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The dynamics of two particles with a short-range repulsive or attractive interaction is studied numerically in
the Harper model. It is shown that an interaction leads to the appearance of localized states and a pure-point
spectrum component in the case when the noninteractive system is quasidiffusive or ballistic. In the localized
phase an interaction gives only a stronger localization contrary to the case of two interacting particles in a
random potential.@S0163-1829~96!06346-1#

The Harper model of electrons on a two-dimensional
square lattice in the presence of a perpendicular magnetic
field was intensively studied during the last decades~see,
e.g., Refs. 1–6!. After fixing the quasimomentum in one of
the directions the eigenvalue equation is reduced to a very
simple form of a one-dimensional quasiperiodic discrete
chain:

2lcos~\n1b!fn1fn111fn215Efn , ~1!

where the effective Plank’s constant\/2p gives the ratio of
magnetic flux through the lattice cell to one flux quantum
andb is a constant related to the quasimomentum. For the
original problem of electrons in a magnetic field the param-
eterl should be fixed atl51 but generally one can consider
the model~1! at different values ofl. Intensive analytical
and numerical studies2,6,3 for typical irrational values\/2p
showed that forl.1 the spectrum is pure-point like with
gaps and all eigenstates are exponentially localized. For
l,1 the spectrum becomes continuous with extended eigen-
states corresponding to ballistic classical motion. Forl51

the situation is critical with a singular-continuous multifrac-
tal spectrum and power law localized eigenstates.

While the properties of the one-particle Harper model are
now well understood in many respects the question about the
effects of the particle interaction has been not much investi-
gated up to now. Indeed, the main physical problem of inter-
acting particles at a finite particle density is very complicated
for both analytical and numerical investigations. One of the
approaches to understanding this problem is to analyze the
effect of an interaction of only two particles in the Harper
model. Recently such an approach has given a number of
interesting results for two interacting particles~TIP’s! in a
random potential showing that even repulsive particles can
form a pair which can propagate on a large distance.7,8 In this
paper I address the problem of TIP’s in a quasiperiodic po-
tential showing that here interaction effects can be quite dif-
ferent from the case of random potential. The investigation
of such a type of model will allow us to analyze the stability
of the multifractal spectrum with respect to interactions.

For two particles on a square lattice (x,y) with magnetic
flux and on-site interparticle interaction the eigenvalue equa-
tion has the form

ei\y1cx111,y1 ,x2 ,y2
1e2 i\y1cx121,y1 ,x2 ,y2

1cx1 ,y111,x2 ,y2
1cx1 ,y121,x2 ,y2

1ei\y2cx1 ,y1 ,x211,y2
1e2 i\y2cx1 ,y1 ,x221,y2

1cx1 ,y1 ,x2 ,y2111cx1 ,y1 ,x2 ,y2211Ũdx1 ,x2dy1 ,y2
cx1 ,y1 ,x2 ,y2

5Ecx1 ,y1 ,x2 ,y2
. ~2!

Here (x,y) are integers marking the sites of the square lattice, the indices 1,2 note two particles,Ũ is the on-site interaction,
and\52pf/f0 is determined by the ratio of magnetic fluxf through the unit cell to the quantum of fluxf0. The direct
investigation of Eq.~2! is a quite complicated problem. Therefore, I reduce it to a simpler one with Bloch waves propagating
in the x direction cx1 ,y1 ,x2 ,y2

5wy1 ,y2
*dk1dk2Ak1 ,k2

exp@i(k1x11k2x2)#, which leads to TIP’s in the Harper model with an
effectively renormalized interparticle interaction:

@2lcos~\n11b1!12lcos~\n21b2!1Udn1 ,n2#wn1 ,n2
1wn111,n2

1wn121,n2
1wn1 ,n2111wn1 ,n2215Ewn1 ,n2

. ~3!

Here for generality the parameterl is introduced which
should be taken equal to 1 for model~2! and the coordinates
y1,2 are replaced byn1,2. The parametersb1,2 areb1,25k1,2
and the strength of the renormalized interaction is
U5Ũ*dkAk11k22k,k /Ak1 ,k2

. The investigation of the prop-

erties of model~3! should allow one to understand better the
properties of the original TIP problem on two-dimensional
~2D! lattice ~2!.

The time evolution of models~2! and ~3! is governed by
Eqs. ~2! and ~3! with E on the right-hand side replaced by
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i ]/]t. This evolution for the model~3! was studied numeri-
cally on effective two-dimensional lattice with size
N3N<3013301. The flux ratio was fixed at the golden
mean value\/2p5(A521)/2. Forl51 the spectrum of a
noninteracting problem is singular continuous with multi-
fractal properties.3–5 Due to this fact the spreading over the
lattice is similar to the diffusive case with the second mo-
ments of probability distributions65^(n16n2)

2& growing
approximately linearly with time ~see Fig. 1!. The
switched-on interaction leads to a significant decrease in the
rate of this growth, namely, approximately 10 times for the
case in Fig. 1. Here, initially at timet50 two particles are
located at the same site so that all probability is concentrated
at n15n250 ~the same initial conditions were used in Figs.
2 and 3!. The analysis of the probability distribution
P65(n65constP(n1 ,n2) dependence onn65un16n2u/A2
shows that its tail has Gaussian shape. However, while in the
noninteractive case all the probabilities spread diffusively

over the lattice in the case with an interaction a large part of
probability ~aroundWloc'0.9) remains localized in the vi-
cinity of the initial position of particles within the interval
25<n1,2<5 ~Fig. 2!. The numerical simulations show that
in the interacting case the distribution mainly consists of two
parts. One of them represents localized states and is frozen
near the initial position of particles; another continues to
diffuse as in the noninteractive case and corresponds to the
Gaussian tail of distribution evolving in a diffusive way. Fig-
ure 2 represents a typical distribution shape at an instant
moment of time. These numerical data clearly demonstrate
the qualitative change induced by interaction: the appearence
of localized component.

If initially the particles are located on different sites, then
the value ofWloc decreases with the growth of the initial
distanceDr between them but its value still remains quite
large if the initial distance is about few sites. For fixedDr
the value ofWloc is not sensitive to the initial choice of
n1,2 andb1,2. The dependence on time of the probability to
stay at the originP0 averaged over the time interval@0,t# is
shown in Fig. 3. Only in the noninteractive case doesP0 go
to zero with time while for nonzeroU its value approaches
some constant. It is interesting to note that asymptotically
P0 is larger than zero not only forl51 but also forl,1
when the noninteracting case has a continuous spectrum with
waves ballistically propagating along the lattice. With the
interaction decreasing the value ofP0 decreases also but not
very sharply~Fig. 3!, also it is not sensitive to the sign of
U. In the localized phasel.1 the interaction gives only a
decrease of spreading over the lattice sites similarly to the
case withl<1. For example, in the case of Fig. 1 but with
l51.05 andU51 the probabilityP0 is approximately 9
times larger than forl51.05 andU50.

The numerical results discussed above demonstrate that
the TIP behavior in a quasiperiodic potential is quite differ-
ent from the case of random potential7,8where the interaction
produces mainly delocalizing effects. The main reasons for
this difference are probably the following. The delocalization
in the Harper model~1! at l51 appears as the result of
quantum tunneling between the sites with closes energies

FIG. 1. Dependence of second momentss65^(n16n2)
2& on

time t for TIP’s in the Harper model~3! (s1 is the solid curve,
s2 is the dashed curve!. The parameters arel51,
\5p(51/221), b1,2521/2; U50 for upper curves,U51 for lower
curves. The system size isN3N53013301 sites; initially particles
are at the samen1,250.

FIG. 2. Dependence of integrated probability distributionsP1

~solid curve! and P2 ~dashed curve! on n6
2 5(n16n2)

2/2 for the
case of Fig. 1 andt54000. The left curves are forU51; right are
for U50 ~shifted for clarity!.

FIG. 3. Dependence of probability to stay at the initial state
P0 on time t for l51, U51; l55/6, U55/6; l51, U51/4;
l51, U50 ~curves from up to down!, and\,b1,2 are as in Fig. 1.
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En52lcos(\n1b) which are exponentially far from each
other but are close in energy. Apparently, the interaction de-
stroys these tiny resonance conditions, which leads to the
appearance of localized states. These states are localized in
all directions on the 2D lattice (n1 ,n2) ~see Fig. 2!. There-
fore, they do not correspond to a situation in which the in-
teraction creates a coupled state which can propagate along
the lattice. According to the numerical data these localized
states are centered on the plane (n1 ,n2) mainly along the
diagonaln15n2 ~two particles are close to each other! and
their structure is approximately the same and independent of
the position along the diagonal. This means that these states
form a pure-point component in the energy spectrum. The
question of how this component is placed with respect to the
spectrum of noninteracting particles remains open. One pos-
sibility is that this pure-point spectrum is located completely
outside of the noninteractive band@28,8#. Such a case in
some sense would be similar to an impurity state in a usual
ballistic continuous band. Another possibility is that the
pure-point spectrum is also partially located inside the band
@28,8# in the gaps which exist for the noninteractive prob-
lem. The second possibility looks to be more probable and
more interesting. One of the indications in this direction is
that the strong decrease ofU ~Fig. 3! does not lead to the
disappearance of the localized component. It is natural to
assume that the structure of the pure-point spectrum remains
approximately the same forl,1 ~at least for not very small
values of l). According to numerical data the singular-
continuous part of the spectrum atl51 is not completely
destroyed by the interaction, so that the quasidiffusive
spreading still takes place~Fig. 1!, but it would be quite
desirable to have rigorous mathematical results about the
structure of the spectrum in the presence of interaction.

The results discussed above were obtained for the TIP’s
in the one-dimensional Harper model~3!. They indicate that
the interaction induced localized states also should exist in
the original problem~2! of TIP’s on the two-dimensional
lattice with magnetic flux. Indeed, here the interaction again
should give a destruction of tiny resonance conditions for
tunneling. However direct detailed investigations of the
model~2! are required to make definite conclusions, but nu-
merical studies of the model~2! are much more complicated
than for the model~3!. Finally, let us note that in the classi-
cal noninteractive limit the dynamics of models~2! and~3! is
integrable. Therefore, it would be interesting to study the
effect of TIP’s in the kicked Harper model9 where the one-
particle classical dynamics is chaotic.

In conclusion, the numerical investigations of TIP’s in the
Harper model~3! show that the attractive-repulsive interac-
tion leads to appearance of localized states and pure-point
spectrum. This happens in the case when noninteractive sys-
tem (U50) has quasidiffusive wave packet spreading with a
singular-continuous spectrum (l51) or even forl,1 when
it has the ballistic wave packet propagation and continuous
spectrum. Such an effect of the interaction in quasiperiodic
systems is attributed to the interaction induced destruction of
tiny resonance conditions which in the noninteractive system
allowed one to tunnel between quasiresonant states, leading
to infinite wave packet spreading and decay of the probabil-
ity to stay at the origin to zero. In the localized phase the
interaction gives only a decrease of the localization length.
Therefore, the situation in the quasiperiodic systems is quite
different from the case of random potential where the inter-
action between two particles gives an increase of the local-
ization length.
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