to the field and to the field gra-
dient [see Eq. (4)]. In particular the entire phase space is
regular. In addition, if we have B;#B, we obtain a cer-
tain subset of classical trajectories which travel along the
potential lines through the lattice and therefore perform
an unbounded regular motion. This ballistic motion of
the Larmor circle always takes place in the direction of
the axis of the smaller field component, i.e., along the x
axis if | B,| <|B,| and along the y axis if | B,| > |B,|. The
amount of traveling trajectories in phase space depends
on the ratio (B,/B,). However, a physically more
relevant situation is the case B; =B,. Indeed since the
periodic magnetic field has its origin in the planar ar-
rangement of spins the field should be symmetric with
respect to the x and y coordinates of the plane, i.e., we
have B, =B,=B, for the two independent directions.
For B, =B, only the trajectories along the separatrix can
go to infinity and almost all trajectories are confined.
From the expression for the drift velocity (4) it follows
that in the case of By,>>B,,B, the particle is moving
along the equipotential lines of the potential
V(x,y)=(B|/Bg)cosx +(B,/By)cosy. This can also be
considered as a motion in the phase space of the Hamil-
tonian H .=V (x,p), where y =p plays the role of the
momentum. This Hamiltonian is the Hamiltonian of the
Harper problem® and, therefore, we come to the con-
clusion that our model reduces to the Harper model in
the limit By >> B, B,.

Let us now consider the situation B,=B,=B; for
By~ B in more details. Here no obvious answer to the
question of the dynamical behavior of the system exists.
The drift approximation is generally not valid and it is
expected that the underlying classical dynamics will ex-
hibit a great variety of phenomena. This case is precisely
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the subject of investigation of this paper. In the follow-
ing we will choose the nearby values B,=1 and B,=1.4
for the two field strengths. (One atomic unit of B corre-
sponds to 2.35X10° T.) We remark that the ratio
(B, /B,) is the relevant quantity for the classical dynam-
ics, whereas the absolute order of magnitude of the field
strengths is of minor importance, i.e., does not change
the general conclusions drawn in this paper.

We investigate the classical dynamics of the model (2)
depending on the values of the total energy E. With the
help of Poincare sections we will show the different types
of motion in phase space and will learn about the physi-
cal behavior and properties of our model system (2). Two
types of Poincaré sections will be constructed: sections in
the (x,y)-coordinate plane for vanishing velocity v, =0 in
the y direction and sections in the (x,v, ) and (y, vy) plane
for y=m and x =, respectively. Due to the periodicity
of the magnetic field the (x,y) coordinates are always tak-
en modulo 27. Let us begin with small energies, i.e.,
E < 1. Figure 1 shows a Poincaré section in the (x,y)
plane for an energy E =0.03. To a large extent phase
space is dominated by regular motion and there exist
large regular islands of more or less circular shape
around the positions of the minima and maxima of the
field strength. Only close to the separatrix there exists a
layer of chaotic motion which becomes thinner with de-
creasing energy. This layer comes much closer to
the saddle points than to the minima and maxima
of the magnetic field. However, the chaotic layer
does not reach the boundary of the square
(x€[0,27],y€[0,27]). This is only correct for
sufficiently small energies which correspond to a small
Larmor radius of the drift motion. In particular, almost
all trajectories, the dominating regular ones as well as the
chaotic ones, only experience a bounded range of coordi-
nate space, i.e., are confined. Only along the separatrix it
is possible to travel through the lattice. The regular
small-amplitude motion in the vicinity of the maxima and

o))

y coordinate (a.u.)

0 1 2 3 4 5 6

o

x coordinate(a.u.)

FIG. 1. The Poincaré section in the (x,y) plane for v, =0. (x
and y are taken mod 27.) The values of the total energy E, uni-
form field component B, and oscillating field component B, are
E=0.03, B,=1.0, and B, =1.4 in atomic units.
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minima of the magnetic field B can still be described in
the drift approximation, i.e., as a drift of the Larmor cir-
cles along the effective-potential lines described above.

With increasing total energy E the fraction of chaotic
trajectories in the phase space increases. Above a cer-
tain, still rather small, value of the energy the chaotic
layer in the (x,y)-Poincaré section reaches the boundary
of the square ([0,27],[0,27]), which means that the
chaotic trajectories are allowed to move through the lat-
tice. With increasing time they experience an increasing
part of the lattice (see below for an illustration). If we
proceed to still larger values of the energy the chaotic
component takes over more and more of the phase space
and finally covers the whole phase space. This happens if
the Larmor radius, which is due to the uniform field B,
becomes comparable to the periodicity length of the os-
cillating field component. Figure 2 shows the Poincaré
section in the (y,v,) plane for a corresponding energy of
E =8.0. No regular structures survived.

For even higher energies we observe around E ~ 10 in,
for example, the (x,y)-Poincaré section the reappearance
of islands of regular motion which are embedded in a sea
of chaotic trajectories. With increasing energy these is-
lands grow and eventually occupy a substantial part of
the phase space. The important observation now is that
there exists a new type of regular islands and trajectories
which is not present for energies E <10. These trajec-
tories perform a ballistic motion, i.e., travel through the
whole lattice with a high velocity. This ballistic motion
can take place along the direction of the x as well as y
axis. The corresponding regular ballistic island in the
surface of section persists and even grows with increasing
energy. To illustrate these results we have plotted the
Poincaré sections in the (x,y) and (x,v, ) planes in Figs. 3
and 4, for an energy E =28.0, respectively. Let us first
have a closer look at Fig. 4. Apart from the dominating
sea of chaotic trajectories large regular islands exist. The
island located at the upper border of the allowed velocity
scale v,, whose maximal value is vy ~7.48, is a ballistic

island and the corresponding regular trajectories travel
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FIG. 2. The Poincaré section in the (y,v,) plane for x =m.
The parameter values are E=8.0, B;=1.0, and B;=1.4.
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FIG. 3. The Poincaré section in the (x,y) plane for v, =0 and
E=28.0,B,;=1.0,and B;=1.4. (x and y are taken mod 2m.)

with high velocity v, through the lattice (see below for an
example). The central island which is located at the x
axis around x =~2.6 corresponds to a ballistic motion in
the y direction [this can be seen by looking at the Poin-
caré section in the (y,v,) plane]. The remaining regular
structures of the section in Fig. 4 correspond to regular
trajectories which are confined, i.e., perform oscillations
in a bounded range of coordinate space. Figure 3 shows
the Poincaré section in the (x,y) plane for uy=0. The
ballistic island of high-v, velocity presented in Fig. 4 ap-
pears as a broad regular structure covering the whole
range of x coordinates. In Fig. 5 we have plotted a ballis-
tic trajectory with high-v, velocity in the (x,y) plane.
The motion in the x coordinate is almost pure transla-
tional, i.e., x =~v, -t, whereas the motion in the y coordi-
nate consists of quasiperiodic oscillations with a small
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FIG. 4. The Poincaré section in the (x,v,) plane for y =7.
Same parameter values as in Fig. 3. The regular island at the
upper border of the velocity v, arises from ballistic motion in
the x direction.



49 CHAOTIC AND BALLISTIC DYNAMICS FOR TWO- . ..

4.5
3
8
8 4
I
o
-
o
o
0 3.5
0
>
0 300 600

X coordinate (a.u.)

FIG. 5. A ballistic trajectory with high velocity v, and
small-amplitude oscillations in the transversal y direction. The
underlying energy and field strengths are the same as in Figs. 3
and 4. The trajectory contributes to the regular ballistic island
in Fig. 4 and correspondingly to the broad regular structure in
the Poincaré section of Fig. 3. The propagation time for the tra-
jectory is T=100 (in atomic units).

amplitude. In order to demonstrate the difference be-
tween the unbounded chaotic motion and the unbounded
high-velocity translational motion we show additionally
in Fig. 6 a chaotic trajectory in the (x,y) plane for the
same energy E=28.0. Due to the random-walk-like
behavior of the chaotic trajectories the mean distance is
for the same propagation time much smaller for the
chaotic (diffusive) case than for the ballistic one.

The occurrence and stability of a ballistic mode for
high energies and a field configuration B; > B, can be ex-
plained in a qualitative way via the underlying equations
of motion of the particle in the magnetic field B. Let us

)

100

50

y coordinate (a.u

-100 -50 0

x coordinate (a.u.)

FIG. 6. A chaotic trajectory with energy and field strengths
as given in Figs. 3 and 4. The propagation time is 7'=500.
With increasing time the trajectory experiences an increasing
volume of the (x,y) coordinate plane. The trajectory contrib-
utes to the chaotic sea in the sections of Figs. 3 and 4.
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assume we have a ballistic motion in the x direction.
Effectively, i.e., to lowest order, this motion can be de-
scribed by a pure translation x =v, -t with high velocity
v,. Then the Newtonian equation of motion in the y
direction reads as follows:

d? /dt>= —v, {B,+B,-[cos(v,-t)+cosy]} . (5)

Since v, is large we have a fastly oscillating purely time-
dependent term cos(v, -¢), which is averaged out if we are
only interested in the behavior of the mean of the
transversal degree of freedom y. As a result we obtain
the following effective equation of motion in the y direc-
tion:

d? /dt*=—v, (B,+B,-cosy) . (6)

Therefore, the effective potential V=uv, (Byy + B, siny)
describes the averaged dynamics in the transversal y
direction for ballistic motion in the x direction. In Fig. 7
we have illustrated the potential ¥ with the values for v,,
B, and B, according to the ballistic island in Fig. 4. It
exhibits alternating minima and maxima, arising from the
cosine, at the positions given by y =arccos(—B,/B;). A
necessary condition for the existence of these alternating
extrema and the resulting potential wells is, of course,
By < By, i.e., the uniform field component must be smaller
than the amplitude of the periodic field component. The
small-amplitude oscillatory motion in the y direction
takes place inside the potential wells of ¥, which are illus-
trated in Fig. 7. In particular for our trajectory in Fig. 5
the transversal y motion is restricted to the encircled po-
tential well which has its minima at y =3.92.

For constant energy and increasing values of the uni-
form field component B, the size of the ballistic island
decreases and finally for some critical value B,=B_ the
ballistic mode disappears completely. In our case of
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FIG. 7. An illustration of the effective potential

V=uv,(Byy +Bsiny) which is responsible for the transversal
part of the ballistic motion. The field strengths are B, =1.0 and
B,=1.4 and we have chosen v, =7.49 according to the island of
ballistic motion in Fig. 4. The transversal y motion of the tra-
jectory presented in Fig. 5 takes place in the encircled potential
well.
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B;=1.4 we obtain B, ~B,. Another condition for the
appearance of the ballistic mode is that the energy must
be larger than some critical value which is approximately
determined by the condition that the Larmor radius must
be larger than the length scale a of the variation of the
magnetic field (a is 27 in our case). This condition is
equivalent to the requirement that the frequency of the
force in Eq. (5) of the motion in x is much higher than
the frequency of the motion in the minimum. This condi-
tion gives the estimate for the critical energy above which
the ballistic mode appears: E >E_ ~(aB)*. It is impor-
tant to notice that the above observed ballistic motion
continues to exist not only for a broad range of high ener-
gies but also if an additional external electric field is
switched on. This means that the ballistic mode might be
used as a guide for particles in a regular channel which
can have large energies. In particular, the particles will
stay in this regular mode if they are accelerated by an
external electric field. This behavior is somehow similar
to the autofocusing effect well known in accelerator phys-
ics.

One can ask the question whether the ballistic mode
exists in the case when the classical electron is moving in
a periodic static potential U (x,y) (which we assume to be
symmetric in the x-y plane) and a homogeneous magnetic
field. It is known that in the limit of a strong field (that
means the Larmor frequency is much higher than the fre-
quency of oscillations in the potential U) the problem can
be reduced to the Harper model® with the critical param-
eter value (regime of one Landau level). In this case the
classical trajectories are confined. In the general case the
conditions for the existence of a ballistic mode are given
by the following estimate of the energy:
(aB)?*<E <U?/(aB)*. The first inequality is the same
as in the case of a purely magnetic field, i.e., the Larmor
radius should be larger than the periodic scale. The
second inequality is equivalent to the condition
v,By>v,B,=dU/dx=U/a which follows from the
equation analogous to Eq. (6). From these estimates it
follows that in the case of a static potential the ballistic
mode will disappear in the limit of high energy. In the
case of a periodic magnetic field the upper boundary for
the energy disappears. We mention that small ballistic is-
lands at intermediate energies in a static potential and a
homogeneous magnetic field were found recently in the
corresponding numerical simulations (see Ref. 9).

In conclusion we have investigated the classical dy-
namics of a charged particle moving in a spatially period-
ic magnetic field superimposed to a uniform field. The
most interesting case arises if the two field amplitudes are
of comparable order of magnitude. For small energies
the Larmor radius, which belongs to the uniform field
component, is small in comparison with the periodicity
length of the oscillating field component. Therefore the
phase space is dominated by regular motion and chaos
appears only as a thin layer in the vicinity of the separa-
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trix. In particular regular motion is confined in coordi-
nate space whereas the chaotic trajectories above a cer-
tain energy value are allowed to travel in a diffusive way
through the lattice. With increasing energy the Larmor
radius grows and eventually becomes comparable to the
periodicity length. In the latter energy regime the phase
space is completely chaotic. If we go to even higher ener-
gies regular structures reappear but additionally a new
kind of regular motion appears: the ballistic mode. A
ballistic trajectory propagates with high velocity in the
direction of one of the two Cartesian coordinate axes.
Along this axis it can approximately be described by a
translational motion with constant high velocity. For the
transversal degree of freedom an effective potential pic-
ture was given which is qualitatively able to describe the
small-amplitude transversal motion. We emphasize that
instead of the fact that the average value of the magnetic
field is nonzero the particle motion is not confined and we
obtain a type of unbounded regular motion. The latter is
an effect of the periodic fluctuations of the field. It is in-
teresting to discuss the case when the periodic com-
ponent of the magnetic field is replaced by a random-
varying magnetic field with approximately the same am-
plitude and correlation length. In that case for B, < B,
and E > E_ still some ballistic modes will appear. How-
ever, the randomness of the magnetic field will act like
some high-frequency noise which will try to throw out
the particle from the local minimum corresponding to
ballistic propagation. Of course, the ballistic mode will
finally be destroyed but since the frequency of the noise is
very high, the lifetime 75 in the local minimum (ballistic
mode) will be exponentially large [exp(r,/a) with
(ry /a)>>1]. Here r; is the Larmor radius and « is the
typical scale of variation of the random-field component.
The exponential estimate follows from the fact of a large
frequency difference and from the analyticity of the
motion. The large value of 75 implies a very large value
of the diffusion rate (conductance) which is proportional
to 75. Further investigations are required for this in-
teresting regime.

The appearance of a ballistic mode in the dynamics of
our model Hamiltonian might suggest its relevance in
different areas of physics. For accelerator physics this
regular ballistic channel might serve, as already men-
tioned, as a guide for controllable and focusable fast-
particle jets. In solid-state physics the above investiga-
tion might indicate that, instead of the existence of a spa-
tially oscillating magnetic field with a nonzero averaged
value which is due to, for example, a certain arrangement
of spins on a two-dimensional lattice, a mode of fast regu-
lar motion exists. This mode might be of relevance for
transport processes in the bulk.

We would like to thank Jean Bellissard for stimulating
discussions.
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FIG. 3. The Poincaré section in the (x,y) plane for v, =0 and
E=28.0, B;=1.0,and B,=1.4. (x and y are taken mod 27.)
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FIG. 4. The Poincaré section in the (x,v,) plane for y=m.

Same parameter values as in Fig. 3. The regular island at the

upper border of the velocity v, arises from ballistic motion in
the x direction.



